|
1
|
Mithoowani H and Febbraro M:
Non-small-cell lung cancer in 2022: A review for general
practitioners in oncology. Curr Oncol. 29:1828–1839. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Meyer ML, Fitzgerald BG, Paz-Ares L,
Cappuzzo F, Jänne PA, Peters S and Hirsch FR: New promises and
challenges in the treatment of advanced non-small-cell lung cancer.
Lancet. 404:803–822. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Banna GL, Hassan MA, Signori A, Giunta EF,
Maniam A, Anpalakhan S, Acharige S, Ghose A and Addeo A:
Neoadjuvant chemo-immunotherapy for early-stage non-small cell lung
cancer: A systematic review and meta-analysis. JAMA Netw Open.
7:e2468372024. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Chen YL, Xiong LA, Ma LF, Fang L and Zhan
ZJ: Natural product-derived ferroptosis mediators. Phytochemistry.
219:1140022024. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Wang X, Izzo AA, Papapetropoulos A,
Alexander SPH, Cortese-Krott M, Kendall DA, Martemyanov KA, Mauro
C, Panettieri RA Jr, Patel HH, et al: Natural product pharmacology:
The British Journal of pharmacology perspective. Br J Pharmacol.
181:3547–3555. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Zhang L, Liu P, Jiang Y, Fan D, He X,
Zhang J, Luo B, Sui J, Luo Y, Fu X and Yang T: Exploration of novel
isoxazole-fused quinone derivatives as anti-colorectal cancer
agents through inhibiting STAT3 and elevating ROS level. Eur J Med
Chem. 272:1164482024. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Muramoto J and Sakamoto T: Tripodal
quinone-cyanine G-quadruplex ligands as novel photosensitizers on
photoinduced cancer cell death. Molecules. 29:50942024. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Dey A, Kumar EKP, Kim CH, Li Y and Park
JH: Dual stimuli-responsive nanoprecursor of ascorbic acid and
quinone methide disrupting redox homeostasis for cancer treatment.
ACS Omega. 9:32124–32132. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Modarresi Chahardehi A, Ojaghi HR,
Motedayyen H and Arefnezhad R: Nano-based formulations of
thymoquinone are new approaches for psoriasis treatment: A
literature review. Front Immunol. 15:14168422024. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Abutayeh RF, Altah M, Mehdawi A, Al-Ataby
I and Ardakani A: Chemopreventive agents from nature: A review of
apigenin, rosmarinic acid, and thymoquinone. Curr Issues Mol Biol.
46:6600–6619. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Zhao ZX, Li S and Liu LX: Thymoquinone
affects hypoxia-inducible factor-1α expression in pancreatic cancer
cells via HSP90 and PI3K/AKT/mTOR pathways. World J Gastroenterol.
30:2793–2816. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Taiyab A, Choudhury A, Haidar S, Yousuf M,
Rathi A, Koul P, Chakrabarty A, Islam A, Shamsi A and Hassan MI:
Exploring MTH1 inhibitory potential of thymoquinone and baicalin
for therapeutic targeting of breast cancer. Biomed Pharmacother.
173:1163322024. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Shakeel I, Haider S, Khan S, Ahmed S,
Hussain A, Alajmi MF, Chakrabarty A, Afzal M and Imtaiyaz Hassan M:
Thymoquinone, artemisinin, and thymol attenuate proliferation of
lung cancer cells as Sphingosine kinase 1 inhibitors. Biomed
Pharmacother. 177:1171232024. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Burdușel AC and Andronescu E: Lipid
nanoparticles and liposomes for bone diseases treatment.
Biomedicines. 10:31582022. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Xie B, Liu Y, Li X, Yang P and He W:
Solubilization techniques used for poorly water-soluble drugs. Acta
Pharm Sin B. 14:4683–4716. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Kowalska A and Szeleszczuk Ł: Cyclodextrin
inclusion complexes with hydrocortisone-type corticosteroids.
Pharmaceutics. 16:15442024. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Sarabia-Vallejo Á, Caja MDM, Olives AI,
Martín MA and Menéndez JC: Cyclodextrin inclusion complexes for
improved drug bioavailability and activity: Synthetic and
analytical aspects. Pharmaceutics. 15:23452023. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Alqahtani MS, Kazi M, Alsenaidy MA and
Ahmad MZ: Advances in oral drug delivery. Front Pharmacol.
12:6184112021. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Wu HH, Garidel P and Michaela B: HP-β-CD
for the formulation of IgG and Ig-based biotherapeutics. Int J
Pharm. 601:1205312021. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Shen Q, Shen Y, Jin F, Du YZ and Ying XY:
Paclitaxel/hydroxypropyl-β-cyclodextrin complex-loaded liposomes
for overcoming multidrug resistance in cancer chemotherapy. J
Liposome Res. 30:12–20. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Saha ST, Abdulla N, Zininga T, Shonhai A,
Wadee R and Kaur M: 2-Hydroxypropyl-β-cyclodextrin (HPβCD) as a
potential therapeutic agent for breast cancer. Cancers (Basel).
15:28282023. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Al-Qubaisi MS, Rasedee A, Flaifel MH, Eid
EEM, Hussein-Al-Ali S, Alhassan FH, Salih AM, Hussein MZ, Zainal Z,
Sani D, et al: Characterization of
thymoquinone/hydroxypropyl-β-cyclodextrin inclusion complex:
Application to anti-allergy properties. Eur J Pharm Sci.
133:167–182. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Swingler S, Gupta A, Gibson H, Kowalczuk
M, Adamus G, Heaselgrave W and Radecka I: Thymoquinone:
Hydroxypropyl-β-cyclodextrin loaded bacterial cellulose for the
management of wounds. Pharmaceutics. 14:28162022. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Eid EEM, Alshehade SA, Almaiman AA, Kamran
S, Lee VS and Alshawsh MA: Enhancing the anti-leukemic potential of
thymoquinone/sulfobutylether-β-cyclodextrin (SBE-β-CD) inclusion
complexes. Biomedicines. 11:18912023. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Luo K and Hu W: A dual thermo/pH-sensitive
hydrogel as 5-fluorouracil carrier for breast cancer treatment.
Anti-cancer Drugs. 36:220–231. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Peng L, Liu A, Shen Y, Xu HZ, Yang SZ,
Ying XZ, Liao W, Liu HX, Lin ZQ, Chen QY, et al: Antitumor and
anti-angiogenesis effects of thymoquinone on osteosarcoma through
the NF-κB pathway. Oncol Rep. 29:571–578. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Eid EEM, Almaiman AA, Alshehade SA,
Alsalemi W, Kamran S, Suliman FO and Alshawsh MA: Characterization
of thymoquinone-sulfobutylether-β-cyclodextrin inclusion complex
for anti-cancer applications. Molecules. 28:40962023. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Chen K, Yang R, Shen FQ and Zhu HL:
Advances in pharmacological activities and mechanisms of
glycyrrhizic acid. Curr Med Chem. 27:6219–6243. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Ma Y, Su Q, Yue C, Zou H, Zhu J, Zhao H,
Song R and Liu Z: The effect of oxidative stress-induced autophagy
by cadmium exposure in kidney, liver, and bone damage, and
neurotoxicity. Int J Mol Sci. 23:134912022. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Wu J, Wang Q, Dong X, Xu M, Yang J, Yi X,
Chen B, Dong X, Wang Y, Lou X, et al: Biocompatible
AIEgen/p-glycoprotein simplesiRNA@reduction-sensitive
paclitaxel polymeric prodrug nanoparticles for overcoming
chemotherapy resistance in ovarian cancer. Theranostics.
11:3710–3724. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Li Y, Cai Z, Ma W, Bai L, Luo E and Lin Y:
A DNA tetrahedron-based ferroptosis-suppressing nanoparticle:
Superior delivery of curcumin and alleviation of diabetic
osteoporosis. Bone Res. 12:142024. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Zhang Z, Zhao Y, Wang Y, Zhao Y and Guo J:
Autophagy/ferroptosis in colorectal cancer: Carcinogenic view and
nanoparticle-mediated cell death regulation. Environ Res.
238:1170062023. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Zhu X, Chen X, Qiu L, Zhu J and Wang J:
Norcantharidin induces ferroptosis via the suppression of NRF2/HO-1
signaling in ovarian cancer cells. Oncol Lett. 24:3592022.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Karki N, Aggarwal S, Laine RA, Greenway F
and Losso JN: Cytotoxicity of juglone and thymoquinone against
pancreatic cancer cells. Chem Biol Interact. 327:1091422020.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Yu H, Lin L, Zhang Z, Zhang H and Hu H:
Targeting NF-κB pathway for the therapy of diseases: Mechanism and
clinical study. Signal Transduct Target Ther. 5:2092020. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Chen Y, Fang ZM, Yi X, Wei X and Jiang DS:
The interaction between ferroptosis and inflammatory signaling
pathways. Cell Death Dis. 14:2052023. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Chen B, Dong X, Zhang JL, Sun X, Zhou L,
Zhao K, Deng H and Sun Z: Natural compounds target programmed cell
death (PCD) signaling mechanism to treat ulcerative colitis: A
review. Front Pharmacol. 15:13336572024. View Article : Google Scholar : PubMed/NCBI
|