Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
December-2025 Volume 54 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2025 Volume 54 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Neuroscience in glioma biology (Review)

  • Authors:
    • Chunzhi Zhang
    • Hanning Zhang
    • Jiahao Cao
    • Meili Liu
  • View Affiliations / Copyright

    Affiliations: Department of Radiation Oncology, Tianjin Hospital, Tianjin University, Tianjin 300211, P.R. China, Clinical Medical College of Tianjin Medical University, Tianjin 300270, P.R. China, Tianjin Medical University, Tianjin 300203, P.R. China, Department of Radiology, Tianjin Huanhu Hospital, Tianjin 300222, P.R. China
    Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 166
    |
    Published online on: September 25, 2025
       https://doi.org/10.3892/or.2025.8999
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Although our understanding of the molecular and cellular factors involved in the development and growth of glioma has increased, prognosis remains dismal in most patients. The emerging field of cancer neuroscience has revealed the intricate functional interplay between glioma and the cellular architecture of the brain, especially neural circuits. In recent years, studies have revealed that glioma cells integrate and remodel multicellular neural circuits. Neural circuits have thus emerged as critical regulators of glioma from initiation to malignant growth. In the present review, an updated framework was provided for understanding the construction of neuron‑glioma networks and the mechanisms by which neurons regulate the malignant phenotype of glioma. Readers will also obtain insights into the construction of glioma‑glioma networks formed by tumor microtubes. Furthermore, the present review reveals the complex interconnectivity among the nervous system, immune system and glioma that promotes tumor growth. Finally, some potential areas of clinical translation and new research directions were highlighted.
View Figures

Figure 1

Bioinformatic analysis of The Cancer
Genome Atlas data clarified the close correlation between GBM and
neural circuits. (A) Venn diagram presents 860 differentially
expressed genes from GBM related to synapses. (B) Heatmap displays
the expression changes of differentially expressed genes related to
synapses in GBM. (C) The bubble plots illustrate the involvement of
these differentially expressed genes in GBM in neural circuits.
GBM, glioblastoma multiforme.

Figure 2

Both glioma cells and neural circuits
construct malignant networks, which also include astrocytes.

Figure 3

Neural activity promotes the
proliferation and invasion of glioma cells by various mechanisms,
including functional neuron-to-glioma synapses, paracrine signaling
factors, neural activity-mediated ion channels, and hijacking of
the neuron-astrocyte glutamate-glutamine cycle.

Figure 4

Glioma cells are interconnected with
each other by tumor microtubes, thereby constructing glioma-glioma
networks.

Figure 5

Two typical diffusion-weighted images
of patients with glioblastoma multiforme.
View References

1 

Chen X and Song E: The theory of tumor ecosystem. Cancer Commun (Lond). 42:587–608. 2022. View Article : Google Scholar : PubMed/NCBI

2 

Swanton C, Bernard E, Abbosh C, Andre F, Auwerx J, Balmain A, Bar-Sagi D, Bernards R, Bullman S, DeGregori J, et al: Embracing cancer complexity: Hallmarks of systemic disease. Cell. 187:1589–1616. 2024. View Article : Google Scholar : PubMed/NCBI

3 

Mancusi R and Monje M: The neuroscience of cancer. Nature. 618:467–479. 2023. View Article : Google Scholar : PubMed/NCBI

4 

Miller KD, Ostrom QT, Kruchko C, Patil N, Tihan T, Cioffi G, Fuchs HE, Waite KA, Jemal A, Siegel RL, et al: Brain and other central nervous system tumor statistics, 2021. CA Cancer J Clin. 71:381–406. 2021.PubMed/NCBI

5 

Weller M, Wen PY, Chang SM, Dirven L, Lim M, Monje M and Reifenberger G: Glioma. Nat Rev Dis Primers. 10:332024. View Article : Google Scholar : PubMed/NCBI

6 

Bagley SJ, Logun M, Fraietta JA, Wang X, Desai AS, Bagley LJ, Nabavizadeh A, Jarocha D, Martins R, Maloney E, et al: Intrathecal bivalent CAR T cells targeting EGFR and IL13Ralpha2 in recurrent glioblastoma: Phase 1 trial interim results. Nat Med. 30:1320–1329. 2024. View Article : Google Scholar : PubMed/NCBI

7 

Bagley SJ, Binder ZA, Lamrani L, Marinari E, Desai AS, Nasrallah MP, Maloney E, Brem S, Lustig RA, Kurtz G, et al: Repeated peripheral infusions of anti-EGFRvIII CAR T cells in combination with pembrolizumab show no efficacy in glioblastoma: A phase 1 trial. Nat Cancer. 5:517–531. 2024. View Article : Google Scholar : PubMed/NCBI

8 

Roth P, Gorlia T, Reijneveld JC, de Vos F, Idbaih A, Frenel JS, Le Rhun E, Sepulveda JM, Perry J, Masucci GL, et al: Marizomib for patients with newly diagnosed glioblastoma: A randomized phase 3 trial. Neuro Oncol. 26:1670–1682. 2024. View Article : Google Scholar : PubMed/NCBI

9 

Sloan AE, Winter K, Gilbert MR, Aldape K, Choi S, Wen PY, Butowski N, Iwamoto FM, Raval RR, Voloschin AD, et al: RG-BN002: Phase I study of ipilimumab, nivolumab, and the combination in patients with newly diagnosed glioblastoma. Neuro Oncol. 26:1628–1637. 2024. View Article : Google Scholar : PubMed/NCBI

10 

Carpentier A, Stupp R, Sonabend AM, Dufour H, Chinot O, Mathon B, Ducray F, Guyotat J, Baize N, Menei P, et al: Repeated blood-brain barrier opening with a nine-emitter implantable ultrasound device in combination with carboplatin in recurrent glioblastoma: A phase I/II clinical trial. Nat Commun. 15:16502024. View Article : Google Scholar : PubMed/NCBI

11 

Harwood DSL, Pedersen V, Bager NS, Schmidt AY, Stannius TO, Areskeviciute A, Josefse K, Nørøxe DS, Scheie D, Rostalski H, et al: Glioblastoma cells increase expression of notch signaling and synaptic genes within infiltrated brain tissue. Nat Commun. 15:78572024. View Article : Google Scholar : PubMed/NCBI

12 

Alhalabi OT, Fletcher MNC, Hielscher T, Kessler T, Lokumcu T, Baumgartner U, Wittmann E, Schlue S, Göttmann M, Rahman S, et al: A novel patient stratification strategy to enhance the therapeutic efficacy of dasatinib in glioblastoma. Neuro Oncol. 24:39–51. 2022. View Article : Google Scholar : PubMed/NCBI

13 

Hara T, Chanoch-Myers R, Mathewson ND, Myskiw C, Atta L, Bussema L, Eichhorn SW, Greenwald AC, Kinker GS, Rodman C, et al: Interactions between cancer cells and immune cells drive transitions to mesenchymal-like states in glioblastoma. Cancer Cell. 39:779–792.e11. 2021. View Article : Google Scholar : PubMed/NCBI

14 

Chen L, Qi Q, Jiang X, Wu J, Li Y, Liu Z, Cai Y, Ran H, Zhang S, Zhang C, et al: Phosphocreatine promotes epigenetic reprogramming to facilitate glioblastoma growth through stabilizing BRD2. Cancer Discov. 14:1547–1565. 2024. View Article : Google Scholar : PubMed/NCBI

15 

Kloosterman DJ, Erbani J, Boon M, Farber M, Handgraaf SM, Ando-Kuri M, Sánchez-López E, Fontein B, Mertz M, Nieuwland M, et al: Macrophage-mediated myelin recycling fuels brain cancer malignancy. Cell. 187:5336–5356.e30. 2024. View Article : Google Scholar : PubMed/NCBI

16 

Seguin C, Sporns O and Zalesky A: Brain network communication: Concepts, models and applications. Nat Rev Neurosci. 24:557–574. 2023. View Article : Google Scholar : PubMed/NCBI

17 

Bazinet V, Hansen JY and Misic B: Towards a biologically annotated brain connectome. Nat Rev Neurosci. 24:747–760. 2023. View Article : Google Scholar : PubMed/NCBI

18 

Zamler DB and Hu J: Primitive oligodendrocyte precursor cells are highly susceptible to gliomagenic transformation. Cancer Res. 83:807–808. 2023. View Article : Google Scholar : PubMed/NCBI

19 

Liu C, Sage JC, Miller MR, Verhaak RG, Hippenmeyer S, Vogel H, Foreman O, Bronson RT, Nishiyama A, Luo L and Zong H: Mosaic analysis with double markers reveals tumor cell of origin in glioma. Cell. 146:209–221. 2011. View Article : Google Scholar : PubMed/NCBI

20 

Xiao Y and Czopka T: Myelination-independent functions of oligodendrocyte precursor cells in health and disease. Nat Neurosci. 26:1663–1669. 2023. View Article : Google Scholar : PubMed/NCBI

21 

Buchanan J, da Costa NM and Cheadle L: Emerging roles of oligodendrocyte precursor cells in neural circuit development and remodeling. Trends Neurosci. 46:628–639. 2023. View Article : Google Scholar : PubMed/NCBI

22 

Li J, Miramontes TG, Czopka T and Monk KR: Synaptic input and Ca2+ activity in zebrafish oligodendrocyte precursor cells contribute to myelin sheath formation. Nat Neurosci. 27:219–231. 2024. View Article : Google Scholar : PubMed/NCBI

23 

Douw L, Breedt LC and Zimmermann MLM: Cancer meets neuroscience: The association between glioma occurrence and intrinsic brain features. Brain. 146:803–805. 2023. View Article : Google Scholar : PubMed/NCBI

24 

Meyer J, Yu K, Luna-Figueroa E, Deneen B and Noebels J: Glioblastoma disrupts cortical network activity at multiple spatial and temporal scales. Nat Commun. 15:45032024. View Article : Google Scholar : PubMed/NCBI

25 

Krishna S, Choudhury A, Keough MB, Seo K, Ni L, Kakaizada S, Lee A, Aabedi A, Popova G, Lipkin B, et al: Glioblastoma remodelling of human neural circuits decreases survival. Nature. 617:599–607. 2023. View Article : Google Scholar : PubMed/NCBI

26 

Pan Y, Hysinger JD, Barron T, Schindler NF, Cobb O, Guo X, Yalçın B, Anastasaki C, Mulinyawe SB, Ponnuswami A, et al: NF1 mutation drives neuronal activity-dependent initiation of optic glioma. Nature. 594:277–282. 2021. View Article : Google Scholar : PubMed/NCBI

27 

Anastasaki C, Chatterjee J, Koleske JP, Gao Y, Bozeman SL, Kernan CM, Marco Y, Marquez LI, Chen JK, Kelly CE, et al: NF1 mutation-driven neuronal hyperexcitability sets a threshold for tumorigenesis and therapeutic targeting of murine optic glioma. Neuro Oncol. 26:1496–1508. 2024. View Article : Google Scholar : PubMed/NCBI

28 

Chen P, Wang W, Liu R, Lyu J, Zhang L, Li B, Qiu B, Tian A, Jiang W, Ying H, et al: Olfactory sensory experience regulates gliomagenesis via neuronal IGF1. Nature. 606:550–556. 2022. View Article : Google Scholar : PubMed/NCBI

29 

Chatterjee J, Koleske JP, Chao A, Sauerbeck AD, Chen JK, Qi X, Ouyang M, Boggs LG, Idate R, Marco Y, et al: Brain injury drives optic glioma formation through neuron-glia signaling. Acta Neuropathol Commun. 12:212024. View Article : Google Scholar : PubMed/NCBI

30 

Romero-Garcia R, Mandal AS, Bethlehem RAI, Crespo-Facorro B, Hart MG and Suckling J: Transcriptomic and connectomic correlates of differential spatial patterning among gliomas. Brain. 146:1200–1211. 2023. View Article : Google Scholar : PubMed/NCBI

31 

Hai L, Hoffmann DC, Wagener RJ, Azorin DD, Hausmann D, Xie R, Huppertz MC, Hiblot J, Sievers P, Heuer S, et al: A clinically applicable connectivity signature for glioblastoma includes the tumor network driver CHI3L1. Nat Commun. 15:9682024. View Article : Google Scholar : PubMed/NCBI

32 

Venkataramani V, Schneider M, Giordano FA, Kuner T, Wick W, Herrlinger U and Winkler F: Disconnecting multicellular networks in brain tumours. Nat Rev Cancer. 22:481–491. 2022. View Article : Google Scholar : PubMed/NCBI

33 

Osswald M, Jung E, Sahm F, Solecki G, Venkataramani V, Blaes J, Weil S, Horstmann H, Wiestler B, Syed M, et al: Brain tumour cells interconnect to a functional and resistant network. Nature. 528:93–98. 2015. View Article : Google Scholar : PubMed/NCBI

34 

Gillespie S and Monje M: An active role for neurons in glioma progression: Making sense of Scherer's structures. Neuro Oncol. 20:1292–1299. 2018. View Article : Google Scholar : PubMed/NCBI

35 

Taylor KR, Barron T, Hui A, Spitzer A, Yalcin B, Ivec AE, Geraghty AC, Hartmann GG, Arzt M, Gillespie SM, et al: Glioma synapses recruit mechanisms of adaptive plasticity. Nature. 623:366–374. 2023. View Article : Google Scholar : PubMed/NCBI

36 

Taylor KR and Monje M: Neuron-oligodendroglial interactions in health and malignant disease. Nat Rev Neurosci. 24:733–746. 2023. View Article : Google Scholar : PubMed/NCBI

37 

de Ruiter Swain J, Michalopoulou E, Noch EK, Lukey MJ and Van Aelst L: Metabolic partitioning in the brain and its hijacking by glioblastoma. Genes Dev. 37:681–702. 2023. View Article : Google Scholar : PubMed/NCBI

38 

Venkataramani V, Yang Y, Schubert MC, Reyhan E, Tetzlaff SK, Wißmann N, Botz M, Soyka SJ, Beretta CA, Pramatarov RL, et al: Glioblastoma hijacks neuronal mechanisms for brain invasion. Cell. 185:2899–2917.e31. 2022. View Article : Google Scholar : PubMed/NCBI

39 

Sun Y, Wang X, Zhang DY, Zhang Z, Bhattarai JP, Wang Y, Park KH, Dong W, Hung YF, Yang Q, et al: Brain-wide neuronal circuit connectome of human glioblastoma. Nature. 641:222–231. 2025. View Article : Google Scholar : PubMed/NCBI

40 

Hsieh AL, Ganesh S, Kula T, Irshad M, Ferenczi EA, Wang W, Chen YC, Hu SH, Li Z, Joshi S, et al: Widespread neuroanatomical integration and distinct electrophysiological properties of glioma-innervating neurons. Proc Natl Acad Sci USA. 121:e24174201212024. View Article : Google Scholar : PubMed/NCBI

41 

Venkatesh HS, Morishita W, Geraghty AC, Silverbush D, Gillespie SM, Arzt M, Tam LT, Espenel C, Ponnuswami A, Ni L, et al: Electrical and synaptic integration of glioma into neural circuits. Nature. 573:539–545. 2019. View Article : Google Scholar : PubMed/NCBI

42 

Muller-Langle A, Lutz H, Hehlgans S, Rodel F, Rau K and Laube B: NMDA Receptor-mediated signaling pathways enhance radiation resistance, survival and migration in glioblastoma Cells-A potential target for adjuvant radiotherapy. Cancers (Basel). 11:5032019. View Article : Google Scholar : PubMed/NCBI

43 

Drexler R, Drinnenberg A, Gavish A, Yalcin B, Shamardani K, Rogers A, Mancusi R, Taylor KR, Kim YS, Woo PJ, et al: Cholinergic neuronal activity promotes diffuse midline glioma growth through muscarinic signaling. Cell. 188:4640–4657.e30. 2025. View Article : Google Scholar : PubMed/NCBI

44 

Stella M, Baiardi G, Pasquariello S, Sacco F, Dellacasagrande I, Corsaro A, Mattioli F and Barbieri F: Antitumor potential of antiepileptic drugs in human glioblastoma: Pharmacological targets and clinical benefits. Biomedicines. 11:5822023. View Article : Google Scholar : PubMed/NCBI

45 

Badalotti R, Dalmolin M, Malafaia O, Ribas Filho JM, Roesler R, Fernandes MAC and Isolan GR: Gene expression of GABAA receptor subunits and association with patient survival in glioma. Brain Sci. 14:2752024. View Article : Google Scholar : PubMed/NCBI

46 

Barron T, Yalcin B, Su M, Byun YG, Gavish A, Shamardani K, Xu H, Ni L, Soni N, Mehta V, et al: GABAergic neuron-to-glioma synapses in diffuse midline gliomas. Nature. 639:1060–1068. 2025. View Article : Google Scholar : PubMed/NCBI

47 

Duman C, Yaqubi K, Hoffmann A, Acikgoz AA, Korshunov A, Bendszus M, Herold-Mende C, Liu HK and Alfonso J: Acyl-CoA-Binding protein drives glioblastoma tumorigenesis by sustaining fatty acid oxidation. Cell Metab. 30:274–289.e5. 2019. View Article : Google Scholar : PubMed/NCBI

48 

Venkatesh HS, Johung TB, Caretti V, Noll A, Tang Y, Nagaraja S, Gibson EM, Mount CW, Polepalli J, Mitra SS, et al: Neuronal activity promotes glioma growth through Neuroligin-3 secretion. Cell. 161:803–816. 2015. View Article : Google Scholar : PubMed/NCBI

49 

Colucci-D'Amato L, Speranza L and Volpicelli F: Neurotrophic factor BDNF, physiological functions and therapeutic potential in depression, neurodegeneration and brain cancer. Int J Mol Sci. 21:77772020. View Article : Google Scholar : PubMed/NCBI

50 

Li J, Zhang B, Feng Z, An D, Zhou Z, Wan C, Hu Y, Sun Y, Wang Y, Liu X, et al: Stabilization of KPNB1 by deubiquitinase USP7 promotes glioblastoma progression through the YBX1-NLGN3 axis. J Exp Clin Cancer Res. 43:282024. View Article : Google Scholar : PubMed/NCBI

51 

Venkatesh HS, Tam LT, Woo PJ, Lennon J, Nagaraja S, Gillespie SM, Ni J, Duveau DY, Morris PJ, Zhao JJ, et al: Targeting neuronal activity-regulated neuroligin-3 dependency in high-grade glioma. Nature. 549:533–537. 2017. View Article : Google Scholar : PubMed/NCBI

52 

Yun EJ, Kim D, Kim S, Hsieh JT and Baek ST: Targeting Wnt/β-catenin-mediated upregulation of oncogenic NLGN3 suppresses cancer stem cells in glioblastoma. Cell Death Dis. 14:4232023. View Article : Google Scholar : PubMed/NCBI

53 

Guo Z, An P and Hong X: has-miR-134-5p inhibits the proliferation and migration of glioma cells by regulating the BDNF/ERK signaling pathway. Aging (Albany NY). 16:6510–6520. 2024.PubMed/NCBI

54 

Griffin M, Khan R, Basu S and Smith S: Ion channels as therapeutic targets in high grade gliomas. Cancers (Basel). 12:30682020. View Article : Google Scholar : PubMed/NCBI

55 

Elias AF, Lin BC and Piggott BJ: Ion channels in gliomas-from molecular basis to treatment. Int J Mol Sci. 24:25302023. View Article : Google Scholar : PubMed/NCBI

56 

Sharma G, Braga CB, Chen KE, Jia X, Ramanujam V, Collins BM, Rittner R and Mobli M: Structural basis for the binding of the cancer targeting scorpion toxin, ClTx, to the vascular endothelia growth factor receptor neuropilin-1. Curr Res Struct Biol. 3:179–186. 2021. View Article : Google Scholar : PubMed/NCBI

57 

Barish ME, Aftabizadeh M, Hibbard J, Blanchard MS, Ostberg JR, Wagner JR, Manchanda M, Paul J, Stiller T, Aguilar B, et al: Chlorotoxin-directed CAR T cell therapy for recurrent glioblastoma: Interim clinical experience demonstrating feasibility and safety. Cell Rep Med. 6:1023022025. View Article : Google Scholar : PubMed/NCBI

58 

D'Alessandro G, Grimaldi A, Chece G, Porzia A, Esposito V, Santoro A, Salvati M, Mainiero F, Ragozzino D, Di Angelantonio S, et al: KCa3.1 channel inhibition sensitizes malignant gliomas to temozolomide treatment. Oncotarget. 7:30781–30796. 2016. View Article : Google Scholar : PubMed/NCBI

59 

Dong W, Fekete A, Chen X, Liu H, Beilhartz GL, Chen X, Bahrampour S, Xiong Y, Yang Q, Zhao H, et al: A designer peptide against the EAG2-Kvβ2 potassium channel targets the interaction of cancer cells and neurons to treat glioblastoma. Nat Cancer. 4:1418–1436. 2023. View Article : Google Scholar : PubMed/NCBI

60 

Han L, Zhou J, Li L, Wu X, Shi Y, Cui W, Zhang S, Hu Q, Wang J, Bai H, et al: SLC1A5 enhances malignant phenotypes through modulating ferroptosis status and immune microenvironment in glioma. Cell Death Dis. 13:10712022. View Article : Google Scholar : PubMed/NCBI

61 

Long PM, Moffett JR, Namboodiri AMA, Viapiano MS, Lawler SE and Jaworski DM: N-acetylaspartate (NAA) and N-acetylaspartylglutamate (NAAG) promote growth and inhibit differentiation of glioma stem-like cells. J Biol Chem. 288:26188–26200. 2013. View Article : Google Scholar : PubMed/NCBI

62 

Hausmann D, Hoffmann DC, Venkataramani V, Jung E, Horschitz S, Tetzlaff SK, Jabali A, Hai L, Kessler T, Azoŕin DD, et al: Autonomous rhythmic activity in glioma networks drives brain tumour growth. Nature. 613:179–186. 2023. View Article : Google Scholar : PubMed/NCBI

63 

Jung E, Alfonso J, Monyer H, Wick W and Winkler F: Neuronal signatures in cancer. Int J Cancer. 147:3281–3291. 2020. View Article : Google Scholar : PubMed/NCBI

64 

Watson DC, Bayik D, Storevik S, Moreino SS, Sprowls SA, Han J, Augustsson MT, Lauko A, Sravya P, Røsland GV, et al: GAP43-dependent mitochondria transfer from astrocytes enhances glioblastoma tumorigenicity. Nat Cancer. 4:648–664. 2023. View Article : Google Scholar : PubMed/NCBI

65 

Gritsenko PG, Atlasy N, Dieteren CEJ, Navis AC, Venhuizen JH, Veelken C, Schubert D, Acker-Palmer A, Westerman BA, Wurdinger T, et al: p120-catenin-dependent collective brain infiltration by glioma cell networks. Nat Cell Biol. 22:97–107. 2020. View Article : Google Scholar : PubMed/NCBI

66 

Jung E, Osswald M, Blaes J, Wiestler B, Sahm F, Schmenger T, Solecki G, Deumelandt K, Kurz FT, Xie R, et al: Tweety-homolog 1 drives brain colonization of gliomas. J Neurosci. 37:6837–6850. 2017. View Article : Google Scholar : PubMed/NCBI

67 

Joseph JV, Magaut CR, Storevik S, Geraldo LH, Mathivet T, Latif MA, Rudewicz J, Guyon J, Gambaretti M, Haukas F, et al: TGF-β promotes microtube formation in glioblastoma through thrombospondin 1. Neuro Oncol. 24:541–53. 2022. View Article : Google Scholar : PubMed/NCBI

68 

Becker KN and Eisenmann KM: New targets in the glioblastoma tumor microtube multiverse: Emerging roles for the TGF-β/TSP1 signaling axis. Neuro Oncol. 24:554–555. 2022. View Article : Google Scholar : PubMed/NCBI

69 

Hatcher A, Yu K, Meyer J, Aiba I, Deneen B and Noebels JL: Pathogenesis of peritumoral hyperexcitability in an immunocompetent CRISPR-based glioblastoma model. J Clin Invest. 130:2286–2300. 2020. View Article : Google Scholar : PubMed/NCBI

70 

Campbell SL, Robel S, Cuddapah VA, Robert S, Buckingham SC, Kahle KT and Sontheimer H: GABAergic disinhibition and impaired KCC2 cotransporter activity underlie tumor-associated epilepsy. Glia. 63:23–36. 2015. View Article : Google Scholar : PubMed/NCBI

71 

Yu K, Lin CJ, Hatcher A, Lozzi B, Kong K, Huang-Hobbs E, Cheng YT, Beechar VB, Zhu W, Zhang Y, et al: PIK3CA variants selectively initiate brain hyperactivity during gliomagenesis. Nature. 578:166–171. 2020. View Article : Google Scholar : PubMed/NCBI

72 

Tobochnik S, Dorotan MKC, Ghosh HS, Lapinskas E, Vogelzang J, Reardon DA, Ligon KL, Bi WL, Smirnakis SM and Lee JW: Glioma genetic profiles associated with electrophysiologic hyperexcitability. Neuro Oncol. 26:323–334. 2024. View Article : Google Scholar : PubMed/NCBI

73 

Lin X, Kang K, Chen P, Zeng Z, Li G, Xiong W, Yi M and Xiang B: Regulatory mechanisms of PD-1/PD-L1 in cancers. Mol Cancer. 23:1082024. View Article : Google Scholar : PubMed/NCBI

74 

Xie P, Yu M, Zhang B, Yu Q, Zhao Y, Wu M, Jin L, Yan J, Zhou B, Liu S, et al: CRKL dictates anti-PD-1 resistance by mediating tumor-associated neutrophil infiltration in hepatocellular carcinoma. J Hepatol. 81:93–107. 2024. View Article : Google Scholar : PubMed/NCBI

75 

Liu Q, Guan Y and Li S: Programmed death receptor (PD-)1/PD-ligand (L)1 in urological cancers: The ‘all-around warrior’ in immunotherapy. Mol Cancer. 23:1832024. View Article : Google Scholar : PubMed/NCBI

76 

Li X, Liu Y, Gui J, Gan L and Xue J: Cell identity and spatial distribution of PD-1/PD-L1 blockade responders. Adv Sci (Weinh). 11:e24007022024. View Article : Google Scholar : PubMed/NCBI

77 

Reardon DA, Brandes AA, Omuro A, Mulholland P, Lim M, Wick A, Baehring J, Ahluwalia MS, Roth P, Bähr O, et al: Effect of nivolumab vs bevacizumab in patients with recurrent glioblastoma: The CheckMate 143 phase 3 randomized clinical trial. JAMA Oncol. 6:1003–1010. 2020. View Article : Google Scholar : PubMed/NCBI

78 

Lin H, Liu C, Hu A, Zhang D, Yang H and Mao Y: Understanding the immunosuppressive microenvironment of glioma: Mechanistic insights and clinical perspectives. J Hematol Oncol. 17:312024. View Article : Google Scholar : PubMed/NCBI

79 

Nejo T, Krishna S, Yamamichi A, Lakshmanachetty S, Jimenez C, Lee KY, Baker DL, Young JS, Chen T, Phyu SSS, et al: Glioma-neuronal circuit remodeling induces regional immunosuppression. Nat Commun. 16:47702025. View Article : Google Scholar : PubMed/NCBI

80 

Gonzalez-Calvo I, Cizeron M, Bessereau JL and Selimi F: Synapse formation and function across species: Ancient roles for CCP, CUB, and TSP-1 structural domains. Front Neurosci. 16:8664442022. View Article : Google Scholar : PubMed/NCBI

81 

Liu Z, Wen J, Hu F, Wang J, Hu C and Zhang W: Thrombospondin-1 induced programmed death-ligand 1-mediated immunosuppression by activating the STAT3 pathway in osteosarcoma. Cancer Sci. 113:432–445. 2022. View Article : Google Scholar : PubMed/NCBI

82 

Guo X, Pan Y, Xiong M, Sanapala S, Anastasaki C, Cobb O, Dahiya S and Gutmann DH: Midkine activation of CD8+ T cells establishes a neuron-immune-cancer axis responsible for low-grade glioma growth. Nat Commun. 11:21772020. View Article : Google Scholar : PubMed/NCBI

83 

Guo X, Qiu W, Wang C, Qi Y, Li B, Wang S, Zhao R, Cheng B, Han X, Du H, et al: Neuronal activity promotes glioma progression by inducing Proneural-to-Mesenchymal transition in glioma stem cells. Cancer Res. 84:372–387. 2024. View Article : Google Scholar : PubMed/NCBI

84 

Guo X, Qiu W, Li B, Qi Y, Wang S, Zhao R, Cheng B, Han X, Du H, Pan Z, et al: Hypoxia-induced neuronal activity in glioma patients polarizes microglia by potentiating RNA m6A demethylation. Clin Cancer Res. 30:1160–1174. 2024. View Article : Google Scholar : PubMed/NCBI

85 

Chen HC, He P, McDonald M, Williamson MR, Varadharajan S, Lozzi B, Woo J, Choi DJ, Sardar D, Huang-Hobbs E, et al: Histone serotonylation regulates ependymoma tumorigenesis. Nature. 632:903–910. 2024. View Article : Google Scholar : PubMed/NCBI

86 

Drexler R, Khatri R, Sauvigny T, Mohme M, Maire CL, Ryba A, Zghaibeh Y, Dührsen L, Salviano-Silva A, Lamszus K, et al: A prognostic neural epigenetic signature in high-grade glioma. Nat Med. 30:1622–1635. 2024. View Article : Google Scholar : PubMed/NCBI

87 

Hasani F, Masrour M, Khamaki S, Jazi K, Ghoodjani E and Teixeira AL: Brain-derived neurotrophic factor (BDNF) as a potential biomarker in brain glioma: A systematic review and Meta-Analysis. Brain Behav. 15:e702662025. View Article : Google Scholar : PubMed/NCBI

88 

Li Y, Wang J, Song SR, Lv SQ, Qin JH and Yu SC: Models for evaluating glioblastoma invasion along white matter tracts. Trends Biotechnol. 42:293–309. 2024. View Article : Google Scholar : PubMed/NCBI

89 

Wei Y, Li C, Cui Z, Mayrand RC, Zou J, Wong ALKC, Sinha R, Matys T, Schönlieb CB and Price SJ: Structural connectome quantifies tumour invasion and predicts survival in glioblastoma patients. Brain. 146:1714–1727. 2023. View Article : Google Scholar : PubMed/NCBI

90 

Salvalaggio A, Pini L, Gaiola M, Velco A, Sansone G, Anglani M, Fekonja L, Chioffi F, Picht T, Thiebaut de Schotten M, et al: White matter tract density index prediction model of overall survival in glioblastoma. JAMA Neurol. 80:1222–1231. 2023. View Article : Google Scholar : PubMed/NCBI

91 

Abhinav K, Yeh FC, Mansouri A, Zadeh G and Fernandez-Miranda JC: High-definition fiber tractography for the evaluation of perilesional white matter tracts in High-grade glioma surgery. Neuro Oncol. 17:1199–1209. 2015.PubMed/NCBI

92 

Mastall M, Roth P, Bink A, Fischer Maranta A, Laubli H, Hottinger AF, Hundsberger T, Migliorini D, Ochsenbein A, Seystahl K, et al: A phase Ib/II randomized, open-label drug repurposing trial of glutamate signaling inhibitors in combination with chemoradiotherapy in patients with newly diagnosed glioblastoma: The GLUGLIO trial protocol. BMC Cancer. 24:822024. View Article : Google Scholar : PubMed/NCBI

93 

Yamaguchi K, Kumakura S, Someya A, Iseki M, Inada E and Nagaoka I: Anti-inflammatory actions of gabapentin and pregabalin on the substance P-induced mitogen-activated protein kinase activation in U373 MG human glioblastoma astrocytoma cells. Mol Med Rep. 16:6109–6115. 2017. View Article : Google Scholar : PubMed/NCBI

94 

Bernstock JD, Mehari M, E Gerstl JV, Meredith DM, Valdes PA, Heesen P, Ambati VS, Krishna S, Chen JA, Arora H, et al: Gabapentinoids confer survival benefit in human glioblastoma. Nat Commun. 16:44832025. View Article : Google Scholar : PubMed/NCBI

95 

Lan YL, Zou S, Wang W, Chen Q and Zhu Y: Progress in cancer neuroscience. MedComm (2020). 4:e4312023. View Article : Google Scholar : PubMed/NCBI

96 

Tobochnik S, Regan MS, Dorotan MKC, Reich D, Lapinskas E, Hossain MA, Stopka S, Santagata S, Murphy MM, Arnaout O, et al: Pilot trial of perampanel on peritumoral hyperexcitability and clinical outcomes in newly diagnosed high-grade glioma. medRxiv [Preprint]. Apr 18–2024.doi: 10.1101/2024.04.11.24305666. PubMed/NCBI

97 

Friess D, Brauer S, Poysti A, Choudhury C and Harris L: Tools to study neural and glioma stem cell quiescence. Trends Neurosci. 47:736–748. 2024. View Article : Google Scholar : PubMed/NCBI

98 

Picart T and Hervey-Jumper S: Central nervous system regulation of diffuse glioma growth and invasion: From single unit physiology to circuit remodeling. J Neurooncol. 169:1–10. 2024. View Article : Google Scholar : PubMed/NCBI

99 

Read RD, Tapp ZM, Rajappa P and Hambardzumyan D: Glioblastoma microenvironment-from biology to therapy. Genes Dev. 38:360–379. 2024.PubMed/NCBI

100 

Ng S, Duffau H and Herbet G: Perspectives in human brain plasticity sparked by glioma invasion: From intraoperative (re)mappings to neural reconfigurations. Neural Regen Res. 19:947–948. 2024. View Article : Google Scholar : PubMed/NCBI

101 

Wei J, Wang M, Li S, Han R, Xu W, Zhao A, Yu Q, Li H, Li M and Chi G: Reprogramming of astrocytes and glioma cells into neurons for central nervous system repair and glioblastoma therapy. Biomed Pharmacother. 176:1168062024. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhang C, Zhang H, Cao J and Liu M: Neuroscience in glioma biology (Review). Oncol Rep 54: 166, 2025.
APA
Zhang, C., Zhang, H., Cao, J., & Liu, M. (2025). Neuroscience in glioma biology (Review). Oncology Reports, 54, 166. https://doi.org/10.3892/or.2025.8999
MLA
Zhang, C., Zhang, H., Cao, J., Liu, M."Neuroscience in glioma biology (Review)". Oncology Reports 54.6 (2025): 166.
Chicago
Zhang, C., Zhang, H., Cao, J., Liu, M."Neuroscience in glioma biology (Review)". Oncology Reports 54, no. 6 (2025): 166. https://doi.org/10.3892/or.2025.8999
Copy and paste a formatted citation
x
Spandidos Publications style
Zhang C, Zhang H, Cao J and Liu M: Neuroscience in glioma biology (Review). Oncol Rep 54: 166, 2025.
APA
Zhang, C., Zhang, H., Cao, J., & Liu, M. (2025). Neuroscience in glioma biology (Review). Oncology Reports, 54, 166. https://doi.org/10.3892/or.2025.8999
MLA
Zhang, C., Zhang, H., Cao, J., Liu, M."Neuroscience in glioma biology (Review)". Oncology Reports 54.6 (2025): 166.
Chicago
Zhang, C., Zhang, H., Cao, J., Liu, M."Neuroscience in glioma biology (Review)". Oncology Reports 54, no. 6 (2025): 166. https://doi.org/10.3892/or.2025.8999
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team