|
1
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global Cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249.
2021.PubMed/NCBI
|
|
2
|
Abnet CC, Arnold M and Wei WQ:
Epidemiology of esophageal squamous cell carcinoma.
Gastroenterology. 154:360–373. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Morgan E, Soerjomataram I, Rumgay H,
Coleman HG, Thrift AP, Vignat J, Laversanne M, Ferlay J and Arnold
M: The Global landscape of esophageal squamous cell carcinoma and
esophageal adenocarcinoma incidence and mortality in 2020 and
projections to 2040: New estimates from GLOBOCAN 2020.
Gastroenterology. 163:649–658.e2. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
An L, Zheng R, Zeng H, Zhang S, Chen R,
Wang S, Sun K, Li L, Wei W and He J: The survival of esophageal
cancer by subtype in China with comparison to the United States.
Int J Cancer. 152:151–161. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Rustgi AK and El-Serag HB: Esophageal
carcinoma. N Engl J Med. 371:2499–2509. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Leng XF, Daiko H, Han YT and Mao YS:
Optimal preoperative neoadjuvant therapy for resectable locally
advanced esophageal squamous cell carcinoma. Ann N Y Acad Sci.
1482:213–224. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Zhu H, Ma X, Ye T, Wang H, Wang Z, Liu Q
and Zhao K: Esophageal cancer in China: Practice and research in
the new era. Int J Cancer. 152:1741–1751. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Yang H, Liu H, Chen Y, Zhu C, Fang W, Yu
Z, Mao W, Xiang J, Han Y, Chen Z, et al: Neoadjuvant
Chemoradiotherapy followed by surgery versus surgery alone for
locally advanced squamous cell carcinoma of the esophagus
(NEOCRTEC5010): A phase III multicenter, randomized, open-label
clinical trial. J Clin Oncol. 36:2796–2803. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Kotecki N, Hiret S, Etienne PL, Penel N,
Tresch E, François E, Galais MP, Ben Abdelghani M, Michel P, Dahan
L, et al: First-line chemotherapy for metastatic esophageal
squamous cell carcinoma: Clinico-biological predictors of disease
control. Oncology. 90:88–96. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Mariette C, Dahan L, Mornex F, Maillard E,
Thomas PA, Meunier B, Boige V, Pezet D, Robb WB, Le Brun-Ly V, et
al: Surgery alone versus chemoradiotherapy followed by surgery for
stage I and II esophageal cancer: Final analysis of randomized
controlled phase III trial FFCD 9901. J Clin Oncol. 32:2416–2422.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Chan KKW, Saluja R, Delos Santos K, Lien
K, Shah K, Cramarossa G, Zhu X and Wong RKS: Neoadjuvant treatments
for locally advanced, resectable esophageal cancer: A network
meta-analysis. Int J Cancer. 143:430–437. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Wu H, Chen S, Yu J, Li Y, Zhang XY, Yang
L, Zhang H, Hou Q, Jiang M, Brunicardi FC, et al: Single-cell
Transcriptome analyses reveal molecular signals to intrinsic and
acquired paclitaxel resistance in esophageal squamous cancer cells.
Cancer Lett. 420:156–167. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Meyer KD and Jaffrey SR: The dynamic
epitranscriptome: N6-methyladenosine and gene expression control.
Nat Rev Mol Cell Biol. 15:313–326. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Huang H, Weng H, Sun W, Qin X, Shi H, Wu
H, Zhao BS, Mesquita A, Liu C, Yuan CL, et al: Recognition of RNA
N6-methyladenosine by IGF2BP proteins enhances mRNA
stability and translation. Nat Cell Biol. 20:285–295. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Yang Z, Wan J, Ma L, Li Z, Yang R, Yang H,
Li J, Zhou F and Ming L: Long non-coding RNA HOXC-AS1 exerts its
oncogenic effects in esophageal squamous cell carcinoma by
interaction with IGF2BP2 to stabilize SIRT1 expression. J Clin Lab
Anal. 37:e248012023. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Huang GW, Chen QQ, Ma CC, Xie LH and Gu J:
Linc01305 promotes metastasis and proliferation of esophageal
squamous cell carcinoma through interacting with IGF2BP2 and
IGF2BP3 to stabilize HTR3A mRNA. Int J Biochem Cell Biol.
136:1060152021. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Liberti MV and Locasale JW: The warburg
effect: How does it benefit cancer cells? Trends Biochem Sci.
41:211–218. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Haque MM and Desai KV: Pathways to
endocrine therapy resistance in breast cancer. Front Endocrinol
(Lausanne). 10:5732019. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Ma L and Zong X: Metabolic symbiosis in
Chemoresistance: Refocusing the role of aerobic glycolysis. Front
Oncol. 10:52020. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Love MI, Huber W and Anders S: Moderated
estimation of fold change and dispersion for RNA-seq data with
DESeq2. Genome Biol. 15:5502014. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Robinson MD, McCarthy DJ and Smyth GK:
edgeR: A Bioconductor package for differential expression analysis
of digital gene expression data. Bioinformatics. 26:139–140. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Meng RY, Jin H, Nguyen TV, Chai OH, Park
BH and Kim SM: Ursolic acid accelerates paclitaxel-induced cell
death in esophageal cancer cells by suppressing Akt/FOXM1 signaling
cascade. Int J Mol Sci. 22:114862021. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Hu C, Liu T, Han C, Xuan Y, Jiang D, Sun
Y, Zhang X, Zhang W, Xu Y, Liu Y, et al: HPV E6/E7 promotes aerobic
glycolysis in cervical cancer by regulating IGF2BP2 to stabilize
m6A-MYC expression. Int J Biol Sci. 18:507–521. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Pu J, Wang J, Qin Z, Wang A, Zhang Y, Wu
X, Wu Y, Li W, Xu Z, Lu Y, et al: IGF2BP2 promotes liver cancer
growth through an m6A-FEN1-dependent mechanism. Front Oncol.
10:5788162020. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Wang Y, Lu JH, Wu QN, Jin Y, Wang DS, Chen
YX, Liu J, Luo XJ, Meng Q, Pu HY, et al: LncRNA LINRIS stabilizes
IGF2BP2 and promotes the aerobic glycolysis in colorectal cancer.
Mol Cancer. 18:1742019. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Liu S, Chen X, Huang K, Xiong X, Shi Y,
Wang X, Pan X, Cong Y, Sun Y, Ge L, et al: Long noncoding RNA
RFPL1S-202 inhibits ovarian cancer progression by downregulating
the IFN-β/STAT1 signaling. Exp Cell Res. 422:1134382023. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Xie Y, Wang L, Luo Y, Chen H, Yang Y, Shen
Q and Cao G: LINC02489 with m6a modification increase paclitaxel
sensitivity by inhibiting migration and invasion of ovarian cancer
cells. Biotechnol Genet Eng Rev. 39:1128–1142. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Li Y, Xiao Z, Wang Y, Zhang D and Chen Z:
The m6A reader IGF2BP2 promotes esophageal cell
carcinoma progression by enhancing EIF4A1 translation. Cancer Cell
Int. 24:1622024. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Wang C, Zhou M, Zhu P, Ju C, Sheng J, Du
D, Wan J, Yin H, Xing Y, Li H, et al: IGF2BP2-induced circRUNX1
facilitates the growth and metastasis of esophageal squamous cell
carcinoma through miR-449b-5p/FOXP3 axis. J Exp Clin Cancer Res.
41:3472022. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Xiao Y, Tang J, Yang D, Zhang B, Wu J, Wu
Z, Liao Q, Wang H, Wang W and Su M: Long noncoding RNA LIPH-4
promotes esophageal squamous cell carcinoma progression by
regulating the miR-216b/IGF2BP2 axis. Biomark Res. 10:602022.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Bhattacharya B, Mohd Omar MF and Soong R:
The Warburg effect and drug resistance. Br J Pharmacol.
173:970–979. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Fang J, Ma Y, Li Y, Li J, Zhang X, Han X,
Ma S and Guan F: CCT4 knockdown enhances the sensitivity of
cisplatin by inhibiting glycolysis in human esophageal squamous
cell carcinomas. Mol Carcinog. 61:1043–1055. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Wu X, Qiu L, Feng H, Zhang H, Yu H, Du Y,
Wu H, Zhu S, Ruan Y and Jiang H: KHDRBS3 promotes paclitaxel
resistance and induces glycolysis through modulated MIR17HG/CLDN6
signaling in epithelial ovarian cancer. Life Sci. 293:1203282022.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Zaccara S, Ries RJ and Jaffrey SR:
Reading, writing and erasing mRNA methylation. Nat Rev Mol Cell
Biol. 20:608–624. 2019. View Article : Google Scholar : PubMed/NCBI
|