Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
December-2025 Volume 54 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2025 Volume 54 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Article Open Access

m6A reader IGF2BP2 mediates paclitaxel resistance in esophageal squamous cell carcinoma via FOXM1 mRNA stabilization

  • Authors:
    • Shiheng Ren
    • Jingru Wu
    • Lening Zhang
    • Guangyi Guan
    • Wenpeng Jiang
  • View Affiliations / Copyright

    Affiliations: Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China, Department of Thoracic Surgery, China‑Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China, Shandong First Medical University, Jinan, Shandong 250117, P.R. China
    Copyright: © Ren et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 169
    |
    Published online on: October 1, 2025
       https://doi.org/10.3892/or.2025.9002
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Esophageal squamous cell carcinoma (ESCC) ranks among the primary contributors to cancer‑related mortality in China. Resistance to paclitaxel markedly diminishes its therapeutic effectiveness and outcomes. Anaerobic glycolysis is a pivotal mechanism in cancer progression. Insulin‑like growth factor 2 mRNA binding protein 2 (IGF2BP2) as a reader of RNA N6‑methyladenosine (m6A) modification ensures the stability of RNA at the post‑transcriptional level. Nonetheless, the role and mechanism of IGF2BP2 in mediating paclitaxel resistance and anaerobic glycolysis in ESCC remain unclear. The current study selected two ESCC cell lines (KYSE30 and KYSE150). Cell proliferation and clonogenic ability were assessed via functional experiments. Apoptosis was quantified through flow cytometry. The rate of anaerobic glycolysis was determined via glycolysis assays. The stability of Forkhead box M1 (FOXM1) mRNA was assessed through reverse transcription‑quantitative polymerase chain reaction following actinomycin D treatment. Protein levels were analyzed through western blotting. Bioinformatics analysis revealed an overexpression of IGF2BP2 in ESCC. Furthermore, IGF2BP2 silencing inhibited cell proliferation and clonogenic activity. RNA and m6A‑sequencing results suggested that FOXM1 is critical to IGF2BP2‑mediated paclitaxel resistance in ESCC. Additionally, it was discovered that the silencing of IGF2BP2 compromises FOXM1 mRNA stability, reduces anaerobic glycolysis, and diminishes paclitaxel resistance. Finally, FOXM1 overexpression mitigated the effects of IGF2BP2 silencing in ESCC cells. The current findings underscore the significant role of the IGF2BP2‑FOXM1 signaling pathway in modulating anaerobic glycolysis and paclitaxel resistance in ESCC, offering insights into future therapeutic approaches to this malignancy.
View Figures

Figure 1

IGF2BP2 as an overexpressed gene is
identified in ESCC datasets. (A) Volcano showing GSE20347
differential genes; |LogFC|>1 and P<0.05. (B) Differential
expression of IGF2BP2 in The Cancer Genome Atlas ESCC dataset. (C
and D) Differential expression of IGF2BP2 in the GSE23400 and
GSE75241 datasets. **P<0.01 and ****P<0.0001. IGF2BP2,
insulin-like growth factor 2 mRNA binding protein 2; ESCC,
esophageal squamous cell carcinoma.

Figure 2

IGF2BP2 plays a vital role in
anaerobic glycolysis and resistance to paclitaxel of ESCC cells.
(A) IGF2BP2 mRNA expression levels in ESCC cell lines (KYSE30,
KYSE150 and KYSE510). (B) Verification of the transfection
efficiency of the silencing IGF2BP2 lentivirus detected by reverse
transcription-quantitative PCR. (C) Proliferation rates of the
control and IGF2BP2 knockdown ESCC cells with and without
paclitaxel. (D) Representative images of colony formation showing
the proliferation of control and IGF2BP2 knockdown ESCC cells with
and without paclitaxel. (E) Representative images showing the
proliferation of control and IGF2BP2 knockdown ESCC cells with and
without paclitaxel in EdU cell proliferation assay, RFP (red
fluorescence imaging channel), DAPI (blue fluorescence imaging
channel). (F) Representative images of flow cytometry showing the
apoptosis of control and IGF2BP2 knockdown ESCC cells with and
without paclitaxel. (G) L-Lactate production level of the control
and IGF2BP2 knockdown ESCC cells with and without paclitaxel.
*P<0.05, **P<0.01, ***P<0.001 and ****P<0.0001.
IGF2BP2, insulin-like growth factor 2 mRNA binding protein 2; ESCC,
esophageal squamous cell carcinoma; EdU, 5-ethynyl-2′-deoxyuridine;
sh-, short hairpin.

Figure 3

FOXM1 is supposed to be a vital
factor in IGF2BP2 mediating the paclitaxel resistance in ESCC. (A)
Volcano showing differential genes upon IGF2BP2 knockdown in
RNA-sequencing; |LogFC|>1 and P<0.05. (B) GO functional
enrichment analysis upon IGF2BP2 knockdown. (C) Distribution of m6A
modification peaks on gene elements. (D) GO functional enrichment
analysis of m6A-modified genes. (E) Venn diagram showing the
intersection of transcripts downregulated by IGF2BP2 knockdown and
tagged with the top 100 highest peak m6A modification. FOXM1,
Forkhead Box M1; IGF2BP2, insulin-like growth factor 2 mRNA binding
protein 2; GO, Gene Ontology; UTR, untranslated region; si-, small
interfering; NC, negative control.

Figure 4

IGF2BP2 sustains the stability of
FOXM1 mRNA. (A) Relative FOXM1 mRNA expression in the silencing
IGF2BP2 ESCC cells by RT-qPCR. (B) Expression levels of IGF2BP2 and
FOXM1 in the control and IGF2BP2 knockdown ESCC cells detected by
western blotting. (C) Quantitative analysis of FOXM1 protein
abundance with normalization to GAPDH. (D) After treatment with
Actinomycin D (2.5 µg/ml) in the control and IGF2BP2 knockdown ESCC
cells, the decay rates of mRNA of FOXM1 at certain times were
analyzed by RT-qPCR. *P<0.05, **P<0.01, ***P<0.001 and
****P<0.0001. IGF2BP2, insulin-like growth factor 2 mRNA binding
protein 2; FOXM1, Forkhead Box M1; ESCC, esophageal squamous cell
carcinoma; RT-qPCR, reverse transcription-quantitative PCR; sh-,
short hairpin.

Figure 5

FOXM1 promotes oncogenesis in ESCC
cells. (A) Verification of the knockdown efficiency of the siRNA
targeting FOXM1 detected by western blotting. (B) Proliferation
rates of the control and FOXM1 knockdown ESCC cells with and
without paclitaxel. (C) Representative images showing the
proliferation of control and FOXM1 knockdown ESCC cells with and
without paclitaxel in 5-ethynyl-2′-deoxyuridine cell proliferation
assay, RFP (red fluorescence imaging channel), DAPI (blue
fluorescence imaging channel). *P<0.05 and ***P<0.001. FOXM1,
Forkhead Box M1; ESCC, esophageal squamous cell carcinoma; si-,
small interfering.

Figure 6

FOXM1 overexpression ameliorates
effect of IGF2BP2 deficiency in ESCC cells. (A) Relative FOXM1 mRNA
expression in the IGF2BP2 knockdown and FOXM1 overexpression ESCC
cells by reverse transcription-quantitative PCR. (B) Expression
levels of IGF2BP2 and FOXM1 in the IGF2BP2 knockdown and FOXM1
overexpression ESCC cells detected by western blotting. (C)
Proliferation rates of the IGF2BP2 knockdown and FOXM1
overexpression ESCC cells with and without paclitaxel. (D)
Representative images showing the proliferation of IGF2BP2
knockdown and FOXM1 overexpression ESCC cells with and without
paclitaxel in 5-ethynyl-2′-deoxyuridine cell proliferation assay,
RFP (red fluorescence imaging channel), DAPI (blue fluorescence
imaging channel). (E) Representative images of colony formation
showing the proliferation of the IGF2BP2 knockdown and FOXM1
overexpression ESCC cells with and without paclitaxel. (F)
Representative images of flow cytometry showing the apoptosis of
IGF2BP2 knockdown and FOXM1 overexpression ESCC cells with and
without paclitaxel. (G) L-Lactate production level of the control
and IGF2BP2 knockdown ESCC cells with and without paclitaxel.
*P<0.05, **P<0.01, ***P<0.001 and ****P<0.0001. FOXM1,
Forkhead Box M1; IGF2BP2, insulin-like growth factor 2 mRNA binding
protein 2; ESCC, esophageal squamous cell carcinoma.

Figure 7

IGF2BP2-mediated FOXM1 promotes
anaerobic glycolysis and inhibits sensitivity to paclitaxel of
esophageal squamous cell carcinoma cells. IGF2BP2, insulin-like
growth factor 2 mRNA binding protein 2; FOXM1, Forkhead Box M1.
View References

1 

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global Cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.PubMed/NCBI

2 

Abnet CC, Arnold M and Wei WQ: Epidemiology of esophageal squamous cell carcinoma. Gastroenterology. 154:360–373. 2018. View Article : Google Scholar : PubMed/NCBI

3 

Morgan E, Soerjomataram I, Rumgay H, Coleman HG, Thrift AP, Vignat J, Laversanne M, Ferlay J and Arnold M: The Global landscape of esophageal squamous cell carcinoma and esophageal adenocarcinoma incidence and mortality in 2020 and projections to 2040: New estimates from GLOBOCAN 2020. Gastroenterology. 163:649–658.e2. 2022. View Article : Google Scholar : PubMed/NCBI

4 

An L, Zheng R, Zeng H, Zhang S, Chen R, Wang S, Sun K, Li L, Wei W and He J: The survival of esophageal cancer by subtype in China with comparison to the United States. Int J Cancer. 152:151–161. 2023. View Article : Google Scholar : PubMed/NCBI

5 

Rustgi AK and El-Serag HB: Esophageal carcinoma. N Engl J Med. 371:2499–2509. 2014. View Article : Google Scholar : PubMed/NCBI

6 

Leng XF, Daiko H, Han YT and Mao YS: Optimal preoperative neoadjuvant therapy for resectable locally advanced esophageal squamous cell carcinoma. Ann N Y Acad Sci. 1482:213–224. 2020. View Article : Google Scholar : PubMed/NCBI

7 

Zhu H, Ma X, Ye T, Wang H, Wang Z, Liu Q and Zhao K: Esophageal cancer in China: Practice and research in the new era. Int J Cancer. 152:1741–1751. 2023. View Article : Google Scholar : PubMed/NCBI

8 

Yang H, Liu H, Chen Y, Zhu C, Fang W, Yu Z, Mao W, Xiang J, Han Y, Chen Z, et al: Neoadjuvant Chemoradiotherapy followed by surgery versus surgery alone for locally advanced squamous cell carcinoma of the esophagus (NEOCRTEC5010): A phase III multicenter, randomized, open-label clinical trial. J Clin Oncol. 36:2796–2803. 2018. View Article : Google Scholar : PubMed/NCBI

9 

Kotecki N, Hiret S, Etienne PL, Penel N, Tresch E, François E, Galais MP, Ben Abdelghani M, Michel P, Dahan L, et al: First-line chemotherapy for metastatic esophageal squamous cell carcinoma: Clinico-biological predictors of disease control. Oncology. 90:88–96. 2016. View Article : Google Scholar : PubMed/NCBI

10 

Mariette C, Dahan L, Mornex F, Maillard E, Thomas PA, Meunier B, Boige V, Pezet D, Robb WB, Le Brun-Ly V, et al: Surgery alone versus chemoradiotherapy followed by surgery for stage I and II esophageal cancer: Final analysis of randomized controlled phase III trial FFCD 9901. J Clin Oncol. 32:2416–2422. 2014. View Article : Google Scholar : PubMed/NCBI

11 

Chan KKW, Saluja R, Delos Santos K, Lien K, Shah K, Cramarossa G, Zhu X and Wong RKS: Neoadjuvant treatments for locally advanced, resectable esophageal cancer: A network meta-analysis. Int J Cancer. 143:430–437. 2018. View Article : Google Scholar : PubMed/NCBI

12 

Wu H, Chen S, Yu J, Li Y, Zhang XY, Yang L, Zhang H, Hou Q, Jiang M, Brunicardi FC, et al: Single-cell Transcriptome analyses reveal molecular signals to intrinsic and acquired paclitaxel resistance in esophageal squamous cancer cells. Cancer Lett. 420:156–167. 2018. View Article : Google Scholar : PubMed/NCBI

13 

Meyer KD and Jaffrey SR: The dynamic epitranscriptome: N6-methyladenosine and gene expression control. Nat Rev Mol Cell Biol. 15:313–326. 2014. View Article : Google Scholar : PubMed/NCBI

14 

Huang H, Weng H, Sun W, Qin X, Shi H, Wu H, Zhao BS, Mesquita A, Liu C, Yuan CL, et al: Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol. 20:285–295. 2018. View Article : Google Scholar : PubMed/NCBI

15 

Yang Z, Wan J, Ma L, Li Z, Yang R, Yang H, Li J, Zhou F and Ming L: Long non-coding RNA HOXC-AS1 exerts its oncogenic effects in esophageal squamous cell carcinoma by interaction with IGF2BP2 to stabilize SIRT1 expression. J Clin Lab Anal. 37:e248012023. View Article : Google Scholar : PubMed/NCBI

16 

Huang GW, Chen QQ, Ma CC, Xie LH and Gu J: Linc01305 promotes metastasis and proliferation of esophageal squamous cell carcinoma through interacting with IGF2BP2 and IGF2BP3 to stabilize HTR3A mRNA. Int J Biochem Cell Biol. 136:1060152021. View Article : Google Scholar : PubMed/NCBI

17 

Liberti MV and Locasale JW: The warburg effect: How does it benefit cancer cells? Trends Biochem Sci. 41:211–218. 2016. View Article : Google Scholar : PubMed/NCBI

18 

Haque MM and Desai KV: Pathways to endocrine therapy resistance in breast cancer. Front Endocrinol (Lausanne). 10:5732019. View Article : Google Scholar : PubMed/NCBI

19 

Ma L and Zong X: Metabolic symbiosis in Chemoresistance: Refocusing the role of aerobic glycolysis. Front Oncol. 10:52020. View Article : Google Scholar : PubMed/NCBI

20 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

21 

Love MI, Huber W and Anders S: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15:5502014. View Article : Google Scholar : PubMed/NCBI

22 

Robinson MD, McCarthy DJ and Smyth GK: edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 26:139–140. 2010. View Article : Google Scholar : PubMed/NCBI

23 

Meng RY, Jin H, Nguyen TV, Chai OH, Park BH and Kim SM: Ursolic acid accelerates paclitaxel-induced cell death in esophageal cancer cells by suppressing Akt/FOXM1 signaling cascade. Int J Mol Sci. 22:114862021. View Article : Google Scholar : PubMed/NCBI

24 

Hu C, Liu T, Han C, Xuan Y, Jiang D, Sun Y, Zhang X, Zhang W, Xu Y, Liu Y, et al: HPV E6/E7 promotes aerobic glycolysis in cervical cancer by regulating IGF2BP2 to stabilize m6A-MYC expression. Int J Biol Sci. 18:507–521. 2022. View Article : Google Scholar : PubMed/NCBI

25 

Pu J, Wang J, Qin Z, Wang A, Zhang Y, Wu X, Wu Y, Li W, Xu Z, Lu Y, et al: IGF2BP2 promotes liver cancer growth through an m6A-FEN1-dependent mechanism. Front Oncol. 10:5788162020. View Article : Google Scholar : PubMed/NCBI

26 

Wang Y, Lu JH, Wu QN, Jin Y, Wang DS, Chen YX, Liu J, Luo XJ, Meng Q, Pu HY, et al: LncRNA LINRIS stabilizes IGF2BP2 and promotes the aerobic glycolysis in colorectal cancer. Mol Cancer. 18:1742019. View Article : Google Scholar : PubMed/NCBI

27 

Liu S, Chen X, Huang K, Xiong X, Shi Y, Wang X, Pan X, Cong Y, Sun Y, Ge L, et al: Long noncoding RNA RFPL1S-202 inhibits ovarian cancer progression by downregulating the IFN-β/STAT1 signaling. Exp Cell Res. 422:1134382023. View Article : Google Scholar : PubMed/NCBI

28 

Xie Y, Wang L, Luo Y, Chen H, Yang Y, Shen Q and Cao G: LINC02489 with m6a modification increase paclitaxel sensitivity by inhibiting migration and invasion of ovarian cancer cells. Biotechnol Genet Eng Rev. 39:1128–1142. 2023. View Article : Google Scholar : PubMed/NCBI

29 

Li Y, Xiao Z, Wang Y, Zhang D and Chen Z: The m6A reader IGF2BP2 promotes esophageal cell carcinoma progression by enhancing EIF4A1 translation. Cancer Cell Int. 24:1622024. View Article : Google Scholar : PubMed/NCBI

30 

Wang C, Zhou M, Zhu P, Ju C, Sheng J, Du D, Wan J, Yin H, Xing Y, Li H, et al: IGF2BP2-induced circRUNX1 facilitates the growth and metastasis of esophageal squamous cell carcinoma through miR-449b-5p/FOXP3 axis. J Exp Clin Cancer Res. 41:3472022. View Article : Google Scholar : PubMed/NCBI

31 

Xiao Y, Tang J, Yang D, Zhang B, Wu J, Wu Z, Liao Q, Wang H, Wang W and Su M: Long noncoding RNA LIPH-4 promotes esophageal squamous cell carcinoma progression by regulating the miR-216b/IGF2BP2 axis. Biomark Res. 10:602022. View Article : Google Scholar : PubMed/NCBI

32 

Bhattacharya B, Mohd Omar MF and Soong R: The Warburg effect and drug resistance. Br J Pharmacol. 173:970–979. 2016. View Article : Google Scholar : PubMed/NCBI

33 

Fang J, Ma Y, Li Y, Li J, Zhang X, Han X, Ma S and Guan F: CCT4 knockdown enhances the sensitivity of cisplatin by inhibiting glycolysis in human esophageal squamous cell carcinomas. Mol Carcinog. 61:1043–1055. 2022. View Article : Google Scholar : PubMed/NCBI

34 

Wu X, Qiu L, Feng H, Zhang H, Yu H, Du Y, Wu H, Zhu S, Ruan Y and Jiang H: KHDRBS3 promotes paclitaxel resistance and induces glycolysis through modulated MIR17HG/CLDN6 signaling in epithelial ovarian cancer. Life Sci. 293:1203282022. View Article : Google Scholar : PubMed/NCBI

35 

Zaccara S, Ries RJ and Jaffrey SR: Reading, writing and erasing mRNA methylation. Nat Rev Mol Cell Biol. 20:608–624. 2019. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Ren S, Wu J, Zhang L, Guan G and Jiang W: m6A reader IGF2BP2 mediates paclitaxel resistance in esophageal squamous cell carcinoma via FOXM1 mRNA stabilization. Oncol Rep 54: 169, 2025.
APA
Ren, S., Wu, J., Zhang, L., Guan, G., & Jiang, W. (2025). m6A reader IGF2BP2 mediates paclitaxel resistance in esophageal squamous cell carcinoma via FOXM1 mRNA stabilization. Oncology Reports, 54, 169. https://doi.org/10.3892/or.2025.9002
MLA
Ren, S., Wu, J., Zhang, L., Guan, G., Jiang, W."m6A reader IGF2BP2 mediates paclitaxel resistance in esophageal squamous cell carcinoma via FOXM1 mRNA stabilization". Oncology Reports 54.6 (2025): 169.
Chicago
Ren, S., Wu, J., Zhang, L., Guan, G., Jiang, W."m6A reader IGF2BP2 mediates paclitaxel resistance in esophageal squamous cell carcinoma via FOXM1 mRNA stabilization". Oncology Reports 54, no. 6 (2025): 169. https://doi.org/10.3892/or.2025.9002
Copy and paste a formatted citation
x
Spandidos Publications style
Ren S, Wu J, Zhang L, Guan G and Jiang W: m6A reader IGF2BP2 mediates paclitaxel resistance in esophageal squamous cell carcinoma via FOXM1 mRNA stabilization. Oncol Rep 54: 169, 2025.
APA
Ren, S., Wu, J., Zhang, L., Guan, G., & Jiang, W. (2025). m6A reader IGF2BP2 mediates paclitaxel resistance in esophageal squamous cell carcinoma via FOXM1 mRNA stabilization. Oncology Reports, 54, 169. https://doi.org/10.3892/or.2025.9002
MLA
Ren, S., Wu, J., Zhang, L., Guan, G., Jiang, W."m6A reader IGF2BP2 mediates paclitaxel resistance in esophageal squamous cell carcinoma via FOXM1 mRNA stabilization". Oncology Reports 54.6 (2025): 169.
Chicago
Ren, S., Wu, J., Zhang, L., Guan, G., Jiang, W."m6A reader IGF2BP2 mediates paclitaxel resistance in esophageal squamous cell carcinoma via FOXM1 mRNA stabilization". Oncology Reports 54, no. 6 (2025): 169. https://doi.org/10.3892/or.2025.9002
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team