Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
December-2025 Volume 54 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2025 Volume 54 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Targeting cell death pathways in acute myeloid leukemia: Molecular mechanisms and clinical implications (Review)

  • Authors:
    • Reaila Jianati
    • Haijing Chen
    • Xi Yang
    • Lixiang Yan
    • Yifei Guo
    • Chenyang Fan
    • Xiaogang Hao
    • Gengda Zhu
    • Zhexin Shi
  • View Affiliations / Copyright

    Affiliations: First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300380, P.R. China
    Copyright: © Jianati et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 172
    |
    Published online on: October 14, 2025
       https://doi.org/10.3892/or.2025.9005
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Acute myeloid leukemia (AML) is a highly heterogeneous hematologic malignancy, characterized by complex molecular features and mechanisms of treatment resistance, which lead to a poor prognosis and high relapse rates. The complexity of multi‑pathway interactions and the dysregulated dynamics of tumor cell death pathways may contribute to the wide range of clinical outcomes observed despite advancements in current therapies. Most current research focuses on a single form of cell death, neglecting the mechanisms of other death pathways and their synergistic interactions, which hinders the development of novel therapeutic approaches. The present review systematically integrates and compares the molecular features of key cell death modalities in AML, including autophagy, apoptosis, pyroptosis, necroptosis, ferroptosis and cuproptosis. The present review analyzes their specific triggers, signaling hubs and regulatory networks within the metabolic microenvironment, and discusses the dynamic crosstalk among these pathways. A key focus is the therapeutic potential of exploiting this crosstalk to design synergistic combination therapies. To overcome the limitations of conventional treatments and improve patient outcomes, it is essential to further investigate the transition mechanisms of various cell death modes in AML progression, drug resistance and relapse. Additionally, establishing a theoretical foundation for the development of innovative therapies that synergistically regulate multiple death pathways is crucial.
View Figures

Figure 1

Summary of the profiles of six
subtypes of cell death (autophagy, apoptosis, pyroptosis,
necroptosis, ferroptosis and cuproptosis). Created with
BioRender.com. GPX4, glutathione peroxidase 4; LPA,
lysophosphatidic acid; MLKL, mixed lineage kinase domain like
pseudokinase; ROS, reactive oxygen species.

Figure 2

Three types of autophagy:
Macroautophagy (the degradation of macromolecules or organelles via
the autophagosome-lysosome pathway), microautophagy (the direct
invagination of lysosomal membranes to phagocytose the substrate)
and molecular chaperone-mediated autophagy (HSC70-dependent
recognition of specific motifs for the targeted transport of
soluble proteins to the lysosome for degradation), involved in
non-selective scavenging, selective metabolic regulation and the
maintenance of precise proteostasis, respectively. Created with
BioRender.com. HSC70, heat shock protein 70.

Figure 3

Apoptosis regulation mechanisms can
be divided into two categories: Endogenous and exogenous processes.
A key commitment step in endogenous apoptosis is MOMP, which is
triggered by upstream signals including BH3-only proteins. MOMP
leads to the release of cytochrome c, apoptosome formation with
APAF1/caspase-9, and ultimately activation of the executioner
caspase-3. By contrast, the exogenous pathway is activated through
the aggregation of death receptors, such as Fas, leading to the
formation of a DISC. The DISC activates the initiator caspase-8,
which then cleaves and activates effector caspases, including
caspase-3. This pathway serves a key role in immune homeostasis.
The two mechanisms eventually converge on the activation of the
executioner caspases. Furthermore, they are linked via signaling
through BID protein-mediated mitochondrial crosstalk. Created with
BioRender.com. APAF1, apoptotic protease activating factor-1; Bak,
BCL2 antagonist/killer; BID, BH3-interacting-domain death agonist;
DISC, death-inducing signaling complex; FADD, Fas-associated death
domain protein; SMAC, second mitochondrial-derived activator of
caspases; tBID, truncated BID; TRADD, TNFRSF1A-associated death
domain; XIAP, X-linked inhibitor of apoptosis; MOMP, mitochondrial
outer membrane permeabilization.

Figure 4

Pyroptosis pathway consisting of two
main pathways: The classical and non-classical pathways. In the
classical pathway, extracellular pathogen stimuli, such as viruses,
bind to inactive NLRP3, activating the NLRP3 inflammasome, which
contains ASC and pro-caspase-1. This activation triggers the
self-cleavage of pro-caspase-1 into caspase-1, which then cleaves
GSDMD to produce the GSDMD-NT fragment. GSDMD-NT forms pores in the
cell membrane, causing the release of pro-inflammatory cytokines
such as IL-1β and IL-18, leading to membrane rupture and an
inflammatory response. The non-canonical pyroptosis pathway
involves the activation of caspases-4, −5 and −11 in humans, which
is directly triggered by intracellular pathogen-associated
molecular patterns such as LPS. Activated caspases cleave GSDMD to
generate GSDMD-NT, which forms pores in the membrane, releasing
cellular contents and further promoting inflammation. Both pathways
lead to programmed cell death and the release of inflammatory
mediators, serving a crucial role in host defense against
pathogens. Created with BioRender.com. ASC, apoptosis-associated
speck-like protein containing a CARD; GSDMD, gasdermin D; GSDMD-NT,
N-terminal pore-forming domain of gasdermin D; LPS,
lipopolysaccharide; NLRP3, NACHT, LRR and PYD domains-containing
protein 3.

Figure 5

Core of necroptosis regulation
depends on RIPK3 and MLKL, which are triggered by various pathways.
The TNF receptor family (for example, TNF-R) activates RIPK3
through RIPK1, while activation of TLR3 or TLR4 recruits RIPK3 via
the adapter protein TRIF; viral RNA or mitochondria-released
nucleic acids, on the other hand, bind the ZBP1 receptor and
directly recruit RIPK3 to trigger a pathway independent of RIPK1.
Ultimately, RIPK3 phosphorylates MLKL, which leads to cell death.
Created with BioRender.com. APP, amyloid precursor protein; DR6,
death receptor 6; FasL, Fas ligand; LPS, lipopolysaccharide; MLKL,
mixed lineage kinase domain like pseudokinase; P, phosphorylated;
RIPK1, receptor interacting serine/threonine kinase 1; RIPK3,
receptor interacting serine/threonine kinase 3; TLR3, toll-like
receptor 3; TLR4, toll-like receptor 4; TNF-R, tumor necrosis
factor receptor; TRIF, TIR domain-containing adapter molecule 1;
ZBP1, Z-DNA binding protein 1; TRAIL, TNF-related
apoptosis-inducing ligand; TRAILR, TRAIL receptor.

Figure 6

Central mechanism driving ferroptosis
is a dynamic imbalance between lipid peroxidation and antioxidant
defense systems. This process is highly dependent on the catalytic
action of iron ions; free intracellular Fe2+ generates
reactive oxygen radicals via the Fenton reaction, which triggers a
peroxidative chain reaction of polyunsaturated fatty acids. A key
regulatory step in lipid metabolism involves the conversion of free
polyunsaturated fatty acids into membrane phospholipids and their
subsequent oxidation to cytotoxic lipid peroxides. The main
intracellular antioxidant barrier, the GPX4 enzyme system, is
unable to reduce lipid peroxides to harmless substances due to
blocked GSH synthesis or direct functional inactivation, ultimately
leading to the irreversible accumulation of oxidative damage.
Created with BioRender.com. ALOXS, arachidonate
15-lipoxygenase; ATM, ataxia telangiectasia mutated; BP,
2,2′-bipyridine; CDO1, cysteine dioxygenase type 1; CoQ, coenzyme
Q; CoQH2, coenzyme Q2; CPX, ciclopirox; DFO,
deferoxamine; DFOM, deferoxamine mesylate; FSP1, ferroptosis
suppressor protein 1; GCLC, glutamate-cysteine ligase catalytic
subunit; GPX4, glutathione peroxidase 4; GSH, glutathione; iFSP,
inducible ferroptosis suppressor protein; iPLA2β,
calcium-independent phospholipase A2β; LysoPL, lysophospholipid;
MDR1, multidrug resistance protein 1; PEBP1,
phosphatidylethanolamine-binding protein 1; POR, cytochrome P450
reductase; prom2, prominin2; PUFA-PL, polyunsaturated fatty acid
phospholipid; PUFA-PL-OOH, polyunsaturated fatty
acid-phospholipid-hydroperoxide; PUFA-PL-OO-, polyunsaturated fatty
acid-phospholipid-alkoxy; ROS, reactive oxygen species; SLC3A2,
solute carrier family 3 member 2; SLC40A1, solute carrier family 40
member 1; SLC7A11, solute carrier family 7 member 11; TCA,
tricarboxylic acid cycle; Tf, transferrin; GCLC, glutamate-cysteine
ligase catalytic subunit.

Figure 7

Cuproptosis is a mode of programmed
cell death triggered by the aberrant accumulation of exogenous
copper ions, and its core mechanism involves a dynamic imbalance of
copper ions within the cell and their specific intervention in key
metabolic pathways. Copper overload leads to the FDX1-mediated,
copper-dependent aberrant oligomerization of the E2 subunit of the
PDH complex. This process not only disrupts the normal functioning
of the mitochondrial metabolic network but also leads to
irreversible cell death by triggering a copper-dependent
proteotoxic stress response. Created with BioRender.com. α-kG,
α-ketoglutarate; Ac-CoA, acetyl-coenzyme A; ATP7, ATPase copper
transporting 7; CoASH, coenzyme A in its reduced form; Cyt,
cytochrome; DLAT, dihydrolipoamide S-acetyltransferase; E1,
pyruvate dehydrogenase E1 component; E2, pyruvate dehydrogenase E2
component; EMP, Embden-Meyerhof-Parnas pathway; FDX1, ferredoxin;
LIAS, lipoic acid synthase; PDH, pyruvate dehydrogenase; SLC31A,
solute carrier family 31 member A; STEAP, six transmembrane
epithelial antigen of the prostate; TCA, tricarboxylic acid
cycle.
View References

1 

Pollyea DA, Altman JK, Assi R, Bixby D, Fathi AT, Foran JM, Gojo I, Hall AC, Jonas BA, Kishtagari A, et al: Acute myeloid leukemia, version 3.2023, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 21:503–513. 2023. View Article : Google Scholar : PubMed/NCBI

2 

Moore CG, Stein A, Fathi AT and Pullarkat V: Treatment of Relapsed/Refractory AML-Novel treatment options including immunotherapy. Am J Hematol. 100:23–37. 2025. View Article : Google Scholar : PubMed/NCBI

3 

Sasaki K, Ravandi F, Kadia TM, DiNardo CD, Short NJ, Borthakur G, Jabbour E and Kantarjian HM: De novo acute myeloid leukemia: A population-based study of outcome in the United States based on the Surveillance, Epidemiology, and End Results (SEER) database, 1980 to 2017. Cancer. 127:2049–2061. 2021. View Article : Google Scholar : PubMed/NCBI

4 

Halik A, Tilgner M, Silva P, Estrada N, Altwasser R, Jahn E, Heuser M, Hou HA, Pratcorona M, Hills RK, et al: Genomic characterization of AML with aberrations of chromosome 7: A multinational cohort of 519 patients. J Hematol Oncol. 17:702024. View Article : Google Scholar : PubMed/NCBI

5 

Kantarjian H, Borthakur G, Daver N, DiNardo CD, Issa G, Jabbour E, Kadia T, Sasaki K, Short NJ, Yilmaz M and Ravandi F: Current status and research directions in acute myeloid leukemia. Blood Cancer J. 14:1632024. View Article : Google Scholar : PubMed/NCBI

6 

Lee E, Song CH, Bae SJ, Ha KT and Karki R: Regulated cell death pathways and their roles in homeostasis, infection, inflammation, and tumorigenesis. Exp Mol Med. 55:1632–1643. 2023. View Article : Google Scholar : PubMed/NCBI

7 

Peng J, Zou M, Zhang Q, Liu D, Chen S, Fang R, Gao Y, Yan X and Hao L: Symphony of regulated cell death: Unveiling therapeutic horizons in sarcopenia. Metabolism. 172:1563592025. View Article : Google Scholar : PubMed/NCBI

8 

Chen C, Wang J, Zhang S, Zhu X, Hu J, Liu C and Liu L: Epigenetic regulation of diverse regulated cell death modalities in cardiovascular disease: Insights into necroptosis, pyroptosis, ferroptosis, and cuproptosis. Redox Biol. 76:1033212024. View Article : Google Scholar : PubMed/NCBI

9 

Sorokin O, Hause F, Wedler A, Alakhras T, Bauchspiess T, Dietrich A, Günther WF, Guha C, Obika KB, Kraft J, et al: Comprehensive analysis of regulated cell death pathways: Intrinsic disorder, protein-protein interactions, and cross-pathway communication. Apoptosis. 30:2110–2162. 2025. View Article : Google Scholar : PubMed/NCBI

10 

Peng F, Liao M, Qin R, Zhu S, Peng C, Fu L, Chen Y and Han B: Regulated cell death (RCD) in cancer: Key pathways and targeted therapies. Signal Transduct Target Ther. 7:2862022. View Article : Google Scholar : PubMed/NCBI

11 

Seo W, Silwal P, Song IC and Jo EK: The dual role of autophagy in acute myeloid leukemia. J Hematol Oncol. 15:512022. View Article : Google Scholar : PubMed/NCBI

12 

Ren J, Tao Y, Peng M, Xiao Q, Jing Y, Huang J, Yang J, Lin C, Sun M, Lei L, et al: Targeted activation of GPER enhances the efficacy of venetoclax by boosting leukemic pyroptosis and CD8+ T cell immune function in acute myeloid leukemia. Cell Death Dis. 13:9152022. View Article : Google Scholar : PubMed/NCBI

13 

Chan FK: RIPK3 Slams the Brake on Leukemogenesis. Cancer Cell. 30:7–9. 2016. View Article : Google Scholar : PubMed/NCBI

14 

Ye F, Zhang W, Fan C, Dong J, Peng M, Deng W, Zhang H and Yang L: Antileukemic effect of venetoclax and hypomethylating agents via caspase-3/GSDME-mediated pyroptosis. J Transl Med. 21:6062023. View Article : Google Scholar : PubMed/NCBI

15 

Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al: Ferroptosis: An Iron-dependent form of nonapoptotic cell death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI

16 

Xu B, Wang S, Li R, Chen K, He L, Deng M, Kannappan V, Zha J, Dong H and Wang W: Disulfiram/copper selectively eradicates AML leukemia stem cells in vitro and in vivo by simultaneous induction of ROS-JNK and inhibition of NF-κB and Nrf2. Cell Death Dis. 8:e27972017. View Article : Google Scholar : PubMed/NCBI

17 

Guo Z, Liu Y, Chen D, Sun Y, Li D, Meng Y, Zhou Q, Zeng F, Deng G and Chen X: Targeting regulated cell death: Apoptosis, necroptosis, pyroptosis, ferroptosis, and cuproptosis in anticancer immunity. J Transl Int Med. 13:10–32. 2025. View Article : Google Scholar : PubMed/NCBI

18 

Garciaz S, Miller T, Collette Y and Vey N: Targeting regulated cell death pathways in acute myeloid leukemia. Cancer Drug Resist. 6:151–168. 2023. View Article : Google Scholar : PubMed/NCBI

19 

He R, Liu Y, Fu W, He X, Liu S, Xiao D and Tao Y: Mechanisms and Cross-talk of regulated cell death and their epigenetic modifications in tumor progression. Mol Cancer. 23:2672024. View Article : Google Scholar : PubMed/NCBI

20 

Dikic I and Elazar Z: Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol. 19:349–364. 2018. View Article : Google Scholar : PubMed/NCBI

21 

Kaushik S and Cuervo AM: The coming of age of Chaperone-mediated autophagy. Nat Rev Mol Cell Biol. 19:365–381. 2018. View Article : Google Scholar : PubMed/NCBI

22 

Yamamoto H and Matsui T: Molecular mechanisms of macroautophagy, microautophagy, and Chaperone-mediated autophagy. J Nippon Med Sch. 91:2–9. 2024. View Article : Google Scholar : PubMed/NCBI

23 

Niu X, You Q, Hou K, Tian Y, Wei P, Zhu Y, Gao B, Ashrafizadeh M, Aref AR, Kalbasi A, et al: Autophagy in cancer development, immune evasion, and drug resistance. Drug Resist Updat. 78:1011702025. View Article : Google Scholar : PubMed/NCBI

24 

Debnath J, Gammoh N and Ryan KM: Autophagy and autophagy-related pathways in cancer. Nat Rev Mol Cell Biol. 24:560–575. 2023. View Article : Google Scholar : PubMed/NCBI

25 

Sankar DS, Kaeser-Pebernard S, Vionnet C, Favre S, de Oliveira Marchioro L, Pillet B, Zhou J, Stumpe M, Kovacs WJ, Kressler D, et al: The ULK1 effector BAG2 regulates autophagy initiation by modulating AMBRA1 localization. Cell Rep. 43:1146892024. View Article : Google Scholar : PubMed/NCBI

26 

Xi H, Wang S, Wang B, Hong X, Liu X, Li M, Shen R and Dong Q: The role of interaction between autophagy and apoptosis in tumorigenesis (Review). Oncol Reps. 48:2082022. View Article : Google Scholar

27 

Cook ASI, Chen M, Nguyen TN, Cabezudo AC, Khuu G, Rao S, Garcia SN, Yang M, Iavarone AT, Ren X, et al: Structural pathway for PI3-kinase regulation by VPS15 in autophagy. Science. 388:eadl37872025. View Article : Google Scholar : PubMed/NCBI

28 

Nascimbeni AC, Codogno P and Morel E: Local detection of PtdIns3P at autophagosome biogenesis membrane platforms. Autophagy. 13:1602–1612. 2017. View Article : Google Scholar : PubMed/NCBI

29 

Wani WY, Boyer-Guittaut M, Dodson M, Chatham J, Darley-Usmar V and Zhang J: Regulation of autophagy by protein post-translational modification. Lab Invest. 95:14–25. 2015. View Article : Google Scholar : PubMed/NCBI

30 

Huang R, Xu Y, Wan W, Shou X, Qian J, You Z, Liu B, Chang C, Zhou T, Lippincott-Schwartz J and Liu W: Deacetylation of nuclear LC3 drives autophagy initiation under starvation. Mol Cell. 57:456–466. 2015. View Article : Google Scholar : PubMed/NCBI

31 

Ichimura Y, Kirisako T, Takao T, Satomi Y, Shimonishi Y, Ishihara N, Mizushima N, Tanida I, Kominami E, Ohsumi M, et al: A ubiquitin-like system mediates protein lipidation. Nature. 408:488–492. 2000. View Article : Google Scholar : PubMed/NCBI

32 

Rogov V, Dötsch V, Johansen T and Kirkin V: Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Mol Cell. 53:167–178. 2014. View Article : Google Scholar : PubMed/NCBI

33 

Kimmelman AC and White E: Autophagy and tumor metabolism. Cell Metab. 25:1037–1043. 2017. View Article : Google Scholar : PubMed/NCBI

34 

Santos de Macedo BG, Albuquerque de Melo M, Pereira-Martins DA, Machado-Neto JA and Traina F: An updated outlook on autophagy mechanism and how it supports acute myeloid leukemia maintenance. Biochim Biophys Acta Rev Cancer. 1879:1892142024. View Article : Google Scholar : PubMed/NCBI

35 

Nomura N, Ito C, Ooshio T, Tadokoro Y, Kohno S, Ueno M, Kobayashi M, Kasahara A, Takase Y, Kurayoshi K, et al: Essential role of autophagy in protecting neonatal haematopoietic stem cells from oxidative stress in a p62-independent manner. Sci Rep. 11:16662021. View Article : Google Scholar : PubMed/NCBI

36 

Chen Y, Luo X, Zou Z and Liang Y: The role of reactive oxygen species in tumor treatment and its impact on bone marrow hematopoiesis. Curr Drug Targets. 21:477–498. 2020. View Article : Google Scholar : PubMed/NCBI

37 

Sharma P, Piya S, Ma H, Baran N, Anna Zal M, Hindley CJ, Dao K, Sims M, Zal T, Ruvolo V, et al: ERK1/2 inhibition overcomes resistance in acute myeloid leukemia (AML) and alters mitochondrial dynamics. Blood. 138:33382021. View Article : Google Scholar

38 

Folkerts H, Wierenga AT, van den Heuvel FA, Woldhuis RR, Kluit DS, Jaques J, Schuringa JJ and Vellenga E: Elevated VMP1 expression in acute myeloid leukemia amplifies autophagy and is protective against venetoclax-induced apoptosis. Cell Death Dis. 10:4212019. View Article : Google Scholar : PubMed/NCBI

39 

Khan A, Singh VK, Thakral D and Gupta R: Autophagy in acute myeloid leukemia: A paradoxical role in chemoresistance. Clin Transl Oncol. 24:1459–1469. 2022. View Article : Google Scholar : PubMed/NCBI

40 

Heydt Q, Larrue C, Saland E, Bertoli S, Sarry JE, Besson A, Manenti S, Joffre C and Mansat-De Mas V: Oncogenic FLT3-ITD supports autophagy via ATF4 in acute myeloid leukemia. Oncogene. 37:787–797. 2018. View Article : Google Scholar : PubMed/NCBI

41 

Omori I, Yamaguchi H, Miyake K, Miyake N, Kitano T and Inokuchi K: D816V mutation in the KIT gene activation loop has greater cell-proliferative and anti-apoptotic ability than N822K mutation in core-binding factor acute myeloid leukemia. Exp Hematol. 52:56–64.e54. 2017. View Article : Google Scholar : PubMed/NCBI

42 

Larrue C, Heydt Q, Saland E, Boutzen H, Kaoma T, Sarry JE, Joffre C and Récher C: Oncogenic KIT mutations induce STAT3-dependent autophagy to support cell proliferation in acute myeloid leukemia. Oncogenesis. 8:392019. View Article : Google Scholar : PubMed/NCBI

43 

Zou Q, Tan S, Yang Z, Zhan Q, Jin H, Xian J, Zhang S, Yang L, Wang L and Zhang L: NPM1 mutant mediated PML delocalization and stabilization enhances autophagy and cell survival in leukemic cells. Theranostics. 7:2289–2304. 2017. View Article : Google Scholar : PubMed/NCBI

44 

Folkerts H, Hilgendorf S, Wierenga ATJ, Jaques J, Mulder AB, Coffer PJ, Schuringa JJ and Vellenga E: Inhibition of autophagy as a treatment strategy for p53 wild-type acute myeloid leukemia. Cell Death Dis. 8:e29272017. View Article : Google Scholar : PubMed/NCBI

45 

Yang Y, Pu J and Yang Y: Glycolysis and chemoresistance in acute myeloid leukemia. Heliyon. 10:e357212024. View Article : Google Scholar : PubMed/NCBI

46 

Wang YH, Israelsen WJ, Lee D, Yu VWC, Jeanson NT, Clish CB, Cantley LC, Vander Heiden MG and Scadden DT: Cell-state-specific metabolic dependency in hematopoiesis and leukemogenesis. Cell. 158:1309–1323. 2014. View Article : Google Scholar : PubMed/NCBI

47 

Chen S, Tao Y, Wang Q, Ren J, Jing Y, Huang J, Zhang L and Li R: Glucose Induced-AKT/mTOR activation accelerates glycolysis and promotes cell survival in acute myeloid leukemia. Leuk Res. 128:1070592023. View Article : Google Scholar : PubMed/NCBI

48 

Stevens BM, Jones CL, Pollyea DA, Culp-Hill R, D'Alessandro A, Winters A, Krug A, Abbott D, Goosman M, Pei S, et al: Fatty acid metabolism underlies venetoclax resistance in acute myeloid leukemia stem cells. Nat Cancer. 1:1176–1187. 2020. View Article : Google Scholar : PubMed/NCBI

49 

Carter JL, Su Y, Qiao X, Zhao J, Wang G, Howard M, Edwards H, Bao X, Li J, Hüttemann M, et al: Acquired resistance to venetoclax plus azacitidine in acute myeloid leukemia: In vitro models and mechanisms. Biochem Pharmacol. 216:1157592023. View Article : Google Scholar : PubMed/NCBI

50 

Zhang HB, Sun ZK, Zhong FM, Yao FY, Liu J, Zhang J, Zhang N, Lin J, Li SQ, Li MY, et al: A novel fatty acid metabolism-related signature identifies features of the tumor microenvironment and predicts clinical outcome in acute myeloid leukemia. Lipids Health Dis. 21:792022. View Article : Google Scholar : PubMed/NCBI

51 

Tcheng M, Roma A, Ahmed N, Smith RW, Jayanth P, Minden MD, Schimmer AD, Hess DA, Hope K, Rea KA, et al: Very long chain fatty acid metabolism is required in acute myeloid leukemia. Blood. 137:3518–3532. 2021. View Article : Google Scholar : PubMed/NCBI

52 

Zhao Y, Guo H, Niu L and Zhao J: Metabolic pathways and chemotherapy resistance in acute myeloid leukemia (AML): Insights into Enoyl-CoA hydratase domain-containing protein 3 (ECHDC3) as a potential therapeutic target. Cancer Pathogenesis and Therapy; 2025, View Article : Google Scholar

53 

Du W, Xu A, Huang Y, Cao J, Zhu H, Yang B, Shao X, He Q and Ying M: The role of autophagy in targeted therapy for acute myeloid leukemia. Autophagy. 17:2665–2679. 2021. View Article : Google Scholar : PubMed/NCBI

54 

Li X, Qian Q, Li J, Zhang L, Wang L, Huang D, Xu Q and Chen W: The RNA-binding protein CELF1 targets ATG5 to regulate autophagy and promote drug resistance in acute myeloid leukemia. Cell Death Dis. 16:5992025. View Article : Google Scholar : PubMed/NCBI

55 

Herschbein L and Liesveld JL: Dueling for dual inhibition: Means to enhance effectiveness of PI3K/Akt/mTOR inhibitors in AML. Blood Rev. 32:235–248. 2018. View Article : Google Scholar : PubMed/NCBI

56 

Koschade SE, Klann K, Shaid S, Vick B, Stratmann JA, Thölken M, Meyer LM, Nguyen TD, Campe J, Moser LM, et al: Translatome proteomics identifies autophagy as a resistance mechanism to on-target FLT3 inhibitors in acute myeloid leukemia. Leukemia. 36:2396–2407. 2022. View Article : Google Scholar : PubMed/NCBI

57 

Cao Y, Wang Y, Chen Y, Zhang X, Zuo Y, Ge X, Sun C, Ren B, Liu Y, Wang M and Lu J: Voacamine initiates the PI3K/mTOR/Beclin1 pathway to induce autophagy and potentiate apoptosis in acute myeloid leukemia. Phytomedicine. 143:1568592025. View Article : Google Scholar : PubMed/NCBI

58 

Nössing C and Ryan KM: 50 years on and still very much alive: ‘Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics’. Br J Cancer. 128:426–431. 2023. View Article : Google Scholar : PubMed/NCBI

59 

Yoon JH and Gores GJ: Death receptor-mediated apoptosis and the liver. J Hepatol. 37:400–410. 2002. View Article : Google Scholar : PubMed/NCBI

60 

O'Neill KL, Huang K, Zhang J, Chen Y and Luo X: Inactivation of prosurvival Bcl-2 proteins activates Bax/Bak through the outer mitochondrial membrane. Genes Dev. 30:973–988. 2016. View Article : Google Scholar : PubMed/NCBI

61 

Xiong S, Mu T, Wang G and Jiang X: Mitochondria-mediated apoptosis in mammals. Protein Cell. 5:737–749. 2014. View Article : Google Scholar : PubMed/NCBI

62 

Croce CM, Vaux D, Strasser A, Opferman JT, Czabotar PE and Fesik SW: The BCL-2 protein family: from discovery to drug development. Cell Death Differ. 32:1369–1381. 2025. View Article : Google Scholar : PubMed/NCBI

63 

Reyna DE, Garner TP, Lopez A, Kopp F, Choudhary GS, Sridharan A, Narayanagari SR, Mitchell K, Dong B, Bartholdy BA, et al: Direct activation of BAX by BTSA1 overcomes apoptosis resistance in acute myeloid leukemia. Cancer Cell. 32:490–505.e10. 2017. View Article : Google Scholar : PubMed/NCBI

64 

Singh G, Guibao CD, Seetharaman J, Aggarwal A, Grace CR, McNamara DE, Vaithiyalingam S, Waddell MB and Moldoveanu T: Structural basis of BAK activation in mitochondrial apoptosis initiation. Nat Commun. 13:2502022. View Article : Google Scholar : PubMed/NCBI

65 

Tait SW and Green DR: Mitochondria and cell death: Outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol. 11:621–632. 2010. View Article : Google Scholar : PubMed/NCBI

66 

Cain K, Bratton SB and Cohen GM: The Apaf-1 apoptosome: A large caspase-activating complex. Biochimie. 84:203–214. 2002. View Article : Google Scholar : PubMed/NCBI

67 

Kashyap D, Garg VK and Goel N: Intrinsic and extrinsic pathways of apoptosis: Role in cancer development and prognosis. Adv Protein Chem Struct Biol. 125:73–120. 2021. View Article : Google Scholar : PubMed/NCBI

68 

Zheng L, Yao Y and Lenardo MJ: Death receptor 5 rises to the occasion. Cell Res. 33:199–200. 2023. View Article : Google Scholar : PubMed/NCBI

69 

Helmke C, Raab M, Rödel F, Matthess Y, Oellerich T, Mandal R, Sanhaji M, Urlaub H, Rödel C, Becker S and Strebhardt K: Ligand stimulation of CD95 induces activation of Plk3 followed by phosphorylation of caspase-8. Cell Res. 26:914–934. 2016. View Article : Google Scholar : PubMed/NCBI

70 

Huang K, Zhang J, O'Neill KL, Gurumurthy CB, Quadros RM, Tu Y and Luo X: Cleavage by Caspase 8 and mitochondrial membrane association activate the BH3-only protein bid during TRAIL-induced apoptosis. J Biol Chem. 291:11843–11851. 2016. View Article : Google Scholar : PubMed/NCBI

71 

D'Arcy MS: Cell death: A review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int. 43:582–592. 2019. View Article : Google Scholar : PubMed/NCBI

72 

Kantari C and Walczak H: Caspase-8 and bid: Caught in the act between death receptors and mitochondria. Biochim Biophys Acta. 1813:558–563. 2011. View Article : Google Scholar : PubMed/NCBI

73 

Kim WS, Lee KS, Kim JH, Kim CK, Lee G, Choe J, Won MH, Kim TH, Jeoung D, Lee H, et al: The caspase-8/Bid/cytochrome c axis links signals from death receptors to mitochondrial reactive oxygen species production. Free Radic Biol Med. 112:567–577. 2017. View Article : Google Scholar : PubMed/NCBI

74 

Moyer A, Tanaka K and Cheng EH: Apoptosis in cancer biology and therapy. Annu Rev Pathol. 20:303–328. 2025. View Article : Google Scholar : PubMed/NCBI

75 

Pfeffer CM and Singh ATK: Apoptosis: A target for anticancer therapy. Int J Mol Sci. 19:4482018. View Article : Google Scholar : PubMed/NCBI

76 

Campbell KJ and Tait SWG: Targeting BCL-2 regulated apoptosis in cancer. Open Biol. 8:1800022018. View Article : Google Scholar : PubMed/NCBI

77 

Ashkenazi A, Fairbrother WJ, Leverson JD and Souers AJ: From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors. Nat Rev Drug Discov. 16:273–284. 2017. View Article : Google Scholar : PubMed/NCBI

78 

Konopleva M, Pollyea DA, Potluri J, Chyla B, Hogdal L, Busman T, McKeegan E, Salem AH, Zhu M, Ricker JL, et al: Efficacy and biological correlates of response in a phase II study of venetoclax monotherapy in patients with acute myelogenous leukemia. Cancer Discov. 6:1106–1117. 2016. View Article : Google Scholar : PubMed/NCBI

79 

Wei AH, Strickland SA Jr, Hou JZ, Fiedler W, Lin TL, Walter RB, Enjeti A, Tiong IS, Savona M, Lee S, et al: Venetoclax combined with Low-dose cytarabine for previously untreated patients with acute myeloid leukemia: Results from a Phase Ib/II study. J Clin Oncol. 37:1277–1284. 2019. View Article : Google Scholar : PubMed/NCBI

80 

DiNardo CD, Jonas BA, Pullarkat V, Thirman MJ, Garcia JS, Wei AH, Konopleva M, Döhner H, Letai A, Fenaux P, et al: Azacitidine and venetoclax in previously untreated acute myeloid leukemia. N Engl J Med. 383:617–629. 2020. View Article : Google Scholar : PubMed/NCBI

81 

Jiao CQ, Hu C, Sun MH, Li Y, Wu C, Xu F, Zhang L, Huang FR, Zhou JJ, Dai JF, et al: Targeting METTL3 mitigates venetoclax resistance via proteasome-mediated modulation of MCL1 in acute myeloid leukemia. Cell Death Dis. 16:2332025. View Article : Google Scholar : PubMed/NCBI

82 

Chai J, Du C, Wu JW, Kyin S, Wang X and Shi Y: Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature. 406:855–862. 2000. View Article : Google Scholar : PubMed/NCBI

83 

Carter BZ, Mak PY, Mak DH, Shi Y, Qiu Y, Bogenberger JM, Mu H, Tibes R, Yao H, Coombes KR, et al: Synergistic targeting of AML stem/progenitor cells with IAP antagonist birinapant and demethylating agents. J Natl Cancer Inst. 106:djt4402014. View Article : Google Scholar : PubMed/NCBI

84 

Gencel-Augusto J and Lozano G: Targeted degradation of mutant p53 reverses the Pro-oncogenic Dominant-negative effect. Cancer Res. 85:1955–1956. 2025. View Article : Google Scholar : PubMed/NCBI

85 

Tuval A, Strandgren C, Heldin A, Palomar-Siles M and Wiman KG: Pharmacological reactivation of p53 in the era of precision anticancer medicine. Nat Rev Clin Oncol. 21:106–120. 2024. View Article : Google Scholar : PubMed/NCBI

86 

Napolitano R, De Matteis S, Carloni S, Bruno S, Abbati G, Capelli L, Ghetti M, Bochicchio MT, Liverani C, Mercatali L, et al: Kevetrin induces apoptosis in TP53 wild-type and mutant acute myeloid leukemia cells. Oncol Rep. 44:1561–1573. 2020.PubMed/NCBI

87 

Fulda S: Targeting apoptosis for anticancer therapy. Semin Cancer Biol. 31:84–88. 2015. View Article : Google Scholar : PubMed/NCBI

88 

Chow LQ, Eckhardt SG, Gustafson DL, Langer CJ, Camidge DR, Padavic K, Gore L, Smith M, Chow LQ, von Mehren M, et al: HGS-ETR1, an antibody targeting TRAIL-R1, in combination with paclitaxel and carboplatin in patients with advanced solid malignancies: Results of a phase 1 and PK study. J Clin Oncol. 24:25152006. View Article : Google Scholar

89 

You R, Hou D, Wang B, Liu J, Wang X, Xiao Q, Pan Z, Li D, Feng X, Kang L, et al: Bone marrow microenvironment drives AML cell OXPHOS addiction and AMPK inhibition to resist chemotherapy. J Leukoc Biol. 112:299–311. 2022. View Article : Google Scholar : PubMed/NCBI

90 

Cheung HL, Wong YH, Li YY, Yang X, Ko LH, Tan Kabigting JE, Chan KC, Leung AYH and Chan BP: Microenvironment matters: In vitro 3D bone marrow niches differentially modulate survival, phenotype and drug responses of acute myeloid leukemia (AML) cells. Biomaterials. 312:1227192025. View Article : Google Scholar : PubMed/NCBI

91 

Zou J, Zheng Y, Huang Y, Tang D, Kang R and Chen R: The versatile gasdermin family: Their function and roles in diseases. Front Immunol. 12:7515332021. View Article : Google Scholar : PubMed/NCBI

92 

Broz P, Pelegrín P and Shao F: The gasdermins, a protein family executing cell death and inflammation. Nat Rev Immunol. 20:143–157. 2020. View Article : Google Scholar : PubMed/NCBI

93 

Tamura M, Tanaka S, Fujii T, Aoki A, Komiyama H, Ezawa K, Sumiyama K, Sagai T and Shiroishi T: Members of a novel gene family, Gsdm, are expressed exclusively in the epithelium of the skin and gastrointestinal tract in a highly Tissue-specific manner. Genomics. 89:618–629. 2007. View Article : Google Scholar : PubMed/NCBI

94 

Wang S, Yuan YH, Chen NH and Wang HB: The mechanisms of NLRP3 inflammasome/pyroptosis activation and their role in Parkinson's disease. Int Immunopharmacol. 67:458–464. 2019. View Article : Google Scholar : PubMed/NCBI

95 

Miao EA, Rajan JV and Aderem A: Caspase-1-induced pyroptotic cell death. Immunol Rev. 243:206–214. 2011. View Article : Google Scholar : PubMed/NCBI

96 

Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, Zhuang Y, Cai T, Wang F and Shao F: Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 526:660–665. 2015. View Article : Google Scholar : PubMed/NCBI

97 

Yu P, Zhang X, Liu N, Tang L, Peng C and Chen X: Pyroptosis: Mechanisms and diseases. Signal Transduct Target Ther. 6:1282021. View Article : Google Scholar : PubMed/NCBI

98 

Ding J, Wang K, Liu W, She Y, Sun Q, Shi J, Sun H, Wang DC and Shao F: Pore-forming activity and structural autoinhibition of the gasdermin family. Nature. 535:111–116. 2016. View Article : Google Scholar : PubMed/NCBI

99 

Garlanda C, Dinarello CA and Mantovani A: The interleukin-1 family: Back to the future. Immunity. 39:1003–1018. 2013. View Article : Google Scholar : PubMed/NCBI

100 

Rao Z, Zhu Y, Yang P, Chen Z, Xia Y, Qiao C, Liu W, Deng H, Li J, Ning P and Wang Z: Pyroptosis in inflammatory diseases and cancer. Theranostics. 12:4310–4329. 2022. View Article : Google Scholar : PubMed/NCBI

101 

Kayagaki N, Stowe IB, Lee BL, O'Rourke K, Anderson K, Warming S, Cuellar T, Haley B, Roose-Girma M, Phung QT, et al: Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature. 526:666–671. 2015. View Article : Google Scholar : PubMed/NCBI

102 

Yang J, Zhao Y and Shao F: Non-canonical activation of inflammatory caspases by cytosolic LPS in innate immunity. Curr Opin Immunol. 32:78–83. 2015. View Article : Google Scholar : PubMed/NCBI

103 

Shi J, Zhao Y, Wang Y, Gao W, Ding J, Li P, Hu L and Shao F: Inflammatory caspases are innate immune receptors for intracellular LPS. Nature. 514:187–192. 2014. View Article : Google Scholar : PubMed/NCBI

104 

Hagar JA, Powell DA, Aachoui Y, Ernst RK and Miao EA: Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science. 341:1250–1253. 2013. View Article : Google Scholar : PubMed/NCBI

105 

Liu Y, Pan R, Ouyang Y, Gu W, Xiao T, Yang H, Tang L, Wang H, Xiang B and Chen P: Pyroptosis in health and disease: Mechanisms, regulation and clinical perspective. Signal Transduct Target Ther. 9:2452024. View Article : Google Scholar : PubMed/NCBI

106 

Kayagaki N, Warming S, Lamkanfi M, Vande Walle L, Louie S, Dong J, Newton K, Qu Y, Liu J, Heldens S, et al: Non-canonical inflammasome activation targets caspase-11. Nature. 479:117–121. 2011. View Article : Google Scholar : PubMed/NCBI

107 

Shi X, Sun Q, Hou Y, Zeng H, Cao Y, Dong M, Ding J and Shao F: Recognition and maturation of IL-18 by caspase-4 noncanonical inflammasome. Nature. 624:442–450. 2023. View Article : Google Scholar : PubMed/NCBI

108 

Wang Y, Gao W, Shi X, Ding J, Liu W, He H, Wang K and Shao F: Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature. 547:99–103. 2017. View Article : Google Scholar : PubMed/NCBI

109 

Oltra SS, Colomo S, Sin L, Pérez-López M, Lázaro S, Molina-Crespo A, Choi KH, Ros-Pardo D, Martínez L, Morales S, et al: Distinct GSDMB protein isoforms and protease cleavage processes differentially control pyroptotic cell death and mitochondrial damage in cancer cells. Cell Death Differ. 30:1366–1381. 2023. View Article : Google Scholar : PubMed/NCBI

110 

Wang S, Chang CW, Huang J, Zeng S, Zhang X, Hung MC and Hou J: Gasdermin C sensitizes tumor cells to PARP inhibitor therapy in cancer models. J Clin Invest. 134:e1668412024. View Article : Google Scholar : PubMed/NCBI

111 

Alves-Hanna FS, Crespo-Neto JA, Nogueira GM, Pereira DS, Lima AB, Ribeiro TLP, Santos VGR, Fonseca JRF, Magalhães-Gama F, Sadahiro A and Costa AG: Insights regarding the role of inflammasomes in leukemia: What Do We Know? J Immunol Res. 2023:55844922023. View Article : Google Scholar : PubMed/NCBI

112 

Johnson DC, Taabazuing CY, Okondo MC, Chui AJ, Rao SD, Brown FC, Reed C, Peguero E, de Stanchina E, Kentsis A and Bachovchin DA: DPP8/DPP9 inhibitor-induced pyroptosis for treatment of acute myeloid leukemia. Nat Med. 24:1151–1156. 2018. View Article : Google Scholar : PubMed/NCBI

113 

Deng S, Pan Y, An N, Chen F, Chen H, Wang H, Xu X, Liu R, Yang L, Wang X, et al: Downregulation of RCN1 promotes pyroptosis in acute myeloid leukemia cells. Mol Oncol. 17:2584–2602. 2023. View Article : Google Scholar : PubMed/NCBI

114 

Askmyr M, Ågerstam H, Hansen N, Gordon S, Arvanitakis A, Rissler M, Juliusson G, Richter J, Järås M and Fioretos T: Selective killing of candidate AML stem cells by antibody targeting of IL1RAP. Blood. 121:3709–3713. 2013. View Article : Google Scholar : PubMed/NCBI

115 

Ågerstam H, Karlsson C, Hansen N, Sandén C, Askmyr M, von Palffy S, Högberg C, Rissler M, Wunderlich M, Juliusson G, et al: Antibodies targeting human IL1RAP (IL1R3) show therapeutic effects in xenograft models of acute myeloid leukemia. Proc Natl Acad Sci USA. 112:10786–10791. 2015. View Article : Google Scholar : PubMed/NCBI

116 

Wang Y, Sun X, Yuan S, Hou S, Guo T, Chu Y, Pang T, Luo HR, Yuan W and Wang X: Interleukin-1β inhibits normal hematopoietic expansion and promotes acute myeloid leukemia progression via the bone marrow niche. Cytotherapy. 22:127–134. 2020. View Article : Google Scholar : PubMed/NCBI

117 

Wong J, Tran LT, Magun EA, Magun BE and Wood LJ: Production of IL-1β by bone marrow-derived macrophages in response to chemotherapeutic drugs: Synergistic effects of doxorubicin and vincristine. Cancer Biol Ther. 15:1395–1403. 2014. View Article : Google Scholar : PubMed/NCBI

118 

Yan J, Wan P, Choksi S and Liu ZG: Necroptosis and tumor progression. Trends Cancer. 8:21–27. 2022. View Article : Google Scholar : PubMed/NCBI

119 

Liu X, Miao M, Sun J, Wu J and Qin X: PANoptosis: A potential new target for programmed cell death in breast cancer treatment and prognosis. Apoptosis. 29:277–288. 2024. View Article : Google Scholar : PubMed/NCBI

120 

He S, Wang L, Miao L, Wang T, Du F, Zhao L and Wang X: Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell. 137:1100–1111. 2009. View Article : Google Scholar : PubMed/NCBI

121 

Holler N, Zaru R, Micheau O, Thome M, Attinger A, Valitutti S, Bodmer JL, Schneider P, Seed B and Tschopp J: Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol. 1:489–495. 2000. View Article : Google Scholar : PubMed/NCBI

122 

Mandal R, Barrón JC, Kostova I, Becker S and Strebhardt K: Caspase-8: The double-edged sword. Biochim Biophys Acta Rev Cancer. 1873:1883572020. View Article : Google Scholar : PubMed/NCBI

123 

Kaiser WJ, Sridharan H, Huang C, Mandal P, Upton JW, Gough PJ, Sehon CA, Marquis RW, Bertin J and Mocarski ES: Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL. J Biol Chem. 288:31268–31279. 2013. View Article : Google Scholar : PubMed/NCBI

124 

Upton JW, Kaiser WJ and Mocarski ES: DAI/ZBP1/DLM-1 complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA. Cell Host Microbe. 11:290–297. 2012. View Article : Google Scholar : PubMed/NCBI

125 

Pasparakis M and Vandenabeele P: Necroptosis and its role in inflammation. Nature. 517:311–320. 2015. View Article : Google Scholar : PubMed/NCBI

126 

Linkermann A and Green DR: Necroptosis. N Engl J Med. 370:455–465. 2014. View Article : Google Scholar : PubMed/NCBI

127 

Murphy JM, Czabotar PE, Hildebrand JM, Lucet IS, Zhang JG, Alvarez-Diaz S, Lewis R, Lalaoui N, Metcalf D, Webb AI, et al: The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. Immunity. 39:443–453. 2013. View Article : Google Scholar : PubMed/NCBI

128 

Gong YN, Guy C, Olauson H, Becker JU, Yang M, Fitzgerald P, Linkermann A and Green DR: ESCRT-III acts downstream of MLKL to regulate necroptotic cell death and its consequences. Cell. 169:286–300.e16. 2017. View Article : Google Scholar : PubMed/NCBI

129 

Cai Z, Jitkaew S, Zhao J, Chiang HC, Choksi S, Liu J, Ward Y, Wu LG and Liu ZG: Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nat Cell Biol. 16:55–65. 2014. View Article : Google Scholar : PubMed/NCBI

130 

Khan N, Downey J, Sanz J, Kaufmann E, Blankenhaus B, Pacis A, Pernet E, Ahmed E, Cardoso S, Nijnik A, et al: M. tuberculosis reprograms hematopoietic stem cells to limit myelopoiesis and impair trained immunity. Cell. 183:752–770.e22. 2020. View Article : Google Scholar : PubMed/NCBI

131 

Gong Y, Fan Z, Luo G, Yang C, Huang Q, Fan K, Cheng H, Jin K, Ni Q, Yu X and Liu C: The role of necroptosis in cancer biology and therapy. Mol Cancer. 18:1002019. View Article : Google Scholar : PubMed/NCBI

132 

Zhang T, Wang Y, Inuzuka H and Wei W: Necroptosis pathways in tumorigenesis. Semin Cancer Biol. 86:32–40. 2022. View Article : Google Scholar : PubMed/NCBI

133 

Höckendorf U, Yabal M, Herold T, Munkhbaatar E, Rott S, Jilg S, Kauschinger J, Magnani G, Reisinger F, Heuser M, et al: RIPK3 restricts myeloid leukemogenesis by promoting cell death and differentiation of leukemia initiating cells. Cancer Cell. 30:75–91. 2016. View Article : Google Scholar : PubMed/NCBI

134 

Wang Y, Zhang TJ, Zhang LC, Xu ZJ, Chu MQ, Zhao YJ, Lin J, Qian J and Zhou JD: Overexpression and oncogenic role of RIPK3 in acute myeloid leukemia associated with specific subtypes and treatment outcome. BMC Cancer. 25:2532025. View Article : Google Scholar : PubMed/NCBI

135 

Xin J, You D, Breslin P, Li J, Zhang J, Wei W, Cannova J, Volk A, Gutierrez R, Xiao Y, et al: Sensitizing acute myeloid leukemia cells to induced differentiation by inhibiting the RIP1/RIP3 pathway. Leukemia. 31:1154–1165. 2017. View Article : Google Scholar : PubMed/NCBI

136 

Zhu S, Luo Y, Li K, Mei C, Wang Y, Jiang L, Wang W, Zhang Q, Yang W, Lang W, et al: RIPK3 deficiency blocks R-2-hydroxyglutarate-induced necroptosis in IDH-mutated AML cells. Sci Adv. 10:eadi17822024. View Article : Google Scholar : PubMed/NCBI

137 

Hillert LK, Bettermann-Bethge K, Nimmagadda SC, Fischer T, Naumann M and Lavrik IN: Targeting RIPK1 in AML cells carrying FLT3-ITD. Int J Cancer. 145:1558–1569. 2019. View Article : Google Scholar : PubMed/NCBI

138 

Li J, Liao D, Wang F, Wang Z, Li Y, Xiong Y and Niu T: RIPK1 inhibition enhances the therapeutic efficacy of chidamide in FLT3-ITD positive AML, both in vitro and in vivo. Leuk Lymphoma. 63:1167–1179. 2022. View Article : Google Scholar : PubMed/NCBI

139 

Yue X, Chen Q and He J: Combination strategies to overcome resistance to the BCL2 inhibitor venetoclax in hematologic malignancies. Leuk Lymphoma. 20:5242020.

140 

Culver-Cochran AE, Hassan A, Hueneman K, Choi K, Ma A, VanCauwenbergh B, O'Brien E, Wunderlich M, Perentesis JP and Starczynowski DT: Chemotherapy resistance in acute myeloid leukemia is mediated by A20 suppression of spontaneous necroptosis. Nat Commun. 15:91892024. View Article : Google Scholar : PubMed/NCBI

141 

Liang D, Minikes AM and Jiang X: Ferroptosis at the intersection of lipid metabolism and cellular signaling. Mol Cell. 82:2215–2227. 2022. View Article : Google Scholar : PubMed/NCBI

142 

Chen F, Kang R, Tang D and Liu J: Ferroptosis: principles and significance in health and disease. J Hematol Oncol. 17:412024. View Article : Google Scholar : PubMed/NCBI

143 

Koleini N, Shapiro JS, Geier J and Ardehali H: Ironing out mechanisms of iron homeostasis and disorders of iron deficiency. J Clin Invest. 131:e1486712021. View Article : Google Scholar : PubMed/NCBI

144 

Co HKC, Wu CC, Lee YC and Chen SH: Emergence of large-scale cell death through ferroptotic trigger waves. Nature. 631:654–662. 2024. View Article : Google Scholar : PubMed/NCBI

145 

Jiang X, Stockwell BR and Conrad M: Ferroptosis: Mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 22:266–282. 2021. View Article : Google Scholar : PubMed/NCBI

146 

Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, Cheah JH, Clemons PA, Shamji AF and Clish CB: Regulation of ferroptotic cancer cell death by GPX4. Cell. 156:317–331. 2014. View Article : Google Scholar : PubMed/NCBI

147 

Stockwell BR: Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications. Cell. 185:2401–2421. 2022. View Article : Google Scholar : PubMed/NCBI

148 

Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, Tang PH, Roberts MA, Tong B, Maimone TJ, Zoncu R, et al: The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature. 575:688–692. 2019. View Article : Google Scholar : PubMed/NCBI

149 

Doll S, Freitas FP, Shah R, Aldrovandi M, da Silva MC, Ingold I, Goya Grocin A, Xavier da Silva TN, Panzilius E, Scheel CH, et al: FSP1 is a glutathione-independent ferroptosis suppressor. Nature. 575:693–698. 2019. View Article : Google Scholar : PubMed/NCBI

150 

Reyhani A, McKenzie TG, Fu Q and Qiao GG: Fenton-Chemistry-Mediated Radical Polymerization. Macromol Rapid Commun. 40:19002202019. View Article : Google Scholar : PubMed/NCBI

151 

Dai E, Chen X, Linkermann A, Jiang X, Kang R, Kagan VE, Bayir H, Yang WS, Garcia-Saez AJ, Ioannou MS, et al: A guideline on the molecular ecosystem regulating ferroptosis. Nat Cell Biol. 26:1447–1457. 2024. View Article : Google Scholar : PubMed/NCBI

152 

Ma S, Henson ES, Chen Y and Gibson SB: Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells. Cell Death Dis. 7:e23072016. View Article : Google Scholar : PubMed/NCBI

153 

Bannai S: Exchange of cystine and glutamate across plasma membrane of human fibroblasts. J Biol Chem. 261:2256–2263. 1986. View Article : Google Scholar : PubMed/NCBI

154 

Koppula P, Zhang Y, Zhuang L and Gan B: Amino acid transporter SLC7A11/xCT at the crossroads of regulating redox homeostasis and nutrient dependency of cancer. Cancer Commun (Lond). 38:122018.PubMed/NCBI

155 

Koppula P, Zhuang L and Gan B: Cystine transporter SLC7A11/xCT in cancer: Ferroptosis, nutrient dependency, and cancer therapy. Protein Cell. 12:599–620. 2021. View Article : Google Scholar : PubMed/NCBI

156 

Liu MR, Zhu WT and Pei DS: System Xc-: A key regulatory target of ferroptosis in cancer. Invest New Drugs. 39:1123–1131. 2021. View Article : Google Scholar : PubMed/NCBI

157 

Tang D, Chen X, Kang R and Kroemer G: Ferroptosis: Molecular mechanisms and health implications. Cell Res. 31:107–125. 2021. View Article : Google Scholar : PubMed/NCBI

158 

Scarpellini C, Klejborowska G, Lanthier C, Hassannia B, Vanden Berghe T and Augustyns K: Beyond ferrostatin-1: A comprehensive review of ferroptosis inhibitors. Trends Pharmacol Sci. 44:902–916. 2023. View Article : Google Scholar : PubMed/NCBI

159 

Brown CW, Amante JJ, Chhoy P, Elaimy AL, Liu H, Zhu LJ, Baer CE, Dixon SJ and Mercurio AM: Prominin2 drives ferroptosis resistance by stimulating iron export. Dev Cell. 51:575–586.e4. 2019. View Article : Google Scholar : PubMed/NCBI

160 

Cao M, Li H, Sun D, He S, Yu Y, Li J, Chen H, Shi J, Ren J, Li N and Chen W: Cancer screening in China: The current status, challenges, and suggestions. Cancer Lett. 506:120–127. 2021. View Article : Google Scholar : PubMed/NCBI

161 

Zhang H and Sun C, Sun Q, Li Y, Zhou C and Sun C: Susceptibility of acute myeloid leukemia cells to ferroptosis and evasion strategies. Front Mol Biosci. 10:12757742023. View Article : Google Scholar : PubMed/NCBI

162 

Akiyama H, Zhao R, Ostermann LB, Li Z, Tcheng M, Yazdani SJ, Moayed A, Pryor ML II, Slngh S, Baran N, et al: Mitochondrial regulation of GPX4 inhibition-mediated ferroptosis in acute myeloid leukemia. Leukemia. 38:729–740. 2024. View Article : Google Scholar : PubMed/NCBI

163 

Na X, Li L, Liu D, He J, Zhang L and Zhou Y: Natural products targeting ferroptosis pathways in cancer therapy (Review). Oncol Rep. 52:1232024. View Article : Google Scholar : PubMed/NCBI

164 

Ma C, Wang J, Cui S and Xu R: Crotonoside induces ferroptosis and mitochondrial dysfunction in AML. Eur J Pharmacol. 1002:1778592025. View Article : Google Scholar : PubMed/NCBI

165 

Birsen R, Larrue C, Decroocq J, Johnson N, Guiraud N, Gotanegre M, Cantero-Aguilar L, Grignano E, Huynh T, Fontenay M, et al: APR-246 induces early cell death by ferroptosis in acute myeloid leukemia. Haematologica. 107:403–416. 2022. View Article : Google Scholar : PubMed/NCBI

166 

Lin AY, Rink JS, Yang E, Small S, Gerber JJ, Zak TJ, Altman J, Abaza Y, Platanias LC, Gordon LI and Thaxton CS: Targeting scavenger receptor class B type 1 with a bioinspired ligand induces apoptosis or ferroptosis in AML. Blood Neoplasia. 2:1001222025. View Article : Google Scholar : PubMed/NCBI

167 

Jiang F, Yu WJ, Wang XH, Tang YT, Guo L and Jiao XY: Regulation of hepcidin through GDF-15 in cancer-related anemia. Clin Chim Acta. 428:14–19. 2014. View Article : Google Scholar : PubMed/NCBI

168 

Lu QW and Liao Y: GDF-15 upregulates the SLC7A11/GPX4 signaling axis and promotes mitoxantrone resistance in AML cells. Eur J Med Res. 30:5042025. View Article : Google Scholar : PubMed/NCBI

169 

Yu Y, Meng Y, Xu X, Tong T, He C, Wang L, Wang K, Zhao M, You X, Zhang W, et al: A Ferroptosis-inducing and leukemic Cell-targeting drug nanocarrier formed by Redox-responsive cysteine polymer for acute myeloid leukemia therapy. ACS Nano. 17:3334–3345. 2023. View Article : Google Scholar : PubMed/NCBI

170 

Yu X, Wang Y, Tan J, Li Y, Yang P, Liu X, Lai J, Zhang Y, Cai L, Gu Y, et al: Inhibition of NRF2 enhances the acute myeloid leukemia cell death induced by venetoclax via the ferroptosis pathway. Cell Death Discov. 10:352024. View Article : Google Scholar : PubMed/NCBI

171 

Pardieu B, Pasanisi J, Ling F, Dal Bello R, Penneroux J, Su A, Joudinaud R, Chat L, Wu HC, Duchmann M, et al: Cystine uptake inhibition potentiates front-line therapies in acute myeloid leukemia. Leukemia. 36:1585–1595. 2022. View Article : Google Scholar : PubMed/NCBI

172 

Lyu T, Li X and Song Y: Ferroptosis in acute leukemia. Chin Med J (Engl). 136:886–898. 2023. View Article : Google Scholar : PubMed/NCBI

173 

Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, Rossen J, Joesch-Cohen L, Humeidi R, Spangler RD, et al: Copper induces cell death by targeting lipoylated TCA cycle proteins. Science. 375:1254–1261. 2022. View Article : Google Scholar : PubMed/NCBI

174 

Chen L, Min J and Wang F: Copper homeostasis and cuproptosis in health and disease. Signal Transduct Target Ther. 7:3782022. View Article : Google Scholar : PubMed/NCBI

175 

Tian Z, Jiang S, Zhou J and Zhang W: Copper homeostasis and cuproptosis in mitochondria. Life Sci. 334:1222232023. View Article : Google Scholar : PubMed/NCBI

176 

Tsvetkov P, Detappe A, Cai K, Keys HR, Brune Z, Ying W, Thiru P, Reidy M, Kugener G, Rossen J, et al: Mitochondrial metabolism promotes adaptation to proteotoxic stress. Nat Chem Biol. 15:681–689. 2019. View Article : Google Scholar : PubMed/NCBI

177 

Zheng P, Zhou C, Lu L, Liu B and Ding Y: Elesclomol: A copper ionophore targeting mitochondrial metabolism for cancer therapy. J Exp Clin Cancer Res. 41:2712022. View Article : Google Scholar : PubMed/NCBI

178 

Vo TTT, Peng TY, Nguyen TH, Bui TNH, Wang CS, Lee WJ, Chen YL, Wu YC and Lee IT: The crosstalk between copper-induced oxidative stress and cuproptosis: A novel potential anticancer paradigm. Cell Commun Signal. 22:3532024. View Article : Google Scholar : PubMed/NCBI

179 

Zeng Y, Cao Y, Ren S, Zhang C, Liu J, Liu K, Wang Y, Chen H, Zhou F, Yang X, et al: Responsive ROS-Augmented prodrug hybridization nanoassemblies for multidimensionally synergitic treatment of hepatocellular carcinoma in cascade assaults. Adv Sci (Weinh). 12:e25014202025. View Article : Google Scholar : PubMed/NCBI

180 

Cong Y, Li N, Zhang Z, Shang Y and Zhao H: Cuproptosis: Molecular mechanisms, cancer prognosis, and therapeutic applications. J Transl Med. 23:1042025. View Article : Google Scholar : PubMed/NCBI

181 

Feng Y, Yang Z, Wang J and Zhao H: Cuproptosis: Unveiling a new frontier in cancer biology and therapeutics. Cell Commun Signal. 22:2492024. View Article : Google Scholar : PubMed/NCBI

182 

Kahlson MA and Dixon SJ: Copper-induced cell death. Science. 375:1231–1232. 2022. View Article : Google Scholar : PubMed/NCBI

183 

Wang Y, Zhang L and Zhou F: Cuproptosis: A new form of programmed cell death. Cell Mol Immunol. 19:867–868. 2022. View Article : Google Scholar : PubMed/NCBI

184 

Dreishpoon MB, Bick NR, Petrova B, Warui DM, Cameron A, Booker SJ, Kanarek N, Golub TR and Tsvetkov P: FDX1 regulates cellular protein lipoylation through direct binding to LIAS. J Biol Chem. 299:1050462023. View Article : Google Scholar : PubMed/NCBI

185 

Sun Z, Xu H, Lu G, Yang C, Gao X, Zhang J, Liu X, Chen Y, Wang K, Guo J and Li J: AKT1 Phosphorylates FDX1 to promote cuproptosis resistance in Triple-negative breast cancer. Adv Sci (Weinh). 12:e24081062025. View Article : Google Scholar : PubMed/NCBI

186 

Yip NC, Fombon IS, Liu P, Brown S, Kannappan V, Armesilla AL, Xu B, Cassidy J, Darling JL and Wang W: Disulfiram modulated ROS-MAPK and NFκB pathways and targeted breast cancer cells with cancer stem cell-like properties. Br J Cancer. 104:1564–1574. 2011. View Article : Google Scholar : PubMed/NCBI

187 

Valadbeigi S, Javadian S, Ebrahimi-Rad M, Khatami S and Saghiri R: Assessment of trace elements in serum of acute lymphoblastic and myeloid leukemia patients. Exp Oncol. 41:69–71. 2019. View Article : Google Scholar : PubMed/NCBI

188 

Singh RP, Jeyaraju DV, Voisin V, Hurren R, Xu C, Hawley JR, Barghout SH, Khan DH, Gronda M, Wang X, et al: Disrupting mitochondrial copper distribution inhibits leukemic stem cell Self-renewal. Cell Stem Cell. 26:926–937.e10. 2020. View Article : Google Scholar : PubMed/NCBI

189 

McMahon A, Chen W and Li F: Old wine in new bottles: Advanced drug delivery systems for disulfiram-based cancer therapy. J Control Release. 319:352–359. 2020. View Article : Google Scholar : PubMed/NCBI

190 

Weiser Drozdkova D and Smesny Trtkova K: Possible therapeutic potential of disulfiram for multiple myeloma. Curr Oncol. 28:2087–2096. 2021. View Article : Google Scholar : PubMed/NCBI

191 

Solak K, Mavi A and Yılmaz B: Disulfiram-loaded functionalized magnetic nanoparticles combined with copper and sodium nitroprusside in breast cancer cells. Mater Sci Eng C Mater Biol Appl. 119:1114522021. View Article : Google Scholar : PubMed/NCBI

192 

Solier S, Müller S, Cañeque T, Versini A, Mansart A, Sindikubwabo F, Baron L, Emam L, Gestraud P, Pantoș GD, et al: A druggable copper-signalling pathway that drives inflammation. Nature. 617:386–394. 2023. View Article : Google Scholar : PubMed/NCBI

193 

Karsa M, Xiao L, Ronca E, Bongers A, Spurling D, Karsa A, Cantilena S, Mariana A, Failes TW, Arndt GM, et al: FDA-approved disulfiram as a novel treatment for aggressive leukemia. J Mol Med (Berl). 102:507–519. 2024. View Article : Google Scholar : PubMed/NCBI

194 

Oliveri V: Selective targeting of cancer cells by copper ionophores: An overview. Front Mol Biosci. 9:8418142022. View Article : Google Scholar : PubMed/NCBI

195 

Wang J, Luo C, Shan C, You Q, Lu J, Elf S, Zhou Y, Wen Y, Vinkenborg JL, Fan J, et al: Inhibition of human copper trafficking by a small molecule significantly attenuates cancer cell proliferation. Nat Chem. 7:968–979. 2015. View Article : Google Scholar : PubMed/NCBI

196 

Cao C, Wang T, Luo Y, Zhang Y, Dai YY and Shen Y: Comprehensive analysis of cuproptosis-associated LncRNAs predictive value and related CeRNA network in acute myeloid leukemia. Heliyon. 9:e225322023. View Article : Google Scholar : PubMed/NCBI

197 

Moison C, Gracias D, Schmitt J, Girard S, Spinella JF, Fortier S, Boivin I, Mendoza-Sanchez R, Thavonekham B, MacRae T, et al: SF3B1 mutations provide genetic vulnerability to copper ionophores in human acute myeloid leukemia. Sci Adv. 10:eadl40182024. View Article : Google Scholar : PubMed/NCBI

198 

Zhang J, Zheng Y, Liu H and Liu B: AC024896.1/miR-363-3p axis regulates the malignant progression of acute myeloid leukemia by Cuproptosis-related gene MYO1B. Blood Lymphat Cancer. 14:17–30. 2024.PubMed/NCBI

199 

Huang X, Yan H, Xu Z, Yang B, Luo P and He Q: The inducible role of autophagy in cell death: Emerging evidence and future perspectives. Cell Commun Signal. 23:1512025. View Article : Google Scholar : PubMed/NCBI

200 

Gao W, Wang X, Zhou Y, Wang X and Yu Y: Autophagy, ferroptosis, pyroptosis, and necroptosis in tumor immunotherapy. Signal Transduct Target Ther. 7:1962022. View Article : Google Scholar : PubMed/NCBI

201 

Liu X, Tuerxun H and Zhao Y, Li Y, Wen S, Li X and Zhao Y: Crosstalk between ferroptosis and autophagy: Broaden horizons of cancer therapy. J Transl Med. 23:182025. View Article : Google Scholar : PubMed/NCBI

202 

Newton K, Wickliffe KE, Maltzman A, Dugger DL, Webster JD, Guo H and Dixit VM: Caspase cleavage of RIPK3 after Asp333 is dispensable for mouse embryogenesis. Cell Death Differ. 31:254–262. 2024. View Article : Google Scholar : PubMed/NCBI

203 

Fritsch M, Günther SD, Schwarzer R, Albert MC, Schorn F, Werthenbach JP, Schiffmann LM, Stair N, Stocks H, Seeger JM, et al: Caspase-8 is the molecular switch for apoptosis, necroptosis and pyroptosis. Nature. 575:683–687. 2019. View Article : Google Scholar : PubMed/NCBI

204 

Qiu Y, Hüther JA, Wank B, Rath A, Tykwe R, Aldrovandi M, Henkelmann B, Mergner J, Nakamura T and Laschat S: Interplay of ferroptotic and apoptotic cell death and its modulation by BH3-mimetics. Cell Death Differ. Apr 29–2025.doi: 10.1038/s41418-025-01514-7 (Epub ahead of print). View Article : Google Scholar

205 

Xu R, Wang W and Zhang W: Ferroptosis and the bidirectional regulatory factor p53. Cell Death Discov. 9:1972023. View Article : Google Scholar : PubMed/NCBI

206 

Gao J, Xiong A, Liu J, Li X, Wang J, Zhang L, Liu Y, Xiong Y, Li G and He X: PANoptosis: Bridging apoptosis, pyroptosis, and necroptosis in cancer progression and treatment. Cancer Gene Ther. 31:970–983. 2024. View Article : Google Scholar : PubMed/NCBI

207 

Qu M, Wang Y, Qiu Z, Zhu S, Guo K, Chen W, Miao C and Zhang H: Necroptosis, pyroptosis, ferroptosis in sepsis and treatment. Shock. 57:161–171. 2022. View Article : Google Scholar : PubMed/NCBI

208 

Zhang C and Liu N: Ferroptosis, necroptosis, and pyroptosis in the occurrence and development of ovarian cancer. Front Immunol. 13:9200592022. View Article : Google Scholar : PubMed/NCBI

209 

Chen Y, Fang ZM, Yi X, Wei X and Jiang DS: The interaction between ferroptosis and inflammatory signaling pathways. Cell Death Dis. 14:2052023. View Article : Google Scholar : PubMed/NCBI

210 

Li Y, Du Y, Zhou Y, Chen Q, Luo Z, Ren Y, Chen X and Chen G: Iron and copper: Critical executioners of ferroptosis, cuproptosis and other forms of cell death. Cell Commun Signal. 21:3272023. View Article : Google Scholar : PubMed/NCBI

211 

Hu X, Li L, Nkwocha J, Kmieciak M, Shang S, Cowart LA, Yue Y, Horimoto K, Hawkridge A, Rijal A, et al: Src inhibition potentiates MCL-1 antagonist activity in acute myeloid leukemia. Signal Transduct Target Ther. 10:502025. View Article : Google Scholar : PubMed/NCBI

212 

Ong F, Kim K and Konopleva MY: Venetoclax resistance: Mechanistic insights and future strategies. Cancer Drug Resist. 5:380–400. 2022. View Article : Google Scholar : PubMed/NCBI

213 

Lim J and Murthy A: Targeting autophagy to treat cancer: Challenges and opportunities. Front Pharmacol. 11:5903442020. View Article : Google Scholar : PubMed/NCBI

214 

Hassani S, Ghaffari P, Chahardouli B, Alimoghaddam K, Ghavamzadeh A, Alizadeh S and Ghaffari SH: Disulfiram/copper causes ROS levels alteration, cell cycle inhibition, and apoptosis in acute myeloid leukaemia cell lines with modulation in the expression of related genes. Biomed Pharmacother. 99:561–569. 2018. View Article : Google Scholar : PubMed/NCBI

215 

Song F, Lin S, Xu T, Yang C, Sharavyn B, Naranmandura H, Zhang Y and Huang P: Targeted therapy in acute myeloid leukemia: Resistance and overcoming strategy. Drug Resist Updat. 83:1012862025. View Article : Google Scholar : PubMed/NCBI

216 

D'Amico M and De Amicis F: Challenges of regulated cell death: Implications for therapy resistance in cancer. Cells. 13:10832024. View Article : Google Scholar : PubMed/NCBI

217 

Tong X, Tang R, Xiao M, Xu J, Wang W, Zhang B, Liu J, Yu X and Shi S: Targeting cell death pathways for cancer therapy: Recent developments in necroptosis, pyroptosis, ferroptosis, and cuproptosis research. J Hematol Oncol. 15:1742022. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Jianati R, Chen H, Yang X, Yan L, Guo Y, Fan C, Hao X, Zhu G and Shi Z: Targeting cell death pathways in acute myeloid leukemia: Molecular mechanisms and clinical implications (Review). Oncol Rep 54: 172, 2025.
APA
Jianati, R., Chen, H., Yang, X., Yan, L., Guo, Y., Fan, C. ... Shi, Z. (2025). Targeting cell death pathways in acute myeloid leukemia: Molecular mechanisms and clinical implications (Review). Oncology Reports, 54, 172. https://doi.org/10.3892/or.2025.9005
MLA
Jianati, R., Chen, H., Yang, X., Yan, L., Guo, Y., Fan, C., Hao, X., Zhu, G., Shi, Z."Targeting cell death pathways in acute myeloid leukemia: Molecular mechanisms and clinical implications (Review)". Oncology Reports 54.6 (2025): 172.
Chicago
Jianati, R., Chen, H., Yang, X., Yan, L., Guo, Y., Fan, C., Hao, X., Zhu, G., Shi, Z."Targeting cell death pathways in acute myeloid leukemia: Molecular mechanisms and clinical implications (Review)". Oncology Reports 54, no. 6 (2025): 172. https://doi.org/10.3892/or.2025.9005
Copy and paste a formatted citation
x
Spandidos Publications style
Jianati R, Chen H, Yang X, Yan L, Guo Y, Fan C, Hao X, Zhu G and Shi Z: Targeting cell death pathways in acute myeloid leukemia: Molecular mechanisms and clinical implications (Review). Oncol Rep 54: 172, 2025.
APA
Jianati, R., Chen, H., Yang, X., Yan, L., Guo, Y., Fan, C. ... Shi, Z. (2025). Targeting cell death pathways in acute myeloid leukemia: Molecular mechanisms and clinical implications (Review). Oncology Reports, 54, 172. https://doi.org/10.3892/or.2025.9005
MLA
Jianati, R., Chen, H., Yang, X., Yan, L., Guo, Y., Fan, C., Hao, X., Zhu, G., Shi, Z."Targeting cell death pathways in acute myeloid leukemia: Molecular mechanisms and clinical implications (Review)". Oncology Reports 54.6 (2025): 172.
Chicago
Jianati, R., Chen, H., Yang, X., Yan, L., Guo, Y., Fan, C., Hao, X., Zhu, G., Shi, Z."Targeting cell death pathways in acute myeloid leukemia: Molecular mechanisms and clinical implications (Review)". Oncology Reports 54, no. 6 (2025): 172. https://doi.org/10.3892/or.2025.9005
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team