You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
Pollyea DA, Altman JK, Assi R, Bixby D, Fathi AT, Foran JM, Gojo I, Hall AC, Jonas BA, Kishtagari A, et al: Acute myeloid leukemia, version 3.2023, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 21:503–513. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Moore CG, Stein A, Fathi AT and Pullarkat V: Treatment of Relapsed/Refractory AML-Novel treatment options including immunotherapy. Am J Hematol. 100:23–37. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Sasaki K, Ravandi F, Kadia TM, DiNardo CD, Short NJ, Borthakur G, Jabbour E and Kantarjian HM: De novo acute myeloid leukemia: A population-based study of outcome in the United States based on the Surveillance, Epidemiology, and End Results (SEER) database, 1980 to 2017. Cancer. 127:2049–2061. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Halik A, Tilgner M, Silva P, Estrada N, Altwasser R, Jahn E, Heuser M, Hou HA, Pratcorona M, Hills RK, et al: Genomic characterization of AML with aberrations of chromosome 7: A multinational cohort of 519 patients. J Hematol Oncol. 17:702024. View Article : Google Scholar : PubMed/NCBI | |
|
Kantarjian H, Borthakur G, Daver N, DiNardo CD, Issa G, Jabbour E, Kadia T, Sasaki K, Short NJ, Yilmaz M and Ravandi F: Current status and research directions in acute myeloid leukemia. Blood Cancer J. 14:1632024. View Article : Google Scholar : PubMed/NCBI | |
|
Lee E, Song CH, Bae SJ, Ha KT and Karki R: Regulated cell death pathways and their roles in homeostasis, infection, inflammation, and tumorigenesis. Exp Mol Med. 55:1632–1643. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Peng J, Zou M, Zhang Q, Liu D, Chen S, Fang R, Gao Y, Yan X and Hao L: Symphony of regulated cell death: Unveiling therapeutic horizons in sarcopenia. Metabolism. 172:1563592025. View Article : Google Scholar : PubMed/NCBI | |
|
Chen C, Wang J, Zhang S, Zhu X, Hu J, Liu C and Liu L: Epigenetic regulation of diverse regulated cell death modalities in cardiovascular disease: Insights into necroptosis, pyroptosis, ferroptosis, and cuproptosis. Redox Biol. 76:1033212024. View Article : Google Scholar : PubMed/NCBI | |
|
Sorokin O, Hause F, Wedler A, Alakhras T, Bauchspiess T, Dietrich A, Günther WF, Guha C, Obika KB, Kraft J, et al: Comprehensive analysis of regulated cell death pathways: Intrinsic disorder, protein-protein interactions, and cross-pathway communication. Apoptosis. 30:2110–2162. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Peng F, Liao M, Qin R, Zhu S, Peng C, Fu L, Chen Y and Han B: Regulated cell death (RCD) in cancer: Key pathways and targeted therapies. Signal Transduct Target Ther. 7:2862022. View Article : Google Scholar : PubMed/NCBI | |
|
Seo W, Silwal P, Song IC and Jo EK: The dual role of autophagy in acute myeloid leukemia. J Hematol Oncol. 15:512022. View Article : Google Scholar : PubMed/NCBI | |
|
Ren J, Tao Y, Peng M, Xiao Q, Jing Y, Huang J, Yang J, Lin C, Sun M, Lei L, et al: Targeted activation of GPER enhances the efficacy of venetoclax by boosting leukemic pyroptosis and CD8+ T cell immune function in acute myeloid leukemia. Cell Death Dis. 13:9152022. View Article : Google Scholar : PubMed/NCBI | |
|
Chan FK: RIPK3 Slams the Brake on Leukemogenesis. Cancer Cell. 30:7–9. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Ye F, Zhang W, Fan C, Dong J, Peng M, Deng W, Zhang H and Yang L: Antileukemic effect of venetoclax and hypomethylating agents via caspase-3/GSDME-mediated pyroptosis. J Transl Med. 21:6062023. View Article : Google Scholar : PubMed/NCBI | |
|
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al: Ferroptosis: An Iron-dependent form of nonapoptotic cell death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Xu B, Wang S, Li R, Chen K, He L, Deng M, Kannappan V, Zha J, Dong H and Wang W: Disulfiram/copper selectively eradicates AML leukemia stem cells in vitro and in vivo by simultaneous induction of ROS-JNK and inhibition of NF-κB and Nrf2. Cell Death Dis. 8:e27972017. View Article : Google Scholar : PubMed/NCBI | |
|
Guo Z, Liu Y, Chen D, Sun Y, Li D, Meng Y, Zhou Q, Zeng F, Deng G and Chen X: Targeting regulated cell death: Apoptosis, necroptosis, pyroptosis, ferroptosis, and cuproptosis in anticancer immunity. J Transl Int Med. 13:10–32. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Garciaz S, Miller T, Collette Y and Vey N: Targeting regulated cell death pathways in acute myeloid leukemia. Cancer Drug Resist. 6:151–168. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
He R, Liu Y, Fu W, He X, Liu S, Xiao D and Tao Y: Mechanisms and Cross-talk of regulated cell death and their epigenetic modifications in tumor progression. Mol Cancer. 23:2672024. View Article : Google Scholar : PubMed/NCBI | |
|
Dikic I and Elazar Z: Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol. 19:349–364. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Kaushik S and Cuervo AM: The coming of age of Chaperone-mediated autophagy. Nat Rev Mol Cell Biol. 19:365–381. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Yamamoto H and Matsui T: Molecular mechanisms of macroautophagy, microautophagy, and Chaperone-mediated autophagy. J Nippon Med Sch. 91:2–9. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Niu X, You Q, Hou K, Tian Y, Wei P, Zhu Y, Gao B, Ashrafizadeh M, Aref AR, Kalbasi A, et al: Autophagy in cancer development, immune evasion, and drug resistance. Drug Resist Updat. 78:1011702025. View Article : Google Scholar : PubMed/NCBI | |
|
Debnath J, Gammoh N and Ryan KM: Autophagy and autophagy-related pathways in cancer. Nat Rev Mol Cell Biol. 24:560–575. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Sankar DS, Kaeser-Pebernard S, Vionnet C, Favre S, de Oliveira Marchioro L, Pillet B, Zhou J, Stumpe M, Kovacs WJ, Kressler D, et al: The ULK1 effector BAG2 regulates autophagy initiation by modulating AMBRA1 localization. Cell Rep. 43:1146892024. View Article : Google Scholar : PubMed/NCBI | |
|
Xi H, Wang S, Wang B, Hong X, Liu X, Li M, Shen R and Dong Q: The role of interaction between autophagy and apoptosis in tumorigenesis (Review). Oncol Reps. 48:2082022. View Article : Google Scholar | |
|
Cook ASI, Chen M, Nguyen TN, Cabezudo AC, Khuu G, Rao S, Garcia SN, Yang M, Iavarone AT, Ren X, et al: Structural pathway for PI3-kinase regulation by VPS15 in autophagy. Science. 388:eadl37872025. View Article : Google Scholar : PubMed/NCBI | |
|
Nascimbeni AC, Codogno P and Morel E: Local detection of PtdIns3P at autophagosome biogenesis membrane platforms. Autophagy. 13:1602–1612. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Wani WY, Boyer-Guittaut M, Dodson M, Chatham J, Darley-Usmar V and Zhang J: Regulation of autophagy by protein post-translational modification. Lab Invest. 95:14–25. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Huang R, Xu Y, Wan W, Shou X, Qian J, You Z, Liu B, Chang C, Zhou T, Lippincott-Schwartz J and Liu W: Deacetylation of nuclear LC3 drives autophagy initiation under starvation. Mol Cell. 57:456–466. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Ichimura Y, Kirisako T, Takao T, Satomi Y, Shimonishi Y, Ishihara N, Mizushima N, Tanida I, Kominami E, Ohsumi M, et al: A ubiquitin-like system mediates protein lipidation. Nature. 408:488–492. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Rogov V, Dötsch V, Johansen T and Kirkin V: Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Mol Cell. 53:167–178. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Kimmelman AC and White E: Autophagy and tumor metabolism. Cell Metab. 25:1037–1043. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Santos de Macedo BG, Albuquerque de Melo M, Pereira-Martins DA, Machado-Neto JA and Traina F: An updated outlook on autophagy mechanism and how it supports acute myeloid leukemia maintenance. Biochim Biophys Acta Rev Cancer. 1879:1892142024. View Article : Google Scholar : PubMed/NCBI | |
|
Nomura N, Ito C, Ooshio T, Tadokoro Y, Kohno S, Ueno M, Kobayashi M, Kasahara A, Takase Y, Kurayoshi K, et al: Essential role of autophagy in protecting neonatal haematopoietic stem cells from oxidative stress in a p62-independent manner. Sci Rep. 11:16662021. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Y, Luo X, Zou Z and Liang Y: The role of reactive oxygen species in tumor treatment and its impact on bone marrow hematopoiesis. Curr Drug Targets. 21:477–498. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Sharma P, Piya S, Ma H, Baran N, Anna Zal M, Hindley CJ, Dao K, Sims M, Zal T, Ruvolo V, et al: ERK1/2 inhibition overcomes resistance in acute myeloid leukemia (AML) and alters mitochondrial dynamics. Blood. 138:33382021. View Article : Google Scholar | |
|
Folkerts H, Wierenga AT, van den Heuvel FA, Woldhuis RR, Kluit DS, Jaques J, Schuringa JJ and Vellenga E: Elevated VMP1 expression in acute myeloid leukemia amplifies autophagy and is protective against venetoclax-induced apoptosis. Cell Death Dis. 10:4212019. View Article : Google Scholar : PubMed/NCBI | |
|
Khan A, Singh VK, Thakral D and Gupta R: Autophagy in acute myeloid leukemia: A paradoxical role in chemoresistance. Clin Transl Oncol. 24:1459–1469. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Heydt Q, Larrue C, Saland E, Bertoli S, Sarry JE, Besson A, Manenti S, Joffre C and Mansat-De Mas V: Oncogenic FLT3-ITD supports autophagy via ATF4 in acute myeloid leukemia. Oncogene. 37:787–797. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Omori I, Yamaguchi H, Miyake K, Miyake N, Kitano T and Inokuchi K: D816V mutation in the KIT gene activation loop has greater cell-proliferative and anti-apoptotic ability than N822K mutation in core-binding factor acute myeloid leukemia. Exp Hematol. 52:56–64.e54. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Larrue C, Heydt Q, Saland E, Boutzen H, Kaoma T, Sarry JE, Joffre C and Récher C: Oncogenic KIT mutations induce STAT3-dependent autophagy to support cell proliferation in acute myeloid leukemia. Oncogenesis. 8:392019. View Article : Google Scholar : PubMed/NCBI | |
|
Zou Q, Tan S, Yang Z, Zhan Q, Jin H, Xian J, Zhang S, Yang L, Wang L and Zhang L: NPM1 mutant mediated PML delocalization and stabilization enhances autophagy and cell survival in leukemic cells. Theranostics. 7:2289–2304. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Folkerts H, Hilgendorf S, Wierenga ATJ, Jaques J, Mulder AB, Coffer PJ, Schuringa JJ and Vellenga E: Inhibition of autophagy as a treatment strategy for p53 wild-type acute myeloid leukemia. Cell Death Dis. 8:e29272017. View Article : Google Scholar : PubMed/NCBI | |
|
Yang Y, Pu J and Yang Y: Glycolysis and chemoresistance in acute myeloid leukemia. Heliyon. 10:e357212024. View Article : Google Scholar : PubMed/NCBI | |
|
Wang YH, Israelsen WJ, Lee D, Yu VWC, Jeanson NT, Clish CB, Cantley LC, Vander Heiden MG and Scadden DT: Cell-state-specific metabolic dependency in hematopoiesis and leukemogenesis. Cell. 158:1309–1323. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Chen S, Tao Y, Wang Q, Ren J, Jing Y, Huang J, Zhang L and Li R: Glucose Induced-AKT/mTOR activation accelerates glycolysis and promotes cell survival in acute myeloid leukemia. Leuk Res. 128:1070592023. View Article : Google Scholar : PubMed/NCBI | |
|
Stevens BM, Jones CL, Pollyea DA, Culp-Hill R, D'Alessandro A, Winters A, Krug A, Abbott D, Goosman M, Pei S, et al: Fatty acid metabolism underlies venetoclax resistance in acute myeloid leukemia stem cells. Nat Cancer. 1:1176–1187. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Carter JL, Su Y, Qiao X, Zhao J, Wang G, Howard M, Edwards H, Bao X, Li J, Hüttemann M, et al: Acquired resistance to venetoclax plus azacitidine in acute myeloid leukemia: In vitro models and mechanisms. Biochem Pharmacol. 216:1157592023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang HB, Sun ZK, Zhong FM, Yao FY, Liu J, Zhang J, Zhang N, Lin J, Li SQ, Li MY, et al: A novel fatty acid metabolism-related signature identifies features of the tumor microenvironment and predicts clinical outcome in acute myeloid leukemia. Lipids Health Dis. 21:792022. View Article : Google Scholar : PubMed/NCBI | |
|
Tcheng M, Roma A, Ahmed N, Smith RW, Jayanth P, Minden MD, Schimmer AD, Hess DA, Hope K, Rea KA, et al: Very long chain fatty acid metabolism is required in acute myeloid leukemia. Blood. 137:3518–3532. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao Y, Guo H, Niu L and Zhao J: Metabolic pathways and chemotherapy resistance in acute myeloid leukemia (AML): Insights into Enoyl-CoA hydratase domain-containing protein 3 (ECHDC3) as a potential therapeutic target. Cancer Pathogenesis and Therapy; 2025, View Article : Google Scholar | |
|
Du W, Xu A, Huang Y, Cao J, Zhu H, Yang B, Shao X, He Q and Ying M: The role of autophagy in targeted therapy for acute myeloid leukemia. Autophagy. 17:2665–2679. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Li X, Qian Q, Li J, Zhang L, Wang L, Huang D, Xu Q and Chen W: The RNA-binding protein CELF1 targets ATG5 to regulate autophagy and promote drug resistance in acute myeloid leukemia. Cell Death Dis. 16:5992025. View Article : Google Scholar : PubMed/NCBI | |
|
Herschbein L and Liesveld JL: Dueling for dual inhibition: Means to enhance effectiveness of PI3K/Akt/mTOR inhibitors in AML. Blood Rev. 32:235–248. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Koschade SE, Klann K, Shaid S, Vick B, Stratmann JA, Thölken M, Meyer LM, Nguyen TD, Campe J, Moser LM, et al: Translatome proteomics identifies autophagy as a resistance mechanism to on-target FLT3 inhibitors in acute myeloid leukemia. Leukemia. 36:2396–2407. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Cao Y, Wang Y, Chen Y, Zhang X, Zuo Y, Ge X, Sun C, Ren B, Liu Y, Wang M and Lu J: Voacamine initiates the PI3K/mTOR/Beclin1 pathway to induce autophagy and potentiate apoptosis in acute myeloid leukemia. Phytomedicine. 143:1568592025. View Article : Google Scholar : PubMed/NCBI | |
|
Nössing C and Ryan KM: 50 years on and still very much alive: ‘Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics’. Br J Cancer. 128:426–431. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Yoon JH and Gores GJ: Death receptor-mediated apoptosis and the liver. J Hepatol. 37:400–410. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
O'Neill KL, Huang K, Zhang J, Chen Y and Luo X: Inactivation of prosurvival Bcl-2 proteins activates Bax/Bak through the outer mitochondrial membrane. Genes Dev. 30:973–988. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Xiong S, Mu T, Wang G and Jiang X: Mitochondria-mediated apoptosis in mammals. Protein Cell. 5:737–749. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Croce CM, Vaux D, Strasser A, Opferman JT, Czabotar PE and Fesik SW: The BCL-2 protein family: from discovery to drug development. Cell Death Differ. 32:1369–1381. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Reyna DE, Garner TP, Lopez A, Kopp F, Choudhary GS, Sridharan A, Narayanagari SR, Mitchell K, Dong B, Bartholdy BA, et al: Direct activation of BAX by BTSA1 overcomes apoptosis resistance in acute myeloid leukemia. Cancer Cell. 32:490–505.e10. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Singh G, Guibao CD, Seetharaman J, Aggarwal A, Grace CR, McNamara DE, Vaithiyalingam S, Waddell MB and Moldoveanu T: Structural basis of BAK activation in mitochondrial apoptosis initiation. Nat Commun. 13:2502022. View Article : Google Scholar : PubMed/NCBI | |
|
Tait SW and Green DR: Mitochondria and cell death: Outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol. 11:621–632. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Cain K, Bratton SB and Cohen GM: The Apaf-1 apoptosome: A large caspase-activating complex. Biochimie. 84:203–214. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Kashyap D, Garg VK and Goel N: Intrinsic and extrinsic pathways of apoptosis: Role in cancer development and prognosis. Adv Protein Chem Struct Biol. 125:73–120. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng L, Yao Y and Lenardo MJ: Death receptor 5 rises to the occasion. Cell Res. 33:199–200. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Helmke C, Raab M, Rödel F, Matthess Y, Oellerich T, Mandal R, Sanhaji M, Urlaub H, Rödel C, Becker S and Strebhardt K: Ligand stimulation of CD95 induces activation of Plk3 followed by phosphorylation of caspase-8. Cell Res. 26:914–934. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Huang K, Zhang J, O'Neill KL, Gurumurthy CB, Quadros RM, Tu Y and Luo X: Cleavage by Caspase 8 and mitochondrial membrane association activate the BH3-only protein bid during TRAIL-induced apoptosis. J Biol Chem. 291:11843–11851. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
D'Arcy MS: Cell death: A review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int. 43:582–592. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Kantari C and Walczak H: Caspase-8 and bid: Caught in the act between death receptors and mitochondria. Biochim Biophys Acta. 1813:558–563. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Kim WS, Lee KS, Kim JH, Kim CK, Lee G, Choe J, Won MH, Kim TH, Jeoung D, Lee H, et al: The caspase-8/Bid/cytochrome c axis links signals from death receptors to mitochondrial reactive oxygen species production. Free Radic Biol Med. 112:567–577. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Moyer A, Tanaka K and Cheng EH: Apoptosis in cancer biology and therapy. Annu Rev Pathol. 20:303–328. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Pfeffer CM and Singh ATK: Apoptosis: A target for anticancer therapy. Int J Mol Sci. 19:4482018. View Article : Google Scholar : PubMed/NCBI | |
|
Campbell KJ and Tait SWG: Targeting BCL-2 regulated apoptosis in cancer. Open Biol. 8:1800022018. View Article : Google Scholar : PubMed/NCBI | |
|
Ashkenazi A, Fairbrother WJ, Leverson JD and Souers AJ: From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors. Nat Rev Drug Discov. 16:273–284. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Konopleva M, Pollyea DA, Potluri J, Chyla B, Hogdal L, Busman T, McKeegan E, Salem AH, Zhu M, Ricker JL, et al: Efficacy and biological correlates of response in a phase II study of venetoclax monotherapy in patients with acute myelogenous leukemia. Cancer Discov. 6:1106–1117. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Wei AH, Strickland SA Jr, Hou JZ, Fiedler W, Lin TL, Walter RB, Enjeti A, Tiong IS, Savona M, Lee S, et al: Venetoclax combined with Low-dose cytarabine for previously untreated patients with acute myeloid leukemia: Results from a Phase Ib/II study. J Clin Oncol. 37:1277–1284. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
DiNardo CD, Jonas BA, Pullarkat V, Thirman MJ, Garcia JS, Wei AH, Konopleva M, Döhner H, Letai A, Fenaux P, et al: Azacitidine and venetoclax in previously untreated acute myeloid leukemia. N Engl J Med. 383:617–629. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Jiao CQ, Hu C, Sun MH, Li Y, Wu C, Xu F, Zhang L, Huang FR, Zhou JJ, Dai JF, et al: Targeting METTL3 mitigates venetoclax resistance via proteasome-mediated modulation of MCL1 in acute myeloid leukemia. Cell Death Dis. 16:2332025. View Article : Google Scholar : PubMed/NCBI | |
|
Chai J, Du C, Wu JW, Kyin S, Wang X and Shi Y: Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature. 406:855–862. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Carter BZ, Mak PY, Mak DH, Shi Y, Qiu Y, Bogenberger JM, Mu H, Tibes R, Yao H, Coombes KR, et al: Synergistic targeting of AML stem/progenitor cells with IAP antagonist birinapant and demethylating agents. J Natl Cancer Inst. 106:djt4402014. View Article : Google Scholar : PubMed/NCBI | |
|
Gencel-Augusto J and Lozano G: Targeted degradation of mutant p53 reverses the Pro-oncogenic Dominant-negative effect. Cancer Res. 85:1955–1956. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Tuval A, Strandgren C, Heldin A, Palomar-Siles M and Wiman KG: Pharmacological reactivation of p53 in the era of precision anticancer medicine. Nat Rev Clin Oncol. 21:106–120. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Napolitano R, De Matteis S, Carloni S, Bruno S, Abbati G, Capelli L, Ghetti M, Bochicchio MT, Liverani C, Mercatali L, et al: Kevetrin induces apoptosis in TP53 wild-type and mutant acute myeloid leukemia cells. Oncol Rep. 44:1561–1573. 2020.PubMed/NCBI | |
|
Fulda S: Targeting apoptosis for anticancer therapy. Semin Cancer Biol. 31:84–88. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Chow LQ, Eckhardt SG, Gustafson DL, Langer CJ, Camidge DR, Padavic K, Gore L, Smith M, Chow LQ, von Mehren M, et al: HGS-ETR1, an antibody targeting TRAIL-R1, in combination with paclitaxel and carboplatin in patients with advanced solid malignancies: Results of a phase 1 and PK study. J Clin Oncol. 24:25152006. View Article : Google Scholar | |
|
You R, Hou D, Wang B, Liu J, Wang X, Xiao Q, Pan Z, Li D, Feng X, Kang L, et al: Bone marrow microenvironment drives AML cell OXPHOS addiction and AMPK inhibition to resist chemotherapy. J Leukoc Biol. 112:299–311. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Cheung HL, Wong YH, Li YY, Yang X, Ko LH, Tan Kabigting JE, Chan KC, Leung AYH and Chan BP: Microenvironment matters: In vitro 3D bone marrow niches differentially modulate survival, phenotype and drug responses of acute myeloid leukemia (AML) cells. Biomaterials. 312:1227192025. View Article : Google Scholar : PubMed/NCBI | |
|
Zou J, Zheng Y, Huang Y, Tang D, Kang R and Chen R: The versatile gasdermin family: Their function and roles in diseases. Front Immunol. 12:7515332021. View Article : Google Scholar : PubMed/NCBI | |
|
Broz P, Pelegrín P and Shao F: The gasdermins, a protein family executing cell death and inflammation. Nat Rev Immunol. 20:143–157. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Tamura M, Tanaka S, Fujii T, Aoki A, Komiyama H, Ezawa K, Sumiyama K, Sagai T and Shiroishi T: Members of a novel gene family, Gsdm, are expressed exclusively in the epithelium of the skin and gastrointestinal tract in a highly Tissue-specific manner. Genomics. 89:618–629. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Wang S, Yuan YH, Chen NH and Wang HB: The mechanisms of NLRP3 inflammasome/pyroptosis activation and their role in Parkinson's disease. Int Immunopharmacol. 67:458–464. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Miao EA, Rajan JV and Aderem A: Caspase-1-induced pyroptotic cell death. Immunol Rev. 243:206–214. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, Zhuang Y, Cai T, Wang F and Shao F: Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 526:660–665. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Yu P, Zhang X, Liu N, Tang L, Peng C and Chen X: Pyroptosis: Mechanisms and diseases. Signal Transduct Target Ther. 6:1282021. View Article : Google Scholar : PubMed/NCBI | |
|
Ding J, Wang K, Liu W, She Y, Sun Q, Shi J, Sun H, Wang DC and Shao F: Pore-forming activity and structural autoinhibition of the gasdermin family. Nature. 535:111–116. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Garlanda C, Dinarello CA and Mantovani A: The interleukin-1 family: Back to the future. Immunity. 39:1003–1018. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Rao Z, Zhu Y, Yang P, Chen Z, Xia Y, Qiao C, Liu W, Deng H, Li J, Ning P and Wang Z: Pyroptosis in inflammatory diseases and cancer. Theranostics. 12:4310–4329. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Kayagaki N, Stowe IB, Lee BL, O'Rourke K, Anderson K, Warming S, Cuellar T, Haley B, Roose-Girma M, Phung QT, et al: Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature. 526:666–671. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Yang J, Zhao Y and Shao F: Non-canonical activation of inflammatory caspases by cytosolic LPS in innate immunity. Curr Opin Immunol. 32:78–83. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Shi J, Zhao Y, Wang Y, Gao W, Ding J, Li P, Hu L and Shao F: Inflammatory caspases are innate immune receptors for intracellular LPS. Nature. 514:187–192. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Hagar JA, Powell DA, Aachoui Y, Ernst RK and Miao EA: Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science. 341:1250–1253. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Pan R, Ouyang Y, Gu W, Xiao T, Yang H, Tang L, Wang H, Xiang B and Chen P: Pyroptosis in health and disease: Mechanisms, regulation and clinical perspective. Signal Transduct Target Ther. 9:2452024. View Article : Google Scholar : PubMed/NCBI | |
|
Kayagaki N, Warming S, Lamkanfi M, Vande Walle L, Louie S, Dong J, Newton K, Qu Y, Liu J, Heldens S, et al: Non-canonical inflammasome activation targets caspase-11. Nature. 479:117–121. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Shi X, Sun Q, Hou Y, Zeng H, Cao Y, Dong M, Ding J and Shao F: Recognition and maturation of IL-18 by caspase-4 noncanonical inflammasome. Nature. 624:442–450. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Gao W, Shi X, Ding J, Liu W, He H, Wang K and Shao F: Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature. 547:99–103. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Oltra SS, Colomo S, Sin L, Pérez-López M, Lázaro S, Molina-Crespo A, Choi KH, Ros-Pardo D, Martínez L, Morales S, et al: Distinct GSDMB protein isoforms and protease cleavage processes differentially control pyroptotic cell death and mitochondrial damage in cancer cells. Cell Death Differ. 30:1366–1381. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Wang S, Chang CW, Huang J, Zeng S, Zhang X, Hung MC and Hou J: Gasdermin C sensitizes tumor cells to PARP inhibitor therapy in cancer models. J Clin Invest. 134:e1668412024. View Article : Google Scholar : PubMed/NCBI | |
|
Alves-Hanna FS, Crespo-Neto JA, Nogueira GM, Pereira DS, Lima AB, Ribeiro TLP, Santos VGR, Fonseca JRF, Magalhães-Gama F, Sadahiro A and Costa AG: Insights regarding the role of inflammasomes in leukemia: What Do We Know? J Immunol Res. 2023:55844922023. View Article : Google Scholar : PubMed/NCBI | |
|
Johnson DC, Taabazuing CY, Okondo MC, Chui AJ, Rao SD, Brown FC, Reed C, Peguero E, de Stanchina E, Kentsis A and Bachovchin DA: DPP8/DPP9 inhibitor-induced pyroptosis for treatment of acute myeloid leukemia. Nat Med. 24:1151–1156. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Deng S, Pan Y, An N, Chen F, Chen H, Wang H, Xu X, Liu R, Yang L, Wang X, et al: Downregulation of RCN1 promotes pyroptosis in acute myeloid leukemia cells. Mol Oncol. 17:2584–2602. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Askmyr M, Ågerstam H, Hansen N, Gordon S, Arvanitakis A, Rissler M, Juliusson G, Richter J, Järås M and Fioretos T: Selective killing of candidate AML stem cells by antibody targeting of IL1RAP. Blood. 121:3709–3713. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Ågerstam H, Karlsson C, Hansen N, Sandén C, Askmyr M, von Palffy S, Högberg C, Rissler M, Wunderlich M, Juliusson G, et al: Antibodies targeting human IL1RAP (IL1R3) show therapeutic effects in xenograft models of acute myeloid leukemia. Proc Natl Acad Sci USA. 112:10786–10791. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Sun X, Yuan S, Hou S, Guo T, Chu Y, Pang T, Luo HR, Yuan W and Wang X: Interleukin-1β inhibits normal hematopoietic expansion and promotes acute myeloid leukemia progression via the bone marrow niche. Cytotherapy. 22:127–134. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Wong J, Tran LT, Magun EA, Magun BE and Wood LJ: Production of IL-1β by bone marrow-derived macrophages in response to chemotherapeutic drugs: Synergistic effects of doxorubicin and vincristine. Cancer Biol Ther. 15:1395–1403. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Yan J, Wan P, Choksi S and Liu ZG: Necroptosis and tumor progression. Trends Cancer. 8:21–27. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Liu X, Miao M, Sun J, Wu J and Qin X: PANoptosis: A potential new target for programmed cell death in breast cancer treatment and prognosis. Apoptosis. 29:277–288. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
He S, Wang L, Miao L, Wang T, Du F, Zhao L and Wang X: Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell. 137:1100–1111. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Holler N, Zaru R, Micheau O, Thome M, Attinger A, Valitutti S, Bodmer JL, Schneider P, Seed B and Tschopp J: Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol. 1:489–495. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Mandal R, Barrón JC, Kostova I, Becker S and Strebhardt K: Caspase-8: The double-edged sword. Biochim Biophys Acta Rev Cancer. 1873:1883572020. View Article : Google Scholar : PubMed/NCBI | |
|
Kaiser WJ, Sridharan H, Huang C, Mandal P, Upton JW, Gough PJ, Sehon CA, Marquis RW, Bertin J and Mocarski ES: Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL. J Biol Chem. 288:31268–31279. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Upton JW, Kaiser WJ and Mocarski ES: DAI/ZBP1/DLM-1 complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA. Cell Host Microbe. 11:290–297. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Pasparakis M and Vandenabeele P: Necroptosis and its role in inflammation. Nature. 517:311–320. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Linkermann A and Green DR: Necroptosis. N Engl J Med. 370:455–465. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Murphy JM, Czabotar PE, Hildebrand JM, Lucet IS, Zhang JG, Alvarez-Diaz S, Lewis R, Lalaoui N, Metcalf D, Webb AI, et al: The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. Immunity. 39:443–453. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Gong YN, Guy C, Olauson H, Becker JU, Yang M, Fitzgerald P, Linkermann A and Green DR: ESCRT-III acts downstream of MLKL to regulate necroptotic cell death and its consequences. Cell. 169:286–300.e16. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Cai Z, Jitkaew S, Zhao J, Chiang HC, Choksi S, Liu J, Ward Y, Wu LG and Liu ZG: Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nat Cell Biol. 16:55–65. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Khan N, Downey J, Sanz J, Kaufmann E, Blankenhaus B, Pacis A, Pernet E, Ahmed E, Cardoso S, Nijnik A, et al: M. tuberculosis reprograms hematopoietic stem cells to limit myelopoiesis and impair trained immunity. Cell. 183:752–770.e22. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Gong Y, Fan Z, Luo G, Yang C, Huang Q, Fan K, Cheng H, Jin K, Ni Q, Yu X and Liu C: The role of necroptosis in cancer biology and therapy. Mol Cancer. 18:1002019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang T, Wang Y, Inuzuka H and Wei W: Necroptosis pathways in tumorigenesis. Semin Cancer Biol. 86:32–40. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Höckendorf U, Yabal M, Herold T, Munkhbaatar E, Rott S, Jilg S, Kauschinger J, Magnani G, Reisinger F, Heuser M, et al: RIPK3 restricts myeloid leukemogenesis by promoting cell death and differentiation of leukemia initiating cells. Cancer Cell. 30:75–91. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Zhang TJ, Zhang LC, Xu ZJ, Chu MQ, Zhao YJ, Lin J, Qian J and Zhou JD: Overexpression and oncogenic role of RIPK3 in acute myeloid leukemia associated with specific subtypes and treatment outcome. BMC Cancer. 25:2532025. View Article : Google Scholar : PubMed/NCBI | |
|
Xin J, You D, Breslin P, Li J, Zhang J, Wei W, Cannova J, Volk A, Gutierrez R, Xiao Y, et al: Sensitizing acute myeloid leukemia cells to induced differentiation by inhibiting the RIP1/RIP3 pathway. Leukemia. 31:1154–1165. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu S, Luo Y, Li K, Mei C, Wang Y, Jiang L, Wang W, Zhang Q, Yang W, Lang W, et al: RIPK3 deficiency blocks R-2-hydroxyglutarate-induced necroptosis in IDH-mutated AML cells. Sci Adv. 10:eadi17822024. View Article : Google Scholar : PubMed/NCBI | |
|
Hillert LK, Bettermann-Bethge K, Nimmagadda SC, Fischer T, Naumann M and Lavrik IN: Targeting RIPK1 in AML cells carrying FLT3-ITD. Int J Cancer. 145:1558–1569. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Li J, Liao D, Wang F, Wang Z, Li Y, Xiong Y and Niu T: RIPK1 inhibition enhances the therapeutic efficacy of chidamide in FLT3-ITD positive AML, both in vitro and in vivo. Leuk Lymphoma. 63:1167–1179. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Yue X, Chen Q and He J: Combination strategies to overcome resistance to the BCL2 inhibitor venetoclax in hematologic malignancies. Leuk Lymphoma. 20:5242020. | |
|
Culver-Cochran AE, Hassan A, Hueneman K, Choi K, Ma A, VanCauwenbergh B, O'Brien E, Wunderlich M, Perentesis JP and Starczynowski DT: Chemotherapy resistance in acute myeloid leukemia is mediated by A20 suppression of spontaneous necroptosis. Nat Commun. 15:91892024. View Article : Google Scholar : PubMed/NCBI | |
|
Liang D, Minikes AM and Jiang X: Ferroptosis at the intersection of lipid metabolism and cellular signaling. Mol Cell. 82:2215–2227. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Chen F, Kang R, Tang D and Liu J: Ferroptosis: principles and significance in health and disease. J Hematol Oncol. 17:412024. View Article : Google Scholar : PubMed/NCBI | |
|
Koleini N, Shapiro JS, Geier J and Ardehali H: Ironing out mechanisms of iron homeostasis and disorders of iron deficiency. J Clin Invest. 131:e1486712021. View Article : Google Scholar : PubMed/NCBI | |
|
Co HKC, Wu CC, Lee YC and Chen SH: Emergence of large-scale cell death through ferroptotic trigger waves. Nature. 631:654–662. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang X, Stockwell BR and Conrad M: Ferroptosis: Mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 22:266–282. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, Cheah JH, Clemons PA, Shamji AF and Clish CB: Regulation of ferroptotic cancer cell death by GPX4. Cell. 156:317–331. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Stockwell BR: Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications. Cell. 185:2401–2421. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, Tang PH, Roberts MA, Tong B, Maimone TJ, Zoncu R, et al: The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature. 575:688–692. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Doll S, Freitas FP, Shah R, Aldrovandi M, da Silva MC, Ingold I, Goya Grocin A, Xavier da Silva TN, Panzilius E, Scheel CH, et al: FSP1 is a glutathione-independent ferroptosis suppressor. Nature. 575:693–698. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Reyhani A, McKenzie TG, Fu Q and Qiao GG: Fenton-Chemistry-Mediated Radical Polymerization. Macromol Rapid Commun. 40:19002202019. View Article : Google Scholar : PubMed/NCBI | |
|
Dai E, Chen X, Linkermann A, Jiang X, Kang R, Kagan VE, Bayir H, Yang WS, Garcia-Saez AJ, Ioannou MS, et al: A guideline on the molecular ecosystem regulating ferroptosis. Nat Cell Biol. 26:1447–1457. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Ma S, Henson ES, Chen Y and Gibson SB: Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells. Cell Death Dis. 7:e23072016. View Article : Google Scholar : PubMed/NCBI | |
|
Bannai S: Exchange of cystine and glutamate across plasma membrane of human fibroblasts. J Biol Chem. 261:2256–2263. 1986. View Article : Google Scholar : PubMed/NCBI | |
|
Koppula P, Zhang Y, Zhuang L and Gan B: Amino acid transporter SLC7A11/xCT at the crossroads of regulating redox homeostasis and nutrient dependency of cancer. Cancer Commun (Lond). 38:122018.PubMed/NCBI | |
|
Koppula P, Zhuang L and Gan B: Cystine transporter SLC7A11/xCT in cancer: Ferroptosis, nutrient dependency, and cancer therapy. Protein Cell. 12:599–620. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Liu MR, Zhu WT and Pei DS: System Xc-: A key regulatory target of ferroptosis in cancer. Invest New Drugs. 39:1123–1131. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Tang D, Chen X, Kang R and Kroemer G: Ferroptosis: Molecular mechanisms and health implications. Cell Res. 31:107–125. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Scarpellini C, Klejborowska G, Lanthier C, Hassannia B, Vanden Berghe T and Augustyns K: Beyond ferrostatin-1: A comprehensive review of ferroptosis inhibitors. Trends Pharmacol Sci. 44:902–916. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Brown CW, Amante JJ, Chhoy P, Elaimy AL, Liu H, Zhu LJ, Baer CE, Dixon SJ and Mercurio AM: Prominin2 drives ferroptosis resistance by stimulating iron export. Dev Cell. 51:575–586.e4. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Cao M, Li H, Sun D, He S, Yu Y, Li J, Chen H, Shi J, Ren J, Li N and Chen W: Cancer screening in China: The current status, challenges, and suggestions. Cancer Lett. 506:120–127. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang H and Sun C, Sun Q, Li Y, Zhou C and Sun C: Susceptibility of acute myeloid leukemia cells to ferroptosis and evasion strategies. Front Mol Biosci. 10:12757742023. View Article : Google Scholar : PubMed/NCBI | |
|
Akiyama H, Zhao R, Ostermann LB, Li Z, Tcheng M, Yazdani SJ, Moayed A, Pryor ML II, Slngh S, Baran N, et al: Mitochondrial regulation of GPX4 inhibition-mediated ferroptosis in acute myeloid leukemia. Leukemia. 38:729–740. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Na X, Li L, Liu D, He J, Zhang L and Zhou Y: Natural products targeting ferroptosis pathways in cancer therapy (Review). Oncol Rep. 52:1232024. View Article : Google Scholar : PubMed/NCBI | |
|
Ma C, Wang J, Cui S and Xu R: Crotonoside induces ferroptosis and mitochondrial dysfunction in AML. Eur J Pharmacol. 1002:1778592025. View Article : Google Scholar : PubMed/NCBI | |
|
Birsen R, Larrue C, Decroocq J, Johnson N, Guiraud N, Gotanegre M, Cantero-Aguilar L, Grignano E, Huynh T, Fontenay M, et al: APR-246 induces early cell death by ferroptosis in acute myeloid leukemia. Haematologica. 107:403–416. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Lin AY, Rink JS, Yang E, Small S, Gerber JJ, Zak TJ, Altman J, Abaza Y, Platanias LC, Gordon LI and Thaxton CS: Targeting scavenger receptor class B type 1 with a bioinspired ligand induces apoptosis or ferroptosis in AML. Blood Neoplasia. 2:1001222025. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang F, Yu WJ, Wang XH, Tang YT, Guo L and Jiao XY: Regulation of hepcidin through GDF-15 in cancer-related anemia. Clin Chim Acta. 428:14–19. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Lu QW and Liao Y: GDF-15 upregulates the SLC7A11/GPX4 signaling axis and promotes mitoxantrone resistance in AML cells. Eur J Med Res. 30:5042025. View Article : Google Scholar : PubMed/NCBI | |
|
Yu Y, Meng Y, Xu X, Tong T, He C, Wang L, Wang K, Zhao M, You X, Zhang W, et al: A Ferroptosis-inducing and leukemic Cell-targeting drug nanocarrier formed by Redox-responsive cysteine polymer for acute myeloid leukemia therapy. ACS Nano. 17:3334–3345. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Yu X, Wang Y, Tan J, Li Y, Yang P, Liu X, Lai J, Zhang Y, Cai L, Gu Y, et al: Inhibition of NRF2 enhances the acute myeloid leukemia cell death induced by venetoclax via the ferroptosis pathway. Cell Death Discov. 10:352024. View Article : Google Scholar : PubMed/NCBI | |
|
Pardieu B, Pasanisi J, Ling F, Dal Bello R, Penneroux J, Su A, Joudinaud R, Chat L, Wu HC, Duchmann M, et al: Cystine uptake inhibition potentiates front-line therapies in acute myeloid leukemia. Leukemia. 36:1585–1595. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Lyu T, Li X and Song Y: Ferroptosis in acute leukemia. Chin Med J (Engl). 136:886–898. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, Rossen J, Joesch-Cohen L, Humeidi R, Spangler RD, et al: Copper induces cell death by targeting lipoylated TCA cycle proteins. Science. 375:1254–1261. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Chen L, Min J and Wang F: Copper homeostasis and cuproptosis in health and disease. Signal Transduct Target Ther. 7:3782022. View Article : Google Scholar : PubMed/NCBI | |
|
Tian Z, Jiang S, Zhou J and Zhang W: Copper homeostasis and cuproptosis in mitochondria. Life Sci. 334:1222232023. View Article : Google Scholar : PubMed/NCBI | |
|
Tsvetkov P, Detappe A, Cai K, Keys HR, Brune Z, Ying W, Thiru P, Reidy M, Kugener G, Rossen J, et al: Mitochondrial metabolism promotes adaptation to proteotoxic stress. Nat Chem Biol. 15:681–689. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng P, Zhou C, Lu L, Liu B and Ding Y: Elesclomol: A copper ionophore targeting mitochondrial metabolism for cancer therapy. J Exp Clin Cancer Res. 41:2712022. View Article : Google Scholar : PubMed/NCBI | |
|
Vo TTT, Peng TY, Nguyen TH, Bui TNH, Wang CS, Lee WJ, Chen YL, Wu YC and Lee IT: The crosstalk between copper-induced oxidative stress and cuproptosis: A novel potential anticancer paradigm. Cell Commun Signal. 22:3532024. View Article : Google Scholar : PubMed/NCBI | |
|
Zeng Y, Cao Y, Ren S, Zhang C, Liu J, Liu K, Wang Y, Chen H, Zhou F, Yang X, et al: Responsive ROS-Augmented prodrug hybridization nanoassemblies for multidimensionally synergitic treatment of hepatocellular carcinoma in cascade assaults. Adv Sci (Weinh). 12:e25014202025. View Article : Google Scholar : PubMed/NCBI | |
|
Cong Y, Li N, Zhang Z, Shang Y and Zhao H: Cuproptosis: Molecular mechanisms, cancer prognosis, and therapeutic applications. J Transl Med. 23:1042025. View Article : Google Scholar : PubMed/NCBI | |
|
Feng Y, Yang Z, Wang J and Zhao H: Cuproptosis: Unveiling a new frontier in cancer biology and therapeutics. Cell Commun Signal. 22:2492024. View Article : Google Scholar : PubMed/NCBI | |
|
Kahlson MA and Dixon SJ: Copper-induced cell death. Science. 375:1231–1232. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Zhang L and Zhou F: Cuproptosis: A new form of programmed cell death. Cell Mol Immunol. 19:867–868. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Dreishpoon MB, Bick NR, Petrova B, Warui DM, Cameron A, Booker SJ, Kanarek N, Golub TR and Tsvetkov P: FDX1 regulates cellular protein lipoylation through direct binding to LIAS. J Biol Chem. 299:1050462023. View Article : Google Scholar : PubMed/NCBI | |
|
Sun Z, Xu H, Lu G, Yang C, Gao X, Zhang J, Liu X, Chen Y, Wang K, Guo J and Li J: AKT1 Phosphorylates FDX1 to promote cuproptosis resistance in Triple-negative breast cancer. Adv Sci (Weinh). 12:e24081062025. View Article : Google Scholar : PubMed/NCBI | |
|
Yip NC, Fombon IS, Liu P, Brown S, Kannappan V, Armesilla AL, Xu B, Cassidy J, Darling JL and Wang W: Disulfiram modulated ROS-MAPK and NFκB pathways and targeted breast cancer cells with cancer stem cell-like properties. Br J Cancer. 104:1564–1574. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Valadbeigi S, Javadian S, Ebrahimi-Rad M, Khatami S and Saghiri R: Assessment of trace elements in serum of acute lymphoblastic and myeloid leukemia patients. Exp Oncol. 41:69–71. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Singh RP, Jeyaraju DV, Voisin V, Hurren R, Xu C, Hawley JR, Barghout SH, Khan DH, Gronda M, Wang X, et al: Disrupting mitochondrial copper distribution inhibits leukemic stem cell Self-renewal. Cell Stem Cell. 26:926–937.e10. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
McMahon A, Chen W and Li F: Old wine in new bottles: Advanced drug delivery systems for disulfiram-based cancer therapy. J Control Release. 319:352–359. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Weiser Drozdkova D and Smesny Trtkova K: Possible therapeutic potential of disulfiram for multiple myeloma. Curr Oncol. 28:2087–2096. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Solak K, Mavi A and Yılmaz B: Disulfiram-loaded functionalized magnetic nanoparticles combined with copper and sodium nitroprusside in breast cancer cells. Mater Sci Eng C Mater Biol Appl. 119:1114522021. View Article : Google Scholar : PubMed/NCBI | |
|
Solier S, Müller S, Cañeque T, Versini A, Mansart A, Sindikubwabo F, Baron L, Emam L, Gestraud P, Pantoș GD, et al: A druggable copper-signalling pathway that drives inflammation. Nature. 617:386–394. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Karsa M, Xiao L, Ronca E, Bongers A, Spurling D, Karsa A, Cantilena S, Mariana A, Failes TW, Arndt GM, et al: FDA-approved disulfiram as a novel treatment for aggressive leukemia. J Mol Med (Berl). 102:507–519. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Oliveri V: Selective targeting of cancer cells by copper ionophores: An overview. Front Mol Biosci. 9:8418142022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang J, Luo C, Shan C, You Q, Lu J, Elf S, Zhou Y, Wen Y, Vinkenborg JL, Fan J, et al: Inhibition of human copper trafficking by a small molecule significantly attenuates cancer cell proliferation. Nat Chem. 7:968–979. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Cao C, Wang T, Luo Y, Zhang Y, Dai YY and Shen Y: Comprehensive analysis of cuproptosis-associated LncRNAs predictive value and related CeRNA network in acute myeloid leukemia. Heliyon. 9:e225322023. View Article : Google Scholar : PubMed/NCBI | |
|
Moison C, Gracias D, Schmitt J, Girard S, Spinella JF, Fortier S, Boivin I, Mendoza-Sanchez R, Thavonekham B, MacRae T, et al: SF3B1 mutations provide genetic vulnerability to copper ionophores in human acute myeloid leukemia. Sci Adv. 10:eadl40182024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang J, Zheng Y, Liu H and Liu B: AC024896.1/miR-363-3p axis regulates the malignant progression of acute myeloid leukemia by Cuproptosis-related gene MYO1B. Blood Lymphat Cancer. 14:17–30. 2024.PubMed/NCBI | |
|
Huang X, Yan H, Xu Z, Yang B, Luo P and He Q: The inducible role of autophagy in cell death: Emerging evidence and future perspectives. Cell Commun Signal. 23:1512025. View Article : Google Scholar : PubMed/NCBI | |
|
Gao W, Wang X, Zhou Y, Wang X and Yu Y: Autophagy, ferroptosis, pyroptosis, and necroptosis in tumor immunotherapy. Signal Transduct Target Ther. 7:1962022. View Article : Google Scholar : PubMed/NCBI | |
|
Liu X, Tuerxun H and Zhao Y, Li Y, Wen S, Li X and Zhao Y: Crosstalk between ferroptosis and autophagy: Broaden horizons of cancer therapy. J Transl Med. 23:182025. View Article : Google Scholar : PubMed/NCBI | |
|
Newton K, Wickliffe KE, Maltzman A, Dugger DL, Webster JD, Guo H and Dixit VM: Caspase cleavage of RIPK3 after Asp333 is dispensable for mouse embryogenesis. Cell Death Differ. 31:254–262. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Fritsch M, Günther SD, Schwarzer R, Albert MC, Schorn F, Werthenbach JP, Schiffmann LM, Stair N, Stocks H, Seeger JM, et al: Caspase-8 is the molecular switch for apoptosis, necroptosis and pyroptosis. Nature. 575:683–687. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Qiu Y, Hüther JA, Wank B, Rath A, Tykwe R, Aldrovandi M, Henkelmann B, Mergner J, Nakamura T and Laschat S: Interplay of ferroptotic and apoptotic cell death and its modulation by BH3-mimetics. Cell Death Differ. Apr 29–2025.doi: 10.1038/s41418-025-01514-7 (Epub ahead of print). View Article : Google Scholar | |
|
Xu R, Wang W and Zhang W: Ferroptosis and the bidirectional regulatory factor p53. Cell Death Discov. 9:1972023. View Article : Google Scholar : PubMed/NCBI | |
|
Gao J, Xiong A, Liu J, Li X, Wang J, Zhang L, Liu Y, Xiong Y, Li G and He X: PANoptosis: Bridging apoptosis, pyroptosis, and necroptosis in cancer progression and treatment. Cancer Gene Ther. 31:970–983. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Qu M, Wang Y, Qiu Z, Zhu S, Guo K, Chen W, Miao C and Zhang H: Necroptosis, pyroptosis, ferroptosis in sepsis and treatment. Shock. 57:161–171. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang C and Liu N: Ferroptosis, necroptosis, and pyroptosis in the occurrence and development of ovarian cancer. Front Immunol. 13:9200592022. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Y, Fang ZM, Yi X, Wei X and Jiang DS: The interaction between ferroptosis and inflammatory signaling pathways. Cell Death Dis. 14:2052023. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Du Y, Zhou Y, Chen Q, Luo Z, Ren Y, Chen X and Chen G: Iron and copper: Critical executioners of ferroptosis, cuproptosis and other forms of cell death. Cell Commun Signal. 21:3272023. View Article : Google Scholar : PubMed/NCBI | |
|
Hu X, Li L, Nkwocha J, Kmieciak M, Shang S, Cowart LA, Yue Y, Horimoto K, Hawkridge A, Rijal A, et al: Src inhibition potentiates MCL-1 antagonist activity in acute myeloid leukemia. Signal Transduct Target Ther. 10:502025. View Article : Google Scholar : PubMed/NCBI | |
|
Ong F, Kim K and Konopleva MY: Venetoclax resistance: Mechanistic insights and future strategies. Cancer Drug Resist. 5:380–400. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Lim J and Murthy A: Targeting autophagy to treat cancer: Challenges and opportunities. Front Pharmacol. 11:5903442020. View Article : Google Scholar : PubMed/NCBI | |
|
Hassani S, Ghaffari P, Chahardouli B, Alimoghaddam K, Ghavamzadeh A, Alizadeh S and Ghaffari SH: Disulfiram/copper causes ROS levels alteration, cell cycle inhibition, and apoptosis in acute myeloid leukaemia cell lines with modulation in the expression of related genes. Biomed Pharmacother. 99:561–569. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Song F, Lin S, Xu T, Yang C, Sharavyn B, Naranmandura H, Zhang Y and Huang P: Targeted therapy in acute myeloid leukemia: Resistance and overcoming strategy. Drug Resist Updat. 83:1012862025. View Article : Google Scholar : PubMed/NCBI | |
|
D'Amico M and De Amicis F: Challenges of regulated cell death: Implications for therapy resistance in cancer. Cells. 13:10832024. View Article : Google Scholar : PubMed/NCBI | |
|
Tong X, Tang R, Xiao M, Xu J, Wang W, Zhang B, Liu J, Yu X and Shi S: Targeting cell death pathways for cancer therapy: Recent developments in necroptosis, pyroptosis, ferroptosis, and cuproptosis research. J Hematol Oncol. 15:1742022. View Article : Google Scholar : PubMed/NCBI |