Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
January-2026 Volume 55 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2026 Volume 55 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Immune system, inflammatory response, and regulated cell death in breast cancer research (Review)

  • Authors:
    • Guangyao Li
    • Binghui Jin
    • Jialin Zhou
    • Shifeng Fang
    • Zhe Fan
  • View Affiliations / Copyright

    Affiliations: Department of Oncology, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning 110000, P.R. China, Department of General Surgery, The Third People's Hospital of Dalian, Dalian Medical University, Dalian, Liaoning 116000, P.R. China, Department of Ophthalmology, Liaoning Provincial Key Laboratory of Cornea and Ocular Surface Diseases, Liaoning Provincial Optometry Technology Engineering Research Center, Dalian Third People's Hospital Affiliated to Dalian University of Technology, Dalian, Liaoning 116000, P.R. China
    Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 11
    |
    Published online on: November 5, 2025
       https://doi.org/10.3892/or.2025.9016
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Breast cancer (BC) ranks among the most prevalent malignant tumors in female patients. It represents a longstanding challenge to medical professionals in terms of diagnosis and treatment. Exploring BC pathogenesis offers insight into its complexity and facilitates the exploration of more effective treatment strategies. The present review aimed to describe the involvement of the immune system, inflammatory response and regulated cell death in BC development, offering avenues for novel therapeutic strategies against BC. Identifying novel treatment methods is key for enhancing the prognosis of patients with BC.
View Figures

Figure 1

Immune system, inflammatory response
and regulated cell death in breast cancer research.

Figure 2

Association between inflammatory
cytokines and breast cancer risk (226–228). Red indicates inflammatory factors
that significantly increase breast cancer risk, while blue
indicates those with no significant effect. HR, hazard ratio), RR
(relative risk), OR (odds ratio).
View References

1 

Britt KL, Cuzick J and Phillips KA: Key steps for effective breast cancer prevention. Nat Rev Cancer. 20:417–436. 2020. View Article : Google Scholar : PubMed/NCBI

2 

Admoun C and Mayrovitz HN: The etiology of breast cancer. Mayrovitz HN: Breast Cancer [Internet] Brisbane (AU): Exon Publications; 2022, View Article : Google Scholar

3 

Youn HJ and Han W: A review of the epidemiology of breast cancer in Asia: Focus on risk factors. Asian Pac J Cancer Prev. 21:867–880. 2020. View Article : Google Scholar : PubMed/NCBI

4 

Ligibel JA, Ballman KV, McCall L, Goodwin PJ, Alfano CM, Bernstein V, Crane TE, Delahanty LM, Frank E, Hahn O, et al: Impact of a weight loss intervention on 1-year weight change in women with stage II/III breast cancer: Secondary analysis of the breast cancer weight loss (BWEL) trial. JAMA Oncol. 11:1194–1203. 2025. View Article : Google Scholar : PubMed/NCBI

5 

Bellanger M, Lima SM, Cowppli-Bony A, Molinié F and Terry MB: Effects of fertility on breast cancer incidence trends: Comparing France and US. Cancer Causes Control. 32:903–910. 2021.PubMed/NCBI

6 

Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 74:229–263. 2024.PubMed/NCBI

7 

Herdiana Y, Sriwidodo S, Sofian FF, Wilar G and Diantini A: Nanoparticle-based antioxidants in stress signaling and programmed cell death in breast cancer treatment. Molecules. 28:53052023. View Article : Google Scholar : PubMed/NCBI

8 

Propper DJ and Balkwill FR: Harnessing cytokines and chemokines for cancer therapy. Nat Rev Clin Oncol. 19:237–253. 2022. View Article : Google Scholar : PubMed/NCBI

9 

Ruggieri L, Moretti A, Berardi R, Cona MS, Dalu D, Villa C, Chizzoniti D, Piva S, Gambaro A and La Verde N: Host-related factors in the interplay among inflammation, immunity and dormancy in breast cancer recurrence and prognosis: An overview for clinicians. Int J Mol Sci. 24:49742023. View Article : Google Scholar : PubMed/NCBI

10 

Li L, Yu R, Cai T, Chen Z, Lan M, Zou T, Wang B, Wang Q, Zhao Y and Cai Y: Effects of immune cells and cytokines on inflammation and immunosuppression in the tumor microenvironment. Int Immunopharmacol. 88:1069392020. View Article : Google Scholar : PubMed/NCBI

11 

Habanjar O, Bingula R, Decombat C, Diab-Assaf M, Caldefie-Chezet F and Delort L: Crosstalk of inflammatory cytokines within the breast tumor microenvironment. Int J Mol Sci. 24:40022023. View Article : Google Scholar : PubMed/NCBI

12 

Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X and Zhao L: Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 9:7204–7218. 2017. View Article : Google Scholar : PubMed/NCBI

13 

Yu L, Abd Ghani MK, Aghemo A, Barh D, Bassetti M, Catena F, Gallo G, Gholamrezanezhad A, Kamal MA, Lal A, et al: SARS-CoV-2 infection, inflammation, immunonutrition, and pathogenesis of COVID-19. Curr Med Chem. 30:4390–4408. 2023. View Article : Google Scholar : PubMed/NCBI

14 

Chen Y, Li X, Yang M and Liu SB: Research progress on morphology and mechanism of programmed cell death. Cell Death Dis. 15:3272024. View Article : Google Scholar : PubMed/NCBI

15 

Della Torre L, Beato A, Capone V, Carannante D, Verrilli G, Favale G, Del Gaudio N, Megchelenbrink WL, Benedetti R, Altucci L and Carafa V: Involvement of regulated cell deaths in aging and age-related pathologies. Ageing Res Rev. 95:1022512024. View Article : Google Scholar : PubMed/NCBI

16 

Fernández-Lázaro D, Sanz B and Seco-Calvo J: The mechanisms of regulated cell death: Structural and functional proteomic pathways induced or inhibited by a specific protein-A narrative review. Proteomes. 12:32024. View Article : Google Scholar : PubMed/NCBI

17 

Qian S, Long Y, Tan G, Li X, Xiang B, Tao Y, Xie Z and Zhang X: Programmed cell death: Molecular mechanisms, biological functions, diseases, and therapeutic targets. MedComm (2020). 5:e700242024. View Article : Google Scholar : PubMed/NCBI

18 

Tong X, Tang R, Xiao M, Xu J, Wang W, Zhang B, Liu J, Yu X and Shi S: Targeting cell death pathways for cancer therapy: Recent developments in necroptosis, pyroptosis, ferroptosis, and cuproptosis research. J Hematol Oncol. 15:1742022. View Article : Google Scholar : PubMed/NCBI

19 

He R, Liu Y, Fu W, He X, Liu S, Xiao D and Tao Y: Mechanisms and cross-talk of regulated cell death and their epigenetic modifications in tumor progression. Mol Cancer. 23:2672024. View Article : Google Scholar : PubMed/NCBI

20 

Nagata S: Apoptosis and clearance of apoptotic cells. Annu Rev Immunol. 36:489–517. 2018. View Article : Google Scholar : PubMed/NCBI

21 

Patel AA, Ginhoux F and Yona S: Monocytes, macrophages, dendritic cells and neutrophils: An update on lifespan kinetics in health and disease. Immunology. 163:250–261. 2021. View Article : Google Scholar : PubMed/NCBI

22 

Upton JW, Shubina M and Balachandran S: RIPK3-driven cell death during virus infections. Immunol Rev. 277:90–101. 2017. View Article : Google Scholar : PubMed/NCBI

23 

Yu L: Cell self-destruction (programmed cell death), immunonutrition and metabolism. Biology (Basel). 12:9492023.PubMed/NCBI

24 

Santagostino SF, Assenmacher CA, Tarrant JC, Adedeji AO and Radaelli E: Mechanisms of regulated cell death: Current perspectives. Vet Pathol. 58:596–623. 2024. View Article : Google Scholar : PubMed/NCBI

25 

Jorgensen I, Rayamajhi M and Miao EA: Programmed cell death as a defence against infection. Nat Rev Immunol. 17:151–164. 2017. View Article : Google Scholar : PubMed/NCBI

26 

Bekkering S, Domínguez-Andrés J, Joosten LAB, Riksen NP and Netea MG: Trained immunity: Reprogramming innate immunity in health and disease. Annu Rev Immunol. 39:667–693. 2021. View Article : Google Scholar : PubMed/NCBI

27 

Chen X, Liu S, Goraya MU, Maarouf M, Huang S and Chen JL: Host immune response to influenza A virus infection. Front Immunol. 9:3202018. View Article : Google Scholar : PubMed/NCBI

28 

Purnamasari S and Hidayat R: The role of natural physical, mechanical, and biochemical barriers as innate immunity: A narrative literature review. Open Access Indones J Med Rev. 3:361–364. 2023.

29 

Place DE and Kanneganti TD: The innate immune system and cell death in autoinflammatory and autoimmune disease. Curr Opin Immunol. 67:95–105. 2020. View Article : Google Scholar : PubMed/NCBI

30 

Molfetta R, Quatrini L, Santoni A and Paolini R: Regulation of NKG2D-dependent NK cell functions: The Yin and the Yang of receptor endocytosis. Int J Mol Sci. 18:16772017. View Article : Google Scholar : PubMed/NCBI

31 

Ren X, Peng M, Xing P, Wei Y, Galbo PM Jr, Corrigan D, Wang H, Su Y, Dong X, Sun Q, et al: Blockade of the immunosuppressive KIR2DL5/PVR pathway elicits potent human NK cell-mediated antitumor immunity. J Clin Invest. 132:e1636202022. View Article : Google Scholar : PubMed/NCBI

32 

Paolini R and Molfetta R: Dysregulation of DNAM-1-mediated NK cell anti-cancer responses in the tumor microenvironment. Cancers (Basel). 15:46162023. View Article : Google Scholar : PubMed/NCBI

33 

Voskoboinik I, Whisstock JC and Trapani JA: Perforin and granzymes: Function, dysfunction and human pathology. Nat Rev Immunol. 15:388–400. 2015. View Article : Google Scholar : PubMed/NCBI

34 

Lin W, Luo Y, Wu J, Zhang H, Jin G, Guo C, Zhou H, Liang H and Xu X: Loss of ADAR1 in macrophages in combination with interferon gamma suppresses tumor growth by remodeling the tumor microenvironment. J Immunother Cancer. 11:e0074022023. View Article : Google Scholar : PubMed/NCBI

35 

Wang S, Liu G, Li Y and Pan Y: Metabolic reprogramming induces macrophage polarization in the tumor microenvironment. Front Immunol. 13:8400292022. View Article : Google Scholar : PubMed/NCBI

36 

Boada-Romero E, Martinez J, Heckmann BL and Green DR: The clearance of dead cells by efferocytosis. Nat Rev Mol Cell Biol. 21:398–414. 2020. View Article : Google Scholar : PubMed/NCBI

37 

Telser AG: Molecular biology of the cell, 4th edition. Shock. 18:2892002. View Article : Google Scholar

38 

Li D and Wu M: Pattern recognition receptors in health and diseases. Signal Transduct Target Ther. 6:2912021. View Article : Google Scholar : PubMed/NCBI

39 

Koike A, Tsujinaka K and Fujimori K: Statins attenuate antiviral IFN-β and ISG expression via inhibition of IRF3 and JAK/STAT signaling in poly(I:C)-treated hyperlipidemic mice and macrophages. FEBS J. 288:4249–4266. 2021. View Article : Google Scholar : PubMed/NCBI

40 

Turner MD, Nedjai B, Hurst T and Pennington DJ: Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. Biochim Biophys Acta. 1843:2563–2582. 2014. View Article : Google Scholar : PubMed/NCBI

41 

Ivashkiv LB and Donlin LT: Regulation of type I interferon responses. Nat Rev Immunol. 14:36–49. 2014. View Article : Google Scholar : PubMed/NCBI

42 

Li G, Zhao X, Zheng Z, Zhang H, Wu Y, Shen Y and Chen Q: cGAS-STING pathway mediates activation of dendritic cell sensing of immunogenic tumors. Cell Mol Life Sci. 81:1492024. View Article : Google Scholar : PubMed/NCBI

43 

Dong H, Franklin NA, Ritchea SB, Yagita H, Glennie MJ and Bullock TN: CD70 and IFN-1 selectively induce eomesodermin or T-bet and synergize to promote CD8+ T-cell responses. Eur J Immunol. 45:3289–3301. 2015. View Article : Google Scholar : PubMed/NCBI

44 

Jo EK, Kim JK, Shin DM and Sasakawa C: Molecular mechanisms regulating NLRP3 inflammasome activation. Cell Mol Immunol. 13:148–159. 2016. View Article : Google Scholar : PubMed/NCBI

45 

Zheng M and Kanneganti TD: The regulation of the ZBP1-NLRP3 inflammasome and its implications in pyroptosis, apoptosis, and necroptosis (PANoptosis). Immunol Rev. 297:26–38. 2020. View Article : Google Scholar : PubMed/NCBI

46 

Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, Zhuang Y, Cai T, Wang F and Shao F: Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 526:660–665. 2015. View Article : Google Scholar : PubMed/NCBI

47 

Tengesdal IW, Li S, Powers NE, May M, Neff CP, Joosten LAB, Marchetti C and Dinarello CA: Activation of host-NLRP3 inflammasome in myeloid cells dictates response to anti-PD-1 therapy in metastatic breast cancers. Pharmaceuticals (Basel). 15:5742022. View Article : Google Scholar : PubMed/NCBI

48 

Jing L, An Y, Cai T, Xiang J, Li B, Guo J, Ma X, Wei L, Tian Y, Cheng X, et al: A subpopulation of CD146+ macrophages enhances antitumor immunity by activating the NLRP3 inflammasome. Cell Mol Immunol. 20:908–923. 2023. View Article : Google Scholar : PubMed/NCBI

49 

Yan L, Liu Y, Ma XF, Hou D, Zhang YH, Sun Y, Shi SS, Forouzanfar T, Lin HY, Fan J and Wu G: Triclabendazole induces pyroptosis by activating caspase-3 to cleave GSDME in breast cancer cells. Front Pharmacol. 12:6700812021. View Article : Google Scholar : PubMed/NCBI

50 

Zhang Z, Zhang H, Li D, Zhou X, Qin Q and Zhang Q: Caspase-3-mediated GSDME induced Pyroptosis in breast cancer cells through the ROS/JNK signalling pathway. J Cell Mol Med. 25:8159–8168. 2021. View Article : Google Scholar : PubMed/NCBI

51 

Yang X, Cui X, Wang G, Zhou M, Wu Y, Du Y, Li X and Xu T: HDAC inhibitor regulates the tumor immune microenvironment via pyroptosis in triple negative breast cancer. Mol Carcinog. 63:1800–1813. 2024. View Article : Google Scholar : PubMed/NCBI

52 

Adams NM, Grassmann S and Sun JC: Clonal expansion of innate and adaptive lymphocytes. Nat Rev Immunol. 20:694–707. 2020. View Article : Google Scholar : PubMed/NCBI

53 

Boraschi D, Toepfer E and Italiani P: Innate and germline immune memory: Specificity and heritability of the ancient immune mechanisms for adaptation and survival. Front Immunol. 15:13865782024. View Article : Google Scholar : PubMed/NCBI

54 

Sette A and Crotty S: Adaptive immunity to SARS-CoV-2 and COVID-19. Cell. 184:861–880. 2021. View Article : Google Scholar : PubMed/NCBI

55 

Fridman WH, Pagès F, Sautès-Fridman C and Galon J: The immune contexture in human tumours: Impact on clinical outcome. Nat Rev Cancer. 12:298–306. 2012. View Article : Google Scholar : PubMed/NCBI

56 

Loi S, Drubay D, Adams S, Pruneri G, Francis PA, Lacroix-Triki M, Joensuu H, Dieci MV, Badve S, Demaria S, et al: Tumor-infiltrating lymphocytes and prognosis: A pooled individual patient analysis of early-stage triple-negative breast cancers. J Clin Oncol. 37:559–569. 2019. View Article : Google Scholar : PubMed/NCBI

57 

Herbert JA and Panagiotou S: Immune response to viruses. Encycl Infect Immun. 1:429–444. 2022.

58 

Schumacher TN and Schreiber RD: Neoantigens in cancer immunotherapy. Science. 348:69–74. 2015. View Article : Google Scholar : PubMed/NCBI

59 

Borst J, Ahrends T, Bąbała N, Melief CJM and Kastenmüller W: CD4+ T cell help in cancer immunology and immunotherapy. Nat Rev Immunol. 18:635–647. 2018. View Article : Google Scholar : PubMed/NCBI

60 

Qian D, Li J, Huang M, Cui Q, Liu X and Sun K: Dendritic cell vaccines in breast cancer: Immune modulation and immunotherapy. Biomed Pharmacother. 162:1146852023. View Article : Google Scholar : PubMed/NCBI

61 

Cai L and Li Y, Tan J, Xu L and Li Y: Targeting LAG-3, TIM-3, and TIGIT for cancer immunotherapy. J Hematol Oncol. 16:1012023. View Article : Google Scholar : PubMed/NCBI

62 

Jin M, Fang J, Peng J, Wang X, Xing P, Jia K, Hu J, Wang D, Ding Y, Wang X, et al: PD-1/PD-L1 immune checkpoint blockade in breast cancer: Research insights and sensitization strategies. Mol Cancer. 23:2662024. View Article : Google Scholar : PubMed/NCBI

63 

Schumacher TN and Thommen DS: Tertiary lymphoid structures in cancer. Science. 375:eabf94192022. View Article : Google Scholar : PubMed/NCBI

64 

Saxena M, van der Burg SH, Melief CJM and Bhardwaj N: Therapeutic cancer vaccines. Nat Rev Cancer. 21:360–378. 2021. View Article : Google Scholar : PubMed/NCBI

65 

Chamorro DF, Somes LK and Hoyos V: Engineered adoptive T-cell therapies for breast cancer: Current progress, challenges, and potential. Cancers (Basel). 16:1242023. View Article : Google Scholar : PubMed/NCBI

66 

Cejuela M, Vethencourt A and Pernas S: Immune checkpoint inhibitors and novel immunotherapy approaches for breast cancer. Curr Oncol Rep. 24:1801–1819. 2022. View Article : Google Scholar : PubMed/NCBI

67 

Duong E, Fessenden TB, Lutz E, Dinter T, Yim L, Blatt S, Bhutkar A, Wittrup KD and Spranger S: Type I interferon activates MHC class I-dressed CD11b+ conventional dendritic cells to promote protective anti-tumor CD8+ T cell immunity. Immunity. 55:308–323.e9. 2022. View Article : Google Scholar : PubMed/NCBI

68 

Wu X, Huang Q, Chen X and Zhang B, Liang J and Zhang B: B cells and tertiary lymphoid structures in tumors: immunity cycle, clinical impact, and therapeutic applications. Theranostics. 15:605–631. 2025. View Article : Google Scholar : PubMed/NCBI

69 

Thol K, Pawlik P and McGranahan N: Therapy sculpts the complex interplay between cancer and the immune system during tumour evolution. Genome Med. 14:1372022. View Article : Google Scholar : PubMed/NCBI

70 

Mirlekar B: Tumor promoting roles of IL-10, TGF-β, IL-4, and IL-35: Its implications in cancer immunotherapy. SAGE Open Med. 10:205031212110690122022. View Article : Google Scholar : PubMed/NCBI

71 

Li C, Jiang P, Wei S, Xu X and Wang J: Regulatory T cells in tumor microenvironment: New mechanisms, potential therapeutic strategies and future prospects. Mol Cancer. 19:1162020. View Article : Google Scholar : PubMed/NCBI

72 

Ravichandran KS: Find-me and eat-me signals in apoptotic cell clearance: Progress and conundrums. J Exp Med. 207:1807–1817. 2010. View Article : Google Scholar : PubMed/NCBI

73 

Bertheloot D, Latz E and Franklin BS: Necroptosis, pyroptosis and apoptosis: An intricate game of cell death. Cell Mol Immunol. 18:1106–1121. 2021. View Article : Google Scholar : PubMed/NCBI

74 

Tanzer MC, Frauenstein A, Stafford CA, Phulphagar K, Mann M and Meissner F: Quantitative and dynamic catalogs of proteins released during apoptotic and necroptotic cell death. Cell Rep. 30:1260–1270.e5. 2020. View Article : Google Scholar : PubMed/NCBI

75 

Nössing C and Ryan KM: 50 Years on and still very much alive: ‘Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics’. Br J Cancer. 128:426–431. 2023. View Article : Google Scholar : PubMed/NCBI

76 

Wang R, Lan C, Benlagha K, Camara NOS, Miller H, Kubo M, Heegaard S, Lee P, Yang L, Forsman H, et al: The interaction of innate immune and adaptive immune system. MedComm (2020). 5:e7142024. View Article : Google Scholar : PubMed/NCBI

77 

Moyer A, Tanaka K and Cheng EH: Apoptosis in cancer biology and therapy. Annu Rev Pathol. 20:303–328. 2025. View Article : Google Scholar : PubMed/NCBI

78 

Nagata S and Tanaka M: Programmed cell death and the immune system. Nat Rev Immunol. 17:333–340. 2017. View Article : Google Scholar : PubMed/NCBI

79 

Halkom A, Wu H and Lu Q: Contribution of mouse models in our understanding of lupus. Int Rev Immunol. 39:174–187. 2020. View Article : Google Scholar : PubMed/NCBI

80 

Rieux-Laucat F, Magérus-Chatinet A and Neven B: The autoimmune lymphoproliferative syndrome with defective FAS or FAS-ligand functions. J Clin Immunol. 38:558–568. 2018. View Article : Google Scholar : PubMed/NCBI

81 

Leis K, Gałązka P, Kazik J, Jamrożek T, Bereźnicka W and Czajkowski R: Resveratrol in the treatment of asthma based on an animal model. Postepy Dermatol Alergol. 39:433–438. 2022. View Article : Google Scholar : PubMed/NCBI

82 

Juric V, Hudson L, Fay J, Richards CE, Jahns H, Verreault M, Bielle F, Idbaih A, Lamfers MLM, Hopkins AM, et al: Transcriptional CDK inhibitors, CYC065 and THZ1 promote Bim-dependent apoptosis in primary and recurrent GBM through cell cycle arrest and Mcl-1 downregulation. Cell Death Dis. 12:7632021. View Article : Google Scholar : PubMed/NCBI

83 

Kotzin JJ, Spencer SP, McCright SJ, Kumar DBU, Collet MA, Mowel WK, Elliott EN, Uyar A, Makiya MA, Dunagin MC, et al: The long non-coding RNA Morrbid regulates Bim and short-lived myeloid cell lifespan. Nature. 537:239–243. 2016. View Article : Google Scholar : PubMed/NCBI

84 

Guo H, Yang Y, Lou Y, Zuo Z, Cui H, Deng H, Zhu Y and Fang J: Apoptosis and DNA damage mediated by ROS involved in male reproductive toxicity in mice induced by Nickel. Ecotoxicol Environ Saf. 268:1156792023. View Article : Google Scholar : PubMed/NCBI

85 

Green DR: The mitochondrial pathway of apoptosis part II: The BCL-2 protein family. Cold Spring Harb Perspect Biol. 14:a0410462022. View Article : Google Scholar : PubMed/NCBI

86 

Yadav N, Gogada R, O'Malley J, Gundampati RK, Jayanthi S, Hashmi S, Lella R, Zhang D, Wang J, Kumar R, et al: Molecular insights on cytochrome c and nucleotide regulation of apoptosome function and its implication in cancer. Biochim Biophys Acta Mol Cell Res. 1867:1185732020. View Article : Google Scholar : PubMed/NCBI

87 

Sahoo G, Samal D, Khandayataray P and Murthy MK: A review on caspases: Key regulators of biological activities and apoptosis. Mol Neurobiol. 60:5805–5837. 2023. View Article : Google Scholar : PubMed/NCBI

88 

Shoshan-Barmatz V, Arif T and Shteinfer-Kuzmine A: Apoptotic proteins with non-apoptotic activity: Expression and function in cancer. Apoptosis. 28:730–753. 2023. View Article : Google Scholar : PubMed/NCBI

89 

Wang Y, Li Y, Wu Y, Wu A, Xiao B, Liu X, Zhang Q, Feng Y, Yuan Z, Yi J, et al: Endoplasmic reticulum stress promotes oxidative stress, inflammation, and apoptosis: A novel mechanism of citrinin-induced renal injury and dysfunction. Ecotoxicol Environ Saf. 284:1169462024. View Article : Google Scholar : PubMed/NCBI

90 

Fu X, Cui J, Meng X, Jiang P, Zheng Q, Zhao W and Chen X: Endoplasmic reticulum stress, cell death and tumor: Association between endoplasmic reticulum stress and the apoptosis pathway in tumors (Review). Oncol Rep. 45:801–808. 2021. View Article : Google Scholar : PubMed/NCBI

91 

Kara M and Oztas E: Endoplasmic reticulum stress-mediated cell death. Program Cell Death. 1:1–14. 2020.

92 

Wen N, Lv Q and Du ZG: MicroRNAs involved in drug resistance of breast cancer by regulating autophagy. J Zhejiang Univ Sci B. 21:690–702. 2020. View Article : Google Scholar : PubMed/NCBI

93 

Liang DH, Choi DS, Ensor JE, Kaipparettu BA, Bass BL and Chang JC: The autophagy inhibitor chloroquine targets cancer stem cells in triple negative breast cancer by inducing mitochondrial damage and impairing DNA break repair. Cancer Lett. 376:249–258. 2016. View Article : Google Scholar : PubMed/NCBI

94 

Cook KL, Shajahan AN, Wärri A, Jin L, Hilakivi-Clarke LA and Clarke R: Glucose-regulated protein 78 controls cross-talk between apoptosis and autophagy to determine antiestrogen responsiveness. Cancer Res. 72:3337–3349. 2012. View Article : Google Scholar : PubMed/NCBI

95 

Crawford AC, Riggins RB, Shajahan AN, Zwart A and Clarke R: Co-inhibition of BCL-W and BCL2 restores antiestrogen sensitivity through BECN1 and promotes an autophagy-associated necrosis. PLoS One. 5:e86042010. View Article : Google Scholar : PubMed/NCBI

96 

Thomas M, Davis T, Loos B, Sishi B, Huisamen B, Strijdom H and Engelbrecht AM: Autophagy is essential for the maintenance of amino acids and ATP levels during acute amino acid starvation in MDAMB231 cells. Cell Biochem Funct. 36:65–79. 2018. View Article : Google Scholar : PubMed/NCBI

97 

Martin S, Dudek-Peric AM, Garg AD, Roose H, Demirsoy S, Van Eygen S, Mertens F, Vangheluwe P, Vankelecom H and Agostinis P: An autophagy-driven pathway of ATP secretion supports the aggressive phenotype of BRAFV600E inhibitor-resistant metastatic melanoma cells. Autophagy. 13:1512–1527. 2017. View Article : Google Scholar : PubMed/NCBI

98 

Bednarczyk M, Zmarzły N, Grabarek B, Mazurek U and Muc-Wierzgoń M: Genes involved in the regulation of different types of autophagy and their participation in cancer pathogenesis. Oncotarget. 9:34413–34428. 2018. View Article : Google Scholar : PubMed/NCBI

99 

Daskalaki I, Gkikas I and Tavernarakis N: Hypoxia and selective autophagy in cancer development and therapy. Front Cell Dev Biol. 6:1042018. View Article : Google Scholar : PubMed/NCBI

100 

Bousquet G, El Bouchtaoui M, Sophie T, Leboeuf C, de Bazelaire C, Ratajczak P, Giacchetti S, de Roquancourt A, Bertheau P, Verneuil L, et al: Targeting autophagic cancer stem-cells to reverse chemoresistance in human triple negative breast cancer. Oncotarget. 8:35205–35221. 2017. View Article : Google Scholar : PubMed/NCBI

101 

Yeo SK, Wen J, Chen S and Guan JL: Autophagy differentially regulates distinct breast cancer stem-like cells in murine models via EGFR/Stat3 and Tgfβ/Smad signaling. Cancer Res. 76:3397–3410. 2016. View Article : Google Scholar : PubMed/NCBI

102 

Vera-Ramirez L, Vodnala SK, Nini R, Hunter KW and Green JE: Autophagy promotes the survival of dormant breast cancer cells and metastatic tumour recurrence. Nat Commun. 9:19442018. View Article : Google Scholar : PubMed/NCBI

103 

Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Turk BE and Shaw RJ: AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell. 30:214–226. 2008. View Article : Google Scholar : PubMed/NCBI

104 

Casimiro MC, Di Sante G, Di Rocco A, Loro E, Pupo C, Pestell TG, Bisetto S, Velasco-Velázquez MA, Jiao X, Li Z, et al: Cyclin D1 restrains oncogene-induced autophagy by regulating the AMPK-LKB1 signaling axis. Cancer Res. 77:3391–3405. 2017. View Article : Google Scholar : PubMed/NCBI

105 

Shi J, Gao W and Shao F: Pyroptosis: Gasdermin-mediated programmed necrotic cell death. Trends Biochem Sci. 42:245–254. 2017. View Article : Google Scholar : PubMed/NCBI

106 

Galluzzi L, Buqué A, Kepp O, Zitvogel L and Kroemer G: Immunogenic cell death in cancer and infectious disease. Nat Rev Immunol. 17:97–111. 2017. View Article : Google Scholar : PubMed/NCBI

107 

Kayagaki N, Stowe IB, Lee BL, O'Rourke K, Anderson K, Warming S, Cuellar T, Haley B, Roose-Girma M, Phung QT, et al: Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature. 526:666–671. 2015. View Article : Google Scholar : PubMed/NCBI

108 

Wang Y, Gao W, Shi X, Ding J, Liu W, He H, Wang K and Shao F: Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature. 547:99–103. 2017. View Article : Google Scholar : PubMed/NCBI

109 

Zhang Z, Zhang Y, Xia S, Kong Q, Li S, Liu X, Junqueira C, Meza-Sosa KF, Mok TMY, Ansara J, et al: Gasdermin E suppresses tumour growth by activating anti-tumour immunity. Nature. 579:415–420. 2020. View Article : Google Scholar : PubMed/NCBI

110 

Wang Q, Wang Y, Ding J, Wang C, Zhou X, Gao W, Huang H, Shao F and Liu Z: A bioorthogonal system reveals antitumour immune function of pyroptosis. Nature. 579:421–426. 2020. View Article : Google Scholar : PubMed/NCBI

111 

Wang Y, Peng J, Mi X and Yang M: p53-GSDME elevation: A path for CDK7 inhibition to suppress breast cancer cell survival. Front Mol Biosci. 8:6974572021. View Article : Google Scholar : PubMed/NCBI

112 

Broderick NA: A common origin for immunity and digestion. Front Immunol. 6:722015. View Article : Google Scholar : PubMed/NCBI

113 

Uribe-Querol E and Rosales C: Phagocytosis: Our current understanding of a universal biological process. Front Immunol. 11:10662020. View Article : Google Scholar : PubMed/NCBI

114 

Kourtzelis I, Hajishengallis G and Chavakis T: Phagocytosis of apoptotic cells in resolution of inflammation. Front Immunol. 11:5532020. View Article : Google Scholar : PubMed/NCBI

115 

Sprooten J, Vanmeerbeek I, Datsi A, Govaerts J, Naulaerts S, Laureano RS, Borràs DM, Calvet A, Malviya V, Kuballa M, et al: Lymph node and tumor-associated PD-L1+ macrophages antagonize dendritic cell vaccines by suppressing CD8+ T cells. Cell Rep Med. 5:1013772024. View Article : Google Scholar : PubMed/NCBI

116 

Kim HJ, Park JH, Kim HC, Kim CW, Kang I and Lee HK: Blood monocyte-derived CD169+ macrophages contribute to antitumor immunity against glioblastoma. Nat Commun. 13:62112022. View Article : Google Scholar : PubMed/NCBI

117 

Tang Z, Davidson D, Li R, Zhong MC, Qian J, Chen J and Veillette A: Inflammatory macrophages exploit unconventional pro-phagocytic integrins for phagocytosis and anti-tumor immunity. Cell Rep. 37:1101112021. View Article : Google Scholar : PubMed/NCBI

118 

Chen D, Varanasi SK, Hara T, Traina K, Sun M, McDonald B, Farsakoglu Y, Clanton J, Xu S, Garcia-Rivera L, et al: CTLA-4 blockade induces a microglia-Th1 cell partnership that stimulates microglia phagocytosis and anti-tumor function in glioblastoma. Immunity. 56:2086–2104.e8. 2023. View Article : Google Scholar : PubMed/NCBI

119 

Liu Y, Wang Y, Yang Y, Weng L, Wu Q, Zhang J, Zhao P, Fang L, Shi Y and Wang P: Emerging phagocytosis checkpoints in cancer immunotherapy. Signal Transduct Target Ther. 8:1042023. View Article : Google Scholar : PubMed/NCBI

120 

Mantovani A, Allavena P, Marchesi F and Garlanda C: Macrophages as tools and targets in cancer therapy. Nat Rev Drug Discov. 21:799–820. 2022. View Article : Google Scholar : PubMed/NCBI

121 

Gabriele M and Pucci L: Diet bioactive compounds: implications for oxidative stress and inflammation in the vascular system. Endocr Metab Immune Disord Drug Targets. 17:264–275. 2017. View Article : Google Scholar : PubMed/NCBI

122 

Stumpf F, Keller B, Gressies C and Schuetz P: Inflammation and nutrition: Friend or foe? Nutrients. 15:11592023. View Article : Google Scholar : PubMed/NCBI

123 

Ye J, Hu Y, Chen X, Chang C and Li K: Comparative effects of different nutritional supplements on inflammation, nutritional status, and clinical outcomes in colorectal cancer patients: A systematic review and network meta-analysis. Nutrients. 15:27722023. View Article : Google Scholar : PubMed/NCBI

124 

Soeters PB, Wolfe RR and Shenkin A: Hypoalbuminemia: Pathogenesis and clinical significance. JPEN J Parenter Enteral Nutr. 43:181–193. 2019. View Article : Google Scholar : PubMed/NCBI

125 

Wiedermann CJ: Hypoalbuminemia as surrogate and culprit of infections. Int J Mol Sci. 22:44962021. View Article : Google Scholar : PubMed/NCBI

126 

Pan C, Gu Y and Ni Q: The prognostic value of serum albumin to globulin ratio in patients with breast cancer: A retrospective study. Breast Cancer (Dove Med Press). 16:403–411. 2024.PubMed/NCBI

127 

Wei C, Ai H, Mo D, Wang P, Wei L, Liu Z, Li P, Huang T and Liu M: A nomogram based on inflammation and nutritional biomarkers for predicting the survival of breast cancer patients. Front Endocrinol (Lausanne). 15:13888612024. View Article : Google Scholar : PubMed/NCBI

128 

Xiang M, Zhang H, Tian J, Yuan Y, Xu Z and Chen J: Low serum albumin levels and high neutrophil counts are predictive of a poorer prognosis in patients with metastatic breast cancer. Oncol Lett. 24:4322022. View Article : Google Scholar : PubMed/NCBI

129 

Al-Shaer AE, Buddenbaum N and Shaikh SR: Polyunsaturated fatty acids, specialized pro-resolving mediators, and targeting inflammation resolution in the age of precision nutrition. Biochim Biophys Acta Mol Cell Biol Lipids. 1866:1589362021. View Article : Google Scholar : PubMed/NCBI

130 

Wautier JL and Wautier MP: Pro- and anti-inflammatory prostaglandins and cytokines in humans: A mini review. Int J Mol Sci. 24:96472023. View Article : Google Scholar : PubMed/NCBI

131 

Iddir M, Brito A, Dingeo G, Fernandez Del Campo SS, Samouda H, La Frano MR and Bohn T: Strengthening the immune system and reducing inflammation and oxidative stress through diet and nutrition: Considerations during the COVID-19 crisis. Nutrients. 12:15622020. View Article : Google Scholar : PubMed/NCBI

132 

Flores J, White BM, Brea RJ, Baskin JM and Devaraj NK: Lipids: Chemical tools for their synthesis, modification, and analysis. Chem Soc Rev. 49:4602–4614. 2020. View Article : Google Scholar : PubMed/NCBI

133 

Choi RH, Tatum SM, Symons JD, Summers SA and Holland WL: Ceramides and other sphingolipids as drivers of cardiovascular disease. Nat Rev Cardiol. 18:701–711. 2021. View Article : Google Scholar : PubMed/NCBI

134 

Yu B, Yu L and Klionsky DJ: Nutrition acquisition by human immunity, transient overnutrition and the cytokine storm in severe cases of COVID-19. Med Hypotheses. 155:1106682021. View Article : Google Scholar : PubMed/NCBI

135 

Yoon H, Shaw JL, Haigis MC and Greka A: Lipid metabolism in sickness and in health: Emerging regulators of lipotoxicity. Mol Cell. 81:3708–3730. 2021. View Article : Google Scholar : PubMed/NCBI

136 

Ruan XZ, Varghese Z and Moorhead JF: An update on the lipid nephrotoxicity hypothesis. Nat Rev Nephrol. 5:713–721. 2009. View Article : Google Scholar : PubMed/NCBI

137 

Mitrofanova A, Merscher S and Fornoni A: Kidney lipid dysmetabolism and lipid droplet accumulation in chronic kidney disease. Nat Rev Nephrol. 19:629–645. 2023. View Article : Google Scholar : PubMed/NCBI

138 

D'Agati VD, Chagnac A, de Vries AP, Levi M, Porrini E, Herman-Edelstein M and Praga M: Obesity-related glomerulopathy: Clinical and pathologic characteristics and pathogenesis. Nat Rev Nephrol. 12:453–471. 2016. View Article : Google Scholar : PubMed/NCBI

139 

Zhou P, Santoro A, Peroni OD, Nelson AT, Saghatelian A, Siegel D and Kahn BB: PAHSAs enhance hepatic and systemic insulin sensitivity through direct and indirect mechanisms. J Clin Invest. 129:4138–4150. 2019. View Article : Google Scholar : PubMed/NCBI

140 

Bhat N and Mani A: Dysregulation of lipid and glucose metabolism in nonalcoholic fatty liver disease. Nutrients. 15:23232023. View Article : Google Scholar : PubMed/NCBI

141 

Løvsletten NG, Bakke SS, Kase ET, Ouwens DM, Thoresen GH and Rustan AC: Increased triacylglycerol-fatty acid substrate cycling in human skeletal muscle cells exposed to eicosapentaenoic acid. PLoS One. 13:e02080482018. View Article : Google Scholar : PubMed/NCBI

142 

Jelenik T, Flögel U, Álvarez-Hernández E, Scheiber D, Zweck E, Ding Z, Rothe M, Mastrototaro L, Kohlhaas V, Kotzka J, et al: Insulin resistance and vulnerability to cardiac ischemia. Diabetes. 67:2695–2702. 2018. View Article : Google Scholar : PubMed/NCBI

143 

Ioannou MS, Jackson J, Sheu SH, Chang CL, Weigel AV, Liu H, Pasolli HA, Xu CS, Pang S, Matthies D, et al: Neuron-astrocyte metabolic coupling protects against activity-induced fatty acid toxicity. Cell. 177:1522–1535.e14. 2019. View Article : Google Scholar : PubMed/NCBI

144 

Wang Y, Qian Y, Fang Q, Zhong P, Li W, Wang L, Fu W, Zhang Y, Xu Z, Li X and Liang G: Saturated palmitic acid induces myocardial inflammatory injuries through direct binding to TLR4 accessory protein MD2. Nat Commun. 8:139972017. View Article : Google Scholar : PubMed/NCBI

145 

Nicholas DA, Zhang K, Hung C, Glasgow S, Aruni AW, Unternaehrer J, Payne KJ, Langridge WHR and De Leon M: Palmitic acid is a toll-like receptor 4 ligand that induces human dendritic cell secretion of IL-1β. PLoS One. 12:e01767932017. View Article : Google Scholar : PubMed/NCBI

146 

Tabas I: Consequences and therapeutic implications of macrophage apoptosis in atherosclerosis: The importance of lesion stage and phagocytic efficiency. Arterioscler Thromb Vasc Biol. 25:2255–2264. 2005. View Article : Google Scholar : PubMed/NCBI

147 

Neri CR, Scapaticci S, Chiarelli F and Giannini C: Liver steatosis: A marker of metabolic risk in children. Int J Mol Sci. 23:48222022. View Article : Google Scholar : PubMed/NCBI

148 

Jarczak D and Nierhaus A: Cytokine storm-definition, causes, and implications. Int J Mol Sci. 23:117402022. View Article : Google Scholar : PubMed/NCBI

149 

Dinarello CA: Proinflammatory cytokines. Chest. 118:503–508. 2000. View Article : Google Scholar : PubMed/NCBI

150 

Nie J, Zhou L, Tian W, Liu X, Yang L, Yang X, Zhang Y, Wei S, Wang DW and Wei J: Deep insight into cytokine storm: From pathogenesis to treatment. Signal Transduct Target Ther. 10:1122025. View Article : Google Scholar : PubMed/NCBI

151 

Man SM, Karki R and Kanneganti TD: Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol Rev. 277:61–75. 2017. View Article : Google Scholar : PubMed/NCBI

152 

Afzal S, Fiaz K, Noor A, Sindhu AS, Hanif A, Bibi A, Asad M, Nawaz S, Zafar S, Ayub S, et al: Interrelated oncogenic viruses and breast cancer. Front Mol Biosci. 9:7811112022. View Article : Google Scholar : PubMed/NCBI

153 

Wu Q, Nie DY, Ba-Alawi W, Ji Y, Zhang Z, Cruickshank J, Haight J, Ciamponi FE, Chen J, Duan S, et al: PRMT inhibition induces a viral mimicry response in triple-negative breast cancer. Nat Chem Biol. 18:821–830. 2022. View Article : Google Scholar : PubMed/NCBI

154 

Zu Y, Ou Z, Wu D, Liu W, Liu L, Wu D, Zhao Y, Ren P, Zhang Y, Li W, et al: Genetic characteristics of human papillomavirus type 16, 18, 52 and 58 in southern China. Genomics. 113:3895–3906. 2021. View Article : Google Scholar : PubMed/NCBI

155 

Khalil MI, Yang C, Vu L, Chadha S, Nabors H, Welbon C, James CD, Morgan IM, Spanos WC and Pyeon D: HPV upregulates MARCHF8 ubiquitin ligase and inhibits apoptosis by degrading the death receptors in head and neck cancer. PLoS Pathog. 19:e10111712023. View Article : Google Scholar : PubMed/NCBI

156 

Antonioli M, Pagni B, Vescovo T, Ellis R, Cosway B, Rollo F, Bordoni V, Agrati C, Labus M, Covello R, et al: HPV sensitizes OPSCC cells to cisplatin-induced apoptosis by inhibiting autophagy through E7-mediated degradation of AMBRA1. Autophagy. 17:2842–2855. 2021. View Article : Google Scholar : PubMed/NCBI

157 

Wyżewski Z, Mielcarska MB, Gregorczyk-Zboroch KP and Myszka A: Virus-mediated inhibition of apoptosis in the context of EBV-associated diseases: Molecular mechanisms and therapeutic perspectives. Int J Mol Sci. 23:72652022. View Article : Google Scholar : PubMed/NCBI

158 

Yu Z, Wang Y, Liu L, Zhang X, Jiang S and Wang B: Apoptosis disorder, a key pathogenesis of HCMV-related diseases. Int J Mol Sci. 22:41062021. View Article : Google Scholar : PubMed/NCBI

159 

Gatti-Mays ME, Balko JM, Gameiro SR, Bear HD, Prabhakaran S, Fukui J, Disis ML, Nanda R, Gulley JL, Kalinsky K, et al: If we build it they will come: Targeting the immune response to breast cancer. NPJ Breast Cancer. 5:372019. View Article : Google Scholar : PubMed/NCBI

160 

Huang G, Zhou J, Chen J and Liu G: Identification of pyroptosis related subtypes and tumor microenvironment infiltration characteristics in breast cancer. Sci Rep. 12:106402022. View Article : Google Scholar : PubMed/NCBI

161 

Berkel C and Cacan E: Differential expression and copy number variation of gasdermin (GSDM) family members, pore-forming proteins in pyroptosis, in normal and malignant serous ovarian tissue. Inflammation. 44:2203–2216. 2021. View Article : Google Scholar : PubMed/NCBI

162 

Zhu C, Xu S, Jiang R, Yu Y, Bian J and Zou Z: The gasdermin family: Emerging therapeutic targets in diseases. Signal Transduct Target Ther. 9:872024. View Article : Google Scholar : PubMed/NCBI

163 

Wu H, Qian D, Bai X and Sun S: Targeted pyroptosis is a potential therapeutic strategy for cancer. J Oncol. 2022:25155252022. View Article : Google Scholar : PubMed/NCBI

164 

Hu H, Yang H, Liu Y and Yan B: Pathogenesis of anti-melanoma differentiation-associated gene 5 antibody-positive dermatomyositis: A concise review with an emphasis on Type I interferon system. Front Med (Lausanne). 8:8331142022. View Article : Google Scholar : PubMed/NCBI

165 

Wu L, Lu H, Pan Y, Liu C, Wang J, Chen B and Wang Y: The role of pyroptosis and its crosstalk with immune therapy in breast cancer. Front Immunol. 13:9739352022. View Article : Google Scholar : PubMed/NCBI

166 

Zhao Q, Huang L, Qin G, Qiao Y, Ren F, Shen C, Wang S, Liu S, Lian J, Wang D, et al: Cancer-associated fibroblasts induce monocytic myeloid-derived suppressor cell generation via IL-6/exosomal miR-21-activated STAT3 signaling to promote cisplatin resistance in esophageal squamous cell carcinoma. Cancer Lett. 518:35–48. 2021. View Article : Google Scholar : PubMed/NCBI

167 

Zaarour RF, Ribeiro M, Azzarone B, Kapoor S and Chouaib S: Tumor microenvironment-induced tumor cell plasticity: Relationship with hypoxic stress and impact on tumor resistance. Front Oncol. 13:12225752023. View Article : Google Scholar : PubMed/NCBI

168 

Igney FH and Krammer PH: Death and anti-death: Tumour resistance to apoptosis. Nat Rev Cancer. 2:277–288. 2002. View Article : Google Scholar : PubMed/NCBI

169 

Liao M, Qin R, Huang W, Zhu HP, Peng F, Han B and Liu B: Targeting regulated cell death (RCD) with small-molecule compounds in triple-negative breast cancer: A revisited perspective from molecular mechanisms to targeted therapies. J Hematol Oncol. 15:442022. View Article : Google Scholar : PubMed/NCBI

170 

Attiq A and Afzal S: Trinity of inflammation, innate immune cells and cross-talk of signalling pathways in tumour microenvironment. Front Pharmacol. 14:12557272023. View Article : Google Scholar : PubMed/NCBI

171 

Wang JL, Hua SN, Bao HJ, Yuan J, Zhao Y and Chen S: Pyroptosis and inflammasomes in cancer and inflammation. MedComm (2020). 4:e3742023. View Article : Google Scholar : PubMed/NCBI

172 

Ji X, Huang X, Li C, Guan N, Pan T, Dong J and Li L: Effect of tumor-associated macrophages on the pyroptosis of breast cancer tumor cells. Cell Commun Signal. 21:1972023. View Article : Google Scholar : PubMed/NCBI

173 

van Beek JJP, Martens AWJ, Bakdash G and de Vries IJM: Innate lymphoid cells in tumor immunity. Biomedicines. 4:72016. View Article : Google Scholar : PubMed/NCBI

174 

Spits H, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, Koyasu S, Locksley RM, McKenzie AN, Mebius RE, et al: Innate lymphoid cells-a proposal for uniform nomenclature. Nat Rev Immunol. 13:145–149. 2013. View Article : Google Scholar : PubMed/NCBI

175 

Verma D, Verma M and Mishra R: Stem cell therapy and innate lymphoid cells. Stem Cells Int. 2022:35305202022. View Article : Google Scholar : PubMed/NCBI

176 

Zhao M, Shao F, Yu D, Zhang J, Liu Z, Ma J, Xia P and Wang S: Maturation and specialization of group 2 innate lymphoid cells through the lung-gut axis. Nat Commun. 13:76002022. View Article : Google Scholar : PubMed/NCBI

177 

Srivastava RK, Sapra L, Bhardwaj A, Mishra PK, Verma B and Baig Z: Unravelling the immunobiology of innate lymphoid cells (ILCs): Implications in health and disease. Cytokine Growth Factor Rev. 74:56–75. 2023. View Article : Google Scholar : PubMed/NCBI

178 

Danziger N, Sokol ES, Graf RP, Hiemenz MC, Maule J, Parimi V, Palmieri C, Pusztai L, Ross JS and Huang RSP: Variable landscape of PD-L1 expression in breast carcinoma as detected by the DAKO 22C3 immunohistochemistry assay. Oncologist. 28:319–326. 2023. View Article : Google Scholar : PubMed/NCBI

179 

Levi I, Amsalem H, Nissan A, Darash-Yahana M, Peretz T, Mandelboim O and Rachmilewitz J: Characterization of tumor infiltrating natural killer cell subset. Oncotarget. 6:13835–13843. 2015. View Article : Google Scholar : PubMed/NCBI

180 

Montaldo E, Vacca P, Chiossone L, Croxatto D, Loiacono F, Martini S, Ferrero S, Walzer T, Moretta L and Mingari MC: Unique eomes(+) NK cell subsets are present in uterus and decidua during early pregnancy. Front Immunol. 6:6462016. View Article : Google Scholar : PubMed/NCBI

181 

Salimi M, Wang R, Yao X, Li X, Wang X, Hu Y, Chang X, Fan P, Dong T and Ogg G: Activated innate lymphoid cell populations accumulate in human tumour tissues. BMC Cancer. 18:3412018. View Article : Google Scholar : PubMed/NCBI

182 

Sivori S, Pende D, Quatrini L, Pietra G, Della Chiesa M, Vacca P, Tumino N, Moretta F, Mingari MC, Locatelli F and Moretta L: NK cells and ILCs in tumor immunotherapy. Mol Aspects Med. 80:1008702021. View Article : Google Scholar : PubMed/NCBI

183 

Fenis A, Demaria O, Gauthier L, Vivier E and Narni-Mancinelli E: New immune cell engagers for cancer immunotherapy. Nat Rev Immunol. 24:471–486. 2024. View Article : Google Scholar : PubMed/NCBI

184 

Liu H, Wang Z, Zhou Y and Yang Y: MDSCs in breast cancer: An important enabler of tumor progression and an emerging therapeutic target. Front Immunol. 14:11992732023. View Article : Google Scholar : PubMed/NCBI

185 

Nakasone ES, Hurvitz SA and McCann KE: Harnessing the immune system in the battle against breast cancer. Drugs Context. 7:2125202018. View Article : Google Scholar : PubMed/NCBI

186 

Revel M, Daugan MV, Sautés-Fridman C, Fridman WH and Roumenina LT: Complement system: Promoter or suppressor of cancer progression? Antibodies (Basel). 9:572020. View Article : Google Scholar : PubMed/NCBI

187 

Deslouches B and Di YP: Antimicrobial peptides with selective antitumor mechanisms: Prospect for anticancer applications. Oncotarget. 8:46635–46651. 2017. View Article : Google Scholar : PubMed/NCBI

188 

Angelico G, Broggi G, Tinnirello G, Puzzo L, Vecchio GM, Salvatorelli L, Memeo L, Santoro A, Farina J, Mulé A, et al: Tumor infiltrating lymphocytes (TILS) and PD-L1 expression in breast cancer: A review of current evidence and prognostic implications from Pathologist's perspective. Cancers (Basel). 15:44792023. View Article : Google Scholar : PubMed/NCBI

189 

Tang Y, Jiang Q, Ou Y, Zhang F, Qing K, Sun Y, Lu W, Zhu H, Gong F, Lei P and Shen G: BIP induces mice CD19(hi) regulatory B cells producing IL-10 and highly expressing PD-L1, FasL. Mol Immunol. 69:44–51. 2016. View Article : Google Scholar : PubMed/NCBI

190 

Burugu S, Asleh-Aburaya K and Nielsen TO: Immune infiltrates in the breast cancer microenvironment: Detection, characterization and clinical implication. Breast Cancer. 24:3–15. 2017. View Article : Google Scholar : PubMed/NCBI

191 

Shang Q, Yu X, Sun Q, Li H, Sun C and Liu L: Polysaccharides regulate Th1/Th2 balance: A new strategy for tumor immunotherapy. Biomed Pharmacother. 170:1159762024. View Article : Google Scholar : PubMed/NCBI

192 

Togashi Y, Shitara K and Nishikawa H: Regulatory T cells in cancer immunosuppression-implications for anticancer therapy. Nat Rev Clin Oncol. 16:356–371. 2019. View Article : Google Scholar : PubMed/NCBI

193 

Dolina JS, Van Braeckel-Budimir N, Thomas GD and Salek-Ardakani S: CD8+ T cell exhaustion in cancer. Front Immunol. 12:7152342021. View Article : Google Scholar : PubMed/NCBI

194 

Sauer N, Matkowski I, Bodalska G, Murawski M, Dzięgiel P and Calik J: Prognostic role of prolactin-induced protein (PIP) in breast cancer. Cells. 12:22522023. View Article : Google Scholar : PubMed/NCBI

195 

Lehmann BD, Colaprico A, Silva TC, Chen J, An H, Ban Y, Huang H, Wang L, James JL, Balko JM, et al: Multi-omics analysis identifies therapeutic vulnerabilities in triple-negative breast cancer subtypes. Nat Commun. 12:62762021. View Article : Google Scholar : PubMed/NCBI

196 

Truax AD, Thakkar M and Greer SF: Dysregulated recruitment of the histone methyltransferase EZH2 to the class II transactivator (CIITA) promoter IV in breast cancer cells. PLoS One. 7:e360132012. View Article : Google Scholar : PubMed/NCBI

197 

Kubaev A, Faez Sead F, Pirouzbakht M, Nazari M, Riyahi H, Sargazi Aval O, Hasanvand A, Mousavi F and Soleimani Samarkhazan H: Platelet-derived extracellular vesicles: Emerging players in hemostasis and thrombosis. J Liposome Res. 35:334–344. 2025. View Article : Google Scholar : PubMed/NCBI

198 

Han X, Song X, Xiao Z, Zhu G, Gao R, Ni B and Li J: Study on the mechanism of MDSC-platelets and their role in the breast cancer microenvironment. Front Cell Dev Biol. 12:13104422024. View Article : Google Scholar : PubMed/NCBI

199 

Wang L, Zhang K, Feng J, Wang D and Liu J: The progress of platelets in breast cancer. Cancer Manag Res. 15:811–821. 2023. View Article : Google Scholar : PubMed/NCBI

200 

Mendoza-Almanza G, Burciaga-Hernández L, Maldonado V, Melendez-Zajgla J and Olmos J: Role of platelets and breast cancer stem cells in metastasis. World J Stem Cells. 12:1237–1254. 2020. View Article : Google Scholar : PubMed/NCBI

201 

Catani MV, Savini I, Tullio V and Gasperi V: The ‘Janus Face’ of platelets in cancer. Int J Mol Sci. 21:7882020. View Article : Google Scholar : PubMed/NCBI

202 

Zielińska KA and Katanaev VL: The signaling duo CXCL12 and CXCR4: Chemokine fuel for breast cancer tumorigenesis. Cancers (Basel). 12:30712020. View Article : Google Scholar : PubMed/NCBI

203 

Wang X, Zhao S, Wang Z and Gao T: Platelets involved tumor cell EMT during circulation: Communications and interventions. Cell Commun Signal. 20:822022. View Article : Google Scholar : PubMed/NCBI

204 

Wang J, He Y, Hu F, Hu C, Sun Y, Yang K and Yang S: Metabolic reprogramming of immune cells in the tumor microenvironment. International Int J Mol Sci. 25:122232024. View Article : Google Scholar

205 

Singh L, Nair L, Kumar D, Arora MK, Bajaj S, Gadewar M, Mishra SS, Rath SK, Dubey AK, Kaithwas G, et al: Hypoxia induced lactate acidosis modulates tumor microenvironment and lipid reprogramming to sustain the cancer cell survival. Front Oncol. 13:10342052023. View Article : Google Scholar : PubMed/NCBI

206 

Yan Y, Huang L, Liu Y, Yi M, Chu Q, Jiao D and Wu K: Metabolic profiles of regulatory T cells and their adaptations to the tumor microenvironment: Implications for antitumor immunity. J Hematol Oncol. 15:1042022. View Article : Google Scholar : PubMed/NCBI

207 

Guo R, Wang R, Zhang W, Li Y, Wang Y, Wang H, Li X and Song J: Macrophage polarisation in the tumour microenvironment: recent research advances and therapeutic potential of different macrophage reprogramming. Cancer Control. 32:107327482513166042025. View Article : Google Scholar : PubMed/NCBI

208 

Brand A, Singer K, Koehl GE, Kolitzus M, Schoenhammer G, Thiel A, Matos C, Bruss C, Klobuch S, Peter K, et al: LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells. Cell Metab. 24:657–671. 2016. View Article : Google Scholar : PubMed/NCBI

209 

Chang CH, Qiu J, O'Sullivan D, Buck MD, Noguchi T, Curtis JD, Chen Q, Gindin M, Gubin MM, van der Windt GJ, et al: Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell. 162:1229–1241. 2015. View Article : Google Scholar : PubMed/NCBI

210 

Xie J, Guo Z, Zhu Y, Ma M and Jia G: Peripheral blood inflammatory indexes in breast cancer: A review. Medicine (Baltimore). 102:e363152023. View Article : Google Scholar : PubMed/NCBI

211 

Shibabaw T, Teferi B and Ayelign B: The role of Th-17 cells and IL-17 in the metastatic spread of breast cancer: As a means of prognosis and therapeutic target. Front Immunol. 14:10948232023. View Article : Google Scholar : PubMed/NCBI

212 

Danforth DN: The Role of chronic inflammation in the development of breast cancer. (Basel). 13:39182021. View Article : Google Scholar

213 

Ruan GT, Xie HL, Hu CL, Liu CA, Zhang HY, Zhang Q, Wang ZW, Zhang X, Ge YZ, Lin SQ, et al: Comprehensive prognostic effects of systemic inflammation and Insulin resistance in women with breast cancer with different BMI: A prospective multicenter cohort. Sci Rep. 13:43032023. View Article : Google Scholar : PubMed/NCBI

214 

Egelston CA, Avalos C, Tu TY, Simons DL, Jimenez G, Jung JY, Melstrom L, Margolin K, Yim JH, Kruper L, et al: Human breast tumor-infiltrating CD8+ T cells retain polyfunctionality despite PD-1 expression. Nat Commun. 9:42972018. View Article : Google Scholar : PubMed/NCBI

215 

Hartman ZC, Poage GM, den Hollander P, Tsimelzon A, Hill J, Panupinthu N, Zhang Y, Mazumdar A, Hilsenbeck SG, Mills GB and Brown PH: Growth of triple-negative breast cancer cells relies upon coordinate autocrine expression of the proinflammatory cytokines IL-6 and IL-8. Cancer Res. 73:3470–3480. 2013. View Article : Google Scholar : PubMed/NCBI

216 

Jin K, Pandey NB and Popel AS: Simultaneous blockade of IL-6 and CCL5 signaling for synergistic inhibition of triple-negative breast cancer growth and metastasis. Breast Cancer Res. 20:542018. View Article : Google Scholar : PubMed/NCBI

217 

Korkaya H, Kim GI, Davis A, Malik F, Henry NL, Ithimakin S, Quraishi AA, Tawakkol N, D'Angelo R, Paulson AK, et al: Activation of an IL6 inflammatory loop mediates trastuzumab resistance in HER2+ breast cancer by expanding the cancer stem cell population. Mol Cell. 47:570–584. 2012. View Article : Google Scholar : PubMed/NCBI

218 

Yu H, Lin L, Zhang Z, Zhang H and Hu H: Targeting NF-κB pathway for the therapy of diseases: Mechanism and clinical study. Signal Transduct Target Ther. 5:2092020. View Article : Google Scholar : PubMed/NCBI

219 

Li Z, Liu M, Li J, Yan G and Xu X: Diosmetin alleviates AFB1-induced endoplasmic reticulum stress, autophagy, and apoptosis via PI3K/AKT pathway in mice. Ecotoxicol Environ Saf. 292:1179972025. View Article : Google Scholar : PubMed/NCBI

220 

Diep S, Maddukuri M, Yamauchi S, Geshow G and Delk NA: Interleukin-1 and nuclear factor kappa B signaling promote breast cancer progression and treatment resistance. Cells. 11:16732022. View Article : Google Scholar : PubMed/NCBI

221 

Xu J, Zhang J, Mao QF, Wu J and Wang Y: The interaction between autophagy and JAK/STAT3 signaling pathway in tumors. Front Genet. 13:8803592022. View Article : Google Scholar : PubMed/NCBI

222 

Johnson DE, O'Keefe RA and Grandis JR: Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol. 15:234–248. 2018. View Article : Google Scholar : PubMed/NCBI

223 

Dai Z, Liu WC, Chen XY, Wang X, Li JL and Zhang X: Gasdermin D-mediated pyroptosis: Mechanisms, diseases, and inhibitors. Front Immunol. 14:11786622023. View Article : Google Scholar : PubMed/NCBI

224 

Liu X, Xu X, Ye P, Jiang Z, Tian L, Yin Y and Feng L: Genetic evidence for causal effects of inflammatory protein factors on breast cancer. Discov Oncol. 16:14902025. View Article : Google Scholar : PubMed/NCBI

225 

Liu F, Li L, Lan M, Zou T, Kong Z, Cai T, Wu XY and Cai Y: Key factor regulating inflammatory microenvironment, metastasis, and resistance in breast cancer: Interleukin-1 signaling. Mediators Inflamm. 2021:77858902021. View Article : Google Scholar : PubMed/NCBI

226 

Dong W, Gu X, Li J and Zhuang Z: Characterization of immune landscape and prognostic value of IL-17-related signature in invasive breast cancer. Transl Cancer Res. 14:907–929. 2025. View Article : Google Scholar : PubMed/NCBI

227 

Cui Y, Cui S, Lu W, Wang Y, Zhuo Z, Wang R, Zhang D, Wu X, Chang L, Zuo X, et al: CRP, IL-1α, IL-1β, and IL-6 levels and the risk of breast cancer: A two-sample Mendelian randomization study. Sci Rep. 14:19822024. View Article : Google Scholar : PubMed/NCBI

228 

Kehm RD, McDonald JA, Fenton SE, Kavanaugh-Lynch M, Leung KA, McKenzie KE, Mandelblatt JS and Terry MB: Inflammatory biomarkers and breast cancer risk: A systematic review of the evidence and future potential for intervention research. Int J Environ Res Public Health. 17:54452020. View Article : Google Scholar : PubMed/NCBI

229 

Liang Y, He J, Chen X, Yin L, Yuan Q, Zeng Q, Zu X and Shen Y: The emerging roles of metabolism in the crosstalk between breast cancer cells and tumor-associated macrophages. Int J Biol Sci. 19:4915–4930. 2023. View Article : Google Scholar : PubMed/NCBI

230 

Liu J, Geng X, Hou J and Wu G: New insights into M1/M2 macrophages: Key modulators in cancer progression. Cancer Cell Int. 21:3892021. View Article : Google Scholar : PubMed/NCBI

231 

Strizova Z, Benesova I, Bartolini R, Novysedlak R, Cecrdlova E, Foley LK and Striz I: M1/M2 macrophages and their overlaps-myth or reality? Clin Sci (Lond). 137:1067–1093. 2023. View Article : Google Scholar : PubMed/NCBI

232 

Wang C, Lin Y, Zhu H, Zhou Y, Mao F, Huang X, Sun Q and Li C: The prognostic and clinical value of tumor-associated macrophages in patients with breast cancer: A systematic review and meta-analysis. Front Oncol. 12:9058462022. View Article : Google Scholar : PubMed/NCBI

233 

Wu C, Dong S, Huang R and Chen X: Cancer-associated adipocytes and breast cancer: Intertwining in the tumor microenvironment and challenges for cancer therapy. Cancers (Basel). 15:7262023. View Article : Google Scholar : PubMed/NCBI

234 

Maliniak ML, Miller-Kleinhenz J, Cronin-Fenton DP, Lash TL, Gogineni K, Janssen EAM and McCullough LE: Crown-like structures in breast adipose tissue: Early evidence and current issues in breast cancer. Cancers (Basel). 13:22222021. View Article : Google Scholar : PubMed/NCBI

235 

Zhang L: The role of mesenchymal stem cells in modulating the breast cancer microenvironment. Cell Transplant. 32:96368972312200732023. View Article : Google Scholar : PubMed/NCBI

236 

Zheng J and Hao H: The importance of cancer-associated fibroblasts in targeted therapies and drug resistance in breast cancer. Front Oncol. 13:13338392023. View Article : Google Scholar : PubMed/NCBI

237 

Rubinstein-Achiasaf L, Morein D, Ben-Yaakov H, Liubomirski Y, Meshel T, Elbaz E, Dorot O, Pichinuk E, Gershovits M, Weil M and Ben-Baruch A: Persistent inflammatory stimulation drives the conversion of MSCs to inflammatory CAFs that promote pro-metastatic characteristics in breast cancer cells. Cancers (Basel). 13:14722021. View Article : Google Scholar : PubMed/NCBI

238 

Chen Y, Yu D, Qian H, Shi Y and Tao Z: CD8+ T cell-based cancer immunotherapy. J Transl Med. 22:3942024. View Article : Google Scholar : PubMed/NCBI

239 

Bhandarkar V, Dinter T and Spranger S: Architects of immunity: How dendritic cells shape CD8+ T cell fate in cancer. Sci Immunol. 10:eadf47262025. View Article : Google Scholar : PubMed/NCBI

240 

Giles JR, Globig AM, Kaech SM and Wherry EJ: CD8+ T cells in the cancer-immunity cycle. Immunity. 56:2231–2253. 2023. View Article : Google Scholar : PubMed/NCBI

241 

Tang D, Tang Q, Huang W, Zhang Y, Tian Y and Fu X: Fasting: From physiology to pathology. Adv Sci (Weinh). 10:e22044872023. View Article : Google Scholar : PubMed/NCBI

242 

Wilkinson MJ, Manoogian ENC, Zadourian A, Lo H, Fakhouri S, Shoghi A, Wang X, Fleischer JG, Navlakha S, Panda S and Taub PR: Ten-hour time-restricted eating reduces weight, blood pressure, and atherogenic lipids in patients with metabolic syndrome. Cell Metab. 31:92–104.e5. 2020. View Article : Google Scholar : PubMed/NCBI

243 

Yelek C, Mignion L, Paquot A, Bouzin C, Corbet C, Muccioli GG, Cani PD and Jordan BF: Tumor metabolism is affected by obesity in preclinical models of triple-negative breast cancer. Cancers (Basel). 14:5622022. View Article : Google Scholar : PubMed/NCBI

244 

James FR, Wootton S, Jackson A, Wiseman M, Copson ER and Cutress RI: Obesity in breast cancer-what is the risk factor? Eur J Cancer. 51:705–720. 2015. View Article : Google Scholar : PubMed/NCBI

245 

Ng WH, Abu Zaid Z, Mohd Yusof BN, Amin Nordin S and Lim PY: Association between dietary inflammatory index and body fat percentage among newly diagnosed breast cancer patients. Ann Med. 55:23033992023. View Article : Google Scholar : PubMed/NCBI

246 

Savva C, Copson E, Johnson PWM, Cutress RI and Beers SA: Obesity is associated with immunometabolic changes in adipose tissue that may drive treatment resistance in breast cancer: immune-metabolic reprogramming and novel therapeutic strategies. Cancers (Basel). 15:24402023. View Article : Google Scholar : PubMed/NCBI

247 

Calle EE and Kaaks R: Overweight, obesity and cancer: Epidemiological evidence and proposed mechanisms. Nat Rev Cancer. 4:579–591. 2004. View Article : Google Scholar : PubMed/NCBI

248 

Gallagher EJ and LeRoith D: Obesity and diabetes: The increased risk of cancer and cancer-related mortality. Physiol Rev. 95:727–748. 2015. View Article : Google Scholar : PubMed/NCBI

249 

Ringel AE, Drijvers JM, Baker GJ, Catozzi A, García-Cañaveras JC, Gassaway BM, Miller BC, Juneja VR, Nguyen TH, Joshi S, et al: Obesity shapes metabolism in the tumor microenvironment to suppress anti-tumor immunity. Cell. 183:1848–1866.e26. 2020. View Article : Google Scholar : PubMed/NCBI

250 

Quail DF and Dannenberg AJ: The obese adipose tissue microenvironment in cancer development and progression. Nat Rev Endocrinol. 15:139–154. 2019. View Article : Google Scholar : PubMed/NCBI

251 

Iyengar NM, Gucalp A, Dannenberg AJ and Hudis CA: Obesity and cancer mechanisms: Tumor microenvironment and inflammation. J Clin Oncol. 34:4270–4276. 2016. View Article : Google Scholar : PubMed/NCBI

252 

Fortner RT, Katzke V, Kühn T and Kaaks R: Obesity and breast cancer. Recent Results Cancer Res. 208:43–65. 2016. View Article : Google Scholar : PubMed/NCBI

253 

Jiralerspong S and Goodwin PJ: Obesity and breast cancer prognosis: Evidence, challenges, and opportunities. J Clin Oncol. 34:4203–4216. 2016. View Article : Google Scholar : PubMed/NCBI

254 

Suzuki R, Orsini N, Saji S, Key TJ and Wolk A: Body weight and incidence of breast cancer defined by estrogen and progesterone receptor status-a meta-analysis. Int J Cancer. 124:698–712. 2009. View Article : Google Scholar : PubMed/NCBI

255 

Cecchini RS, Costantino JP, Cauley JA, Cronin WM, Wickerham DL, Land SR, Weissfeld JL and Wolmark N: Body mass index and the risk for developing invasive breast cancer among high-risk women in NSABP P-1 and STAR breast cancer prevention trials. Cancer Prev Res (Phila). 5:583–592. 2012. View Article : Google Scholar : PubMed/NCBI

256 

Chan DSM, Vieira AR, Aune D, Bandera EV, Greenwood DC, McTiernan A, Navarro Rosenblatt D, Thune I, Vieira R and Norat T: Body mass index and survival in women with breast cancer-systematic literature review and meta-analysis of 82 follow-up studies. Ann Oncol. 25:1901–1914. 2014. View Article : Google Scholar : PubMed/NCBI

257 

Key TJ, Appleby PN, Reeves GK, Roddam A, Dorgan JF, Longcope C, Stanczyk FZ, Stephenson HE Jr, Falk RT, Miller R, et al: Body mass index, serum sex hormones, and breast cancer risk in postmenopausal women. J Natl Cancer Inst. 95:1218–1226. 2003. View Article : Google Scholar : PubMed/NCBI

258 

He M, Xu S, Yan F, Ruan J and Zhang X: Fatty acid metabolism: A new perspective in breast cancer precision therapy. Front Biosci (Landmark Ed). 28:3482023. View Article : Google Scholar : PubMed/NCBI

259 

Guo R, Chen Y, Borgard H, Jijiwa M, Nasu M, He M and Deng Y: The function and mechanism of lipid molecules and their roles in the diagnosis and prognosis of breast cancer. Molecules. 25:48682020. View Article : Google Scholar

260 

Lu S and Archer MC: Sp1 coordinately regulates de novo lipogenesis and proliferation in cancer cells. Int J Cancer. 126:416–425. 2010. View Article : Google Scholar : PubMed/NCBI

261 

Martin-Perez M, Urdiroz-Urricelqui U, Bigas C and Benitah SA: The role of lipids in cancer progression and metastasis. Cell Metab. 34:1675–1699. 2022. View Article : Google Scholar : PubMed/NCBI

262 

Solsona-Vilarrasa E and Vousden KH: Obesity, white adipose tissue and cancer. FEBS J. 292:2189–2207. 2025. View Article : Google Scholar : PubMed/NCBI

263 

Kolb R, Kluz P, Tan ZW, Borcherding N, Bormann N, Vishwakarma A, Balcziak L, Zhu P, Davies BS, Gourronc F, et al: Obesity-associated inflammation promotes angiogenesis and breast cancer via angiopoietin-like 4. Oncogene. 38:2351–2363. 2019. View Article : Google Scholar : PubMed/NCBI

264 

Magalhães A, Cesário V, Coutinho D, Matias I, Domingues G, Pinheiro C, Serafim T and Dias S: A high-cholesterol diet promotes the intravasation of breast tumor cells through an LDL-LDLR axis. Sci Rep. 14:94712024. View Article : Google Scholar : PubMed/NCBI

265 

Zipinotti Dos Santos D, de Souza JC, Pimenta TM, da Silva Martins B, Junior RSR, Butzene SMS, Tessarolo NG, Cilas PML Jr, Silva IV and Rangel LBA: The impact of lipid metabolism on breast cancer: A review about its role in tumorigenesis and immune escape. Cell Commun Signal. 21:1612023. View Article : Google Scholar : PubMed/NCBI

266 

Centonze G, Natalini D, Piccolantonio A, Salemme V, Morellato A, Arina P, Riganti C and Defilippi P: Cholesterol and its derivatives: Multifaceted players in breast cancer progression. Front Oncol. 12:9066702022. View Article : Google Scholar : PubMed/NCBI

267 

Li P, Zhang Z, Lv H and Sun P: Inhibiting the expression of STARD3 induced apoptosis via the inactivation of PI3K/AKT/mTOR pathway on ER+ breast cancer. Tissue Cell. 79:1019712022. View Article : Google Scholar : PubMed/NCBI

268 

Bandyopadhayaya S, Akimov MG, Verma R, Sharma A, Sharma D, Kundu GC, Gretskaya NM, Bezuglov VV and Mandal CC: N-arachidonoyl dopamine inhibits epithelial-mesenchymal transition of breast cancer cells through ERK signaling and decreasing the cellular cholesterol. J Biochem Mol Toxicol. 35:e226932021. View Article : Google Scholar : PubMed/NCBI

269 

Baek AE, Krawczynska N, Das Gupta A, Dvoretskiy SV, You S, Park J, Deng YH, Sorrells JE, Smith BP, Ma L, et al: The cholesterol metabolite 27HC increases secretion of extracellular vesicles which promote breast cancer progression. Endocrinology. 162:bqab0952021. View Article : Google Scholar : PubMed/NCBI

270 

Godina C, Indira Chandran V, Barbachowska M, Tryggvadottir H, Nodin B, Visse E, Borgquist S, Jirström K, Isaksson K, Bosch A, et al: Interplay between caveolin-1 and body and tumor size affects clinical outcomes in breast cancer. Transl Oncol. 22:1014642022. View Article : Google Scholar : PubMed/NCBI

271 

Trabert B, Bauer DC, Buist DSM, Cauley JA, Falk RT, Geczik AM, Gierach GL, Hada M, Hue TF, Lacey JV Jr, et al: Association of circulating progesterone with breast cancer risk among postmenopausal women. JAMA Netw Open. 3:e2036452020. View Article : Google Scholar : PubMed/NCBI

272 

Mohanty SS and Mohanty PK: Obesity as potential breast cancer risk factor for postmenopausal women. Genes Dis. 8:117–123. 2019. View Article : Google Scholar : PubMed/NCBI

273 

Glassman I, Le N, Asif A, Goulding A, Alcantara CA, Vu A, Chorbajian A, Mirhosseini M, Singh M and Venketaraman V: The role of obesity in breast cancer pathogenesis. Cells. 12:20612023. View Article : Google Scholar : PubMed/NCBI

274 

Dong S, Wang Z, Shen K and Chen X: Metabolic syndrome and breast cancer: Prevalence, treatment response, and prognosis. Front Oncol. 11:6296662021. View Article : Google Scholar : PubMed/NCBI

275 

Zhao X, An X, Yang C, Sun W, Ji H and Lian F: The crucial role and mechanism of insulin resistance in metabolic disease. Front Endocrinol (Lausanne). 14:11492392023. View Article : Google Scholar : PubMed/NCBI

276 

Dieli-Conwright CM, Wong L, Waliany S and Mortimer JE: Metabolic syndrome and breast cancer survivors: A follow-up analysis after completion of chemotherapy. Diabetol Metab Syndr. 14:362022. View Article : Google Scholar : PubMed/NCBI

277 

Viedma-Rodríguez R, Martínez-Hernández MG, Martínez-Torres DI and Baiza-Gutman LA: Epithelial mesenchymal transition and progression of breast cancer promoted by diabetes mellitus in mice are associated with increased expression of glycolytic and proteolytic enzymes. Horm Cancer. 11:170–181. 2020. View Article : Google Scholar : PubMed/NCBI

278 

Rahman MM, Behl T, Islam MR, Alam MN, Islam MM, Albarrati A, Albratty M, Meraya AM and Bungau SG: Emerging management approach for the adverse events of immunotherapy of cancer. Molecules. 27:37982022. View Article : Google Scholar : PubMed/NCBI

279 

Mehanna J, Haddad FG, Eid R, Lambertini M and Kourie HR: Triple-negative breast cancer: Current perspective on the evolving therapeutic landscape. Int J Womens Health. 11:431–437. 2019. View Article : Google Scholar : PubMed/NCBI

280 

Ye F, Dewanjee S, Li Y, Jha NK, Chen ZS, Kumar A, Vishakha Behl T, Jha SK and Tang H: Advancements in clinical aspects of targeted therapy and immunotherapy in breast cancer. Mol Cancer. 22:1052023. View Article : Google Scholar : PubMed/NCBI

281 

Morrow RJ, Allam AH, Yeo B, Deb S, Murone C, Lim E, Johnstone CN and Ernst M: Paracrine IL-6 signaling confers proliferation between heterogeneous inflammatory breast cancer sub-clones. Cancers (Basel). 14:22922022. View Article : Google Scholar : PubMed/NCBI

282 

Manore SG, Doheny DL, Wong GL and Lo HW: IL-6/JAK/STAT3 signaling in breast cancer metastasis: Biology and treatment. Front Oncol. 12:8660142022. View Article : Google Scholar : PubMed/NCBI

283 

Ding R, Kan Q, Wang T, Xiao R, Song Y and Li D: Ginsenoside Rh2 regulates triple-negative breast cancer proliferation and apoptosis via the IL-6/JAK2/STAT3 pathway. Front Pharmacol. 15:14838962025. View Article : Google Scholar : PubMed/NCBI

284 

Sun X, Liu K, Lu S, He W and Du Z: Targeted therapy and immunotherapy for heterogeneous breast cancer. Cancers (Basel). 14:54562022. View Article : Google Scholar : PubMed/NCBI

285 

Swain SM, Shastry M and Hamilton E: Targeting HER2-positive breast cancer: Advances and future directions. Nat Rev Drug Discov. 22:101–126. 2023. View Article : Google Scholar : PubMed/NCBI

286 

Maadi H, Soheilifar MH, Choi WS, Moshtaghian A and Wang Z: Trastuzumab mechanism of action; 20 years of research to unravel a dilemma. Cancers (Basel). 13:35402021. View Article : Google Scholar : PubMed/NCBI

287 

Li F and Liu S: Focusing on NK cells and ADCC: A promising immunotherapy approach in targeted therapy for HER2-positive breast cancer. Front Immunol. 13:10834622022. View Article : Google Scholar : PubMed/NCBI

288 

Mandó P, Rivero SG, Rizzo MM, Pinkasz M and Levy EM: Targeting ADCC: A different approach to HER2 breast cancer in the immunotherapy era. Breast. 60:15–25. 2021. View Article : Google Scholar : PubMed/NCBI

289 

Waks AG, Martínez-Sáez O, Tarantino P, Braso-Maristany F, Pascual T, Cortés J, Tolaney SM and Prat A: Dual HER2 inhibition: Mechanisms of synergy, patient selection, and resistance. Nat Rev Clin Oncol. 21:818–832. 2024. View Article : Google Scholar : PubMed/NCBI

290 

Yeh R, O'Donoghue JA, Jayaprakasam VS, Mauguen A, Min R, Park S, Brockway JP, Bromberg JF, Zhi WI, Robson ME, et al: First-in-human evaluation of site-specifically labeled 89Zr-pertuzumab in patients with HER2-positive breast cancer. J Nucl Med. 65:386–393. 2024. View Article : Google Scholar : PubMed/NCBI

291 

García-Aranda M and Redondo M: Protein kinase targets in breast cancer. Int J Mol Sci. 18:25432017. View Article : Google Scholar : PubMed/NCBI

292 

Zhang S, Chen W, Zhou J, Liang Q, Zhang Y, Su M, Zhang Z and Qu J: The benefits and safety of monoclonal antibodies: implications for cancer immunotherapy. J Inflamm Res. 18:4335–4357. 2025. View Article : Google Scholar : PubMed/NCBI

293 

Wang R, Hu B, Pan Z, Mo C, Zhao X, Liu G, Hou P, Cui Q, Xu Z, Wang W, et al: Antibody-drug conjugates (ADCs): Current and future biopharmaceuticals. J Hematol Oncol. 18:512025. View Article : Google Scholar : PubMed/NCBI

294 

Torres ETR and Emens LA: Emerging combination immunotherapy strategies for breast cancer: Dual immune checkpoint modulation, antibody-drug conjugates and bispecific antibodies. Breast Cancer Res Treat. 191:291–302. 2022. View Article : Google Scholar : PubMed/NCBI

295 

Schmid P, Adams S, Rugo HS, Schneeweiss A, Barrios CH, Iwata H, Diéras V, Hegg R, Im SA, Shaw Wright G, et al: Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N Engl J Med. 379:2108–2121. 2018. View Article : Google Scholar : PubMed/NCBI

296 

Cortes J, Cescon DW, Rugo HS, Nowecki Z, Im SA, Yusof MM, Gallardo C, Lipatov O, Barrios CH, Holgado E, et al: Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer (KEYNOTE-355): A randomised, placebo-controlled, double-blind, phase 3 clinical trial. Lancet. 396:1817–1828. 2020. View Article : Google Scholar : PubMed/NCBI

297 

Ayoub NM, Al-Shami KM and Yaghan RJ: Immunotherapy for HER2-positive breast cancer: Recent advances and combination therapeutic approaches. Breast Cancer (Dove Med Press). 11:53–69. 2019.PubMed/NCBI

298 

Mittendorf EA, Zhang H, Barrios CH, Saji S, Jung KH, Hegg R, Koehler A, Sohn J, Iwata H, Telli ML, et al: Neoadjuvant atezolizumab in combination with sequential nab-paclitaxel and anthracycline-based chemotherapy versus placebo and chemotherapy in patients with early-stage triple-negative breast cancer (IMpassion031): A randomised, double-blind, phase 3 trial. Lancet. 396:1090–1100. 2020. View Article : Google Scholar : PubMed/NCBI

299 

Pusztai L, Yau C, Wolf DM, Han HS, Du L, Wallace AM, String-Reasor E, Boughey JC, Chien AJ, Elias AD, et al: Durvalumab with olaparib and paclitaxel for high-risk HER2-negative stage II/III breast cancer: Results from the adaptively randomized I-SPY2 trial. Cancer Cell. 39:989–998.e5. 2021. View Article : Google Scholar : PubMed/NCBI

300 

El Bairi K, Haynes HR, Blackley E, Fineberg S, Shear J, Turner S, de Freitas JR, Sur D, Amendola LC, Gharib M, et al: The tale of TILs in breast cancer: A report from the international immuno-oncology biomarker working group. NPJ Breast Cancer. 7:1502021. View Article : Google Scholar : PubMed/NCBI

301 

Loi S, Salgado R, Adams S, Pruneri G, Francis PA, Lacroix-Triki M, Joensuu H, Dieci MV, Badve S, Demaria S, et al: Tumor infiltrating lymphocyte stratification of prognostic staging of early-stage triple negative breast cancer. NPJ Breast Cancer. 8:32022. View Article : Google Scholar : PubMed/NCBI

302 

Moisand A, Madéry M, Boyer T, Domblides C, Blaye C and Larmonier N: Hormone receptor signaling and breast cancer resistance to anti-tumor immunity. Int J Mol Sci. 24:150482023. View Article : Google Scholar : PubMed/NCBI

303 

Axelrod ML, Cook RS, Johnson DB and Balko JM: Biological consequences of MHC-II expression by tumor cells in cancer. Clin Cancer Res. 25:2392–2402. 2019. View Article : Google Scholar : PubMed/NCBI

304 

Smith PL, Piadel K and Dalgleish AG: Directing T-cell immune responses for cancer vaccination and immunotherapy. Vaccines (Basel). 9:13922021. View Article : Google Scholar : PubMed/NCBI

305 

Mittendorf EA, Clifton GT, Holmes JP, Schneble E, van Echo D, Ponniah S and Peoples GE: Final report of the phase I/II clinical trial of the E75 (nelipepimut-S) vaccine with booster inoculations to prevent disease recurrence in high-risk breast cancer patients. Ann Oncol. 25:1735–1742. 2014. View Article : Google Scholar : PubMed/NCBI

306 

Carmichael MG, Benavides LC, Holmes JP, Gates JD, Mittendorf EA, Ponniah S and Peoples GE: Results of the first phase 1 clinical trial of the HER-2/neu peptide (GP2) vaccine in disease-free breast cancer patients: United States military cancer institute clinical trials group study I-04. Cancer. 116:292–301. 2010. View Article : Google Scholar : PubMed/NCBI

307 

McCarthy PM, Clifton GT, Vreeland TJ, Adams AM, O'Shea AE and Peoples GE: AE37: A HER2-targeted vaccine for the prevention of breast cancer recurrence. Expert Opin Investig Drugs. 30:5–11. 2021. View Article : Google Scholar : PubMed/NCBI

308 

Liu Y, Hu Y, Xue J, Li J, Yi J, Bu J, Zhang Z, Qiu P and Gu X: Advances in immunotherapy for triple-negative breast cancer. Mol Cancer. 22:1452023. View Article : Google Scholar : PubMed/NCBI

309 

Yuan Y, Lee JS, Yost SE, Frankel PH, Ruel C, Egelston CA, Guo W, Gillece JD, Folkerts M, Reining L, et al: A phase II clinical trial of pembrolizumab and enobosarm in patients with androgen receptor-positive metastatic triple-negative breast cancer. Oncologist. 26:99–e217. 2021. View Article : Google Scholar : PubMed/NCBI

310 

Wood SJ, Gao Y, Lee JH, Chen J, Wang Q, Meisel JL and Li X: High tumor infiltrating lymphocytes are significantly associated with pathological complete response in triple negative breast cancer treated with neoadjuvant KEYNOTE-522 chemoimmunotherapy. Breast Cancer Res Treat. 205:193–199. 2024. View Article : Google Scholar : PubMed/NCBI

311 

Cardoso F, O'Shaughnessy J, Liu Z, McArthur H, Schmid P, Cortes J, Harbeck N, Telli ML, Cescon DW, Fasching PA, et al: Pembrolizumab and chemotherapy in high-risk, early-stage, ER+/HER2− breast cancer: A randomized phase 3 trial. Nat Med. 31:442–448. 2025. View Article : Google Scholar : PubMed/NCBI

312 

Thuya WL, Cao Y, Ho PC, Wong AL, Wang L, Zhou J, Nicot C and Goh BC: Insights into IL-6/JAK/STAT3 signaling in the tumor microenvironment: Implications for cancer therapy. Cytokine Growth Factor Rev. 85:26–42. 2025. View Article : Google Scholar : PubMed/NCBI

313 

Kahaer G, Pan S, Yang C, Xie W and Lu Y: Dual function of Gasdermin E: Pyroptosis-mediated pan-cancer suppression versus HCC-specific oncogenic activity. Front Immunol. 16:16263112025. View Article : Google Scholar : PubMed/NCBI

314 

Yang J, Xu J, Wang W, Zhang B, Yu X and Shi S: Epigenetic regulation in the tumor microenvironment: Molecular mechanisms and therapeutic targets. Signal Transduct Target Ther. 8:2102023. View Article : Google Scholar : PubMed/NCBI

315 

Kwon YY and Hui S: IL-6 promotes tumor growth through immune evasion but is dispensable for cachexia. EMBO Rep. 25:2592–2609. 2024. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Li G, Jin B, Zhou J, Fang S and Fan Z: Immune system, inflammatory response, and regulated cell death in breast cancer research (Review). Oncol Rep 55: 11, 2026.
APA
Li, G., Jin, B., Zhou, J., Fang, S., & Fan, Z. (2026). Immune system, inflammatory response, and regulated cell death in breast cancer research (Review). Oncology Reports, 55, 11. https://doi.org/10.3892/or.2025.9016
MLA
Li, G., Jin, B., Zhou, J., Fang, S., Fan, Z."Immune system, inflammatory response, and regulated cell death in breast cancer research (Review)". Oncology Reports 55.1 (2026): 11.
Chicago
Li, G., Jin, B., Zhou, J., Fang, S., Fan, Z."Immune system, inflammatory response, and regulated cell death in breast cancer research (Review)". Oncology Reports 55, no. 1 (2026): 11. https://doi.org/10.3892/or.2025.9016
Copy and paste a formatted citation
x
Spandidos Publications style
Li G, Jin B, Zhou J, Fang S and Fan Z: Immune system, inflammatory response, and regulated cell death in breast cancer research (Review). Oncol Rep 55: 11, 2026.
APA
Li, G., Jin, B., Zhou, J., Fang, S., & Fan, Z. (2026). Immune system, inflammatory response, and regulated cell death in breast cancer research (Review). Oncology Reports, 55, 11. https://doi.org/10.3892/or.2025.9016
MLA
Li, G., Jin, B., Zhou, J., Fang, S., Fan, Z."Immune system, inflammatory response, and regulated cell death in breast cancer research (Review)". Oncology Reports 55.1 (2026): 11.
Chicago
Li, G., Jin, B., Zhou, J., Fang, S., Fan, Z."Immune system, inflammatory response, and regulated cell death in breast cancer research (Review)". Oncology Reports 55, no. 1 (2026): 11. https://doi.org/10.3892/or.2025.9016
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team