You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
|
Brown G: Introduction and Classification of Leukemias. Leukemia Stem Cells: Methods and Protocols. Cobaleda C and Sánchez-García I: Springer; New York, NY: pp. 3–23. 2021 | |
|
Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 74:229–263. 2024.PubMed/NCBI | |
|
Daltveit DS, Morgan E, Colombet M, Steliarova-Foucher E, Bendahhou K, Marcos-Gragera R, Rongshou Z, Smith A, Wei H and Soerjomataram I: Global patterns of leukemia by subtype, age, and sex in 185 countries in 2022. Leukemia. 39:412–419. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Du M, Chen W, Liu K, Wang L, Hu Y, Mao Y, Sun X, Luo Y, Shi J, Shao K, et al: The global burden of leukemia and its attributable factors in 204 countries and territories: Findings from the Global Burden of Disease 2019 study and projections to 2030. J Oncol. 2022:16127022022. View Article : Google Scholar : PubMed/NCBI | |
|
Dong Y, Shi O, Zeng Q, Lu X, Wang W, Li Y and Wang Q: Leukemia incidence trends at the global, regional, and national level between 1990 and 2017. Exp Hematol Oncol. 9:142020. View Article : Google Scholar : PubMed/NCBI | |
|
Sharma R and Jani C: Mapping incidence and mortality of leukemia and its subtypes in 21 world regions in last three decades and projections to 2030. Ann Hematol. 101:1523–1534. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Briot T, Roger E, Thépot S and Lagarce F: Advances in treatment formulations for acute myeloid leukemia. Drug Discov Today. 23:1936–1949. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Škubník J, Pavlíčková VS, Ruml T and Rimpelová S: Vincristine in combination therapy of cancer: Emerging trends in clinics. Biology (Basel). 10:8492021.PubMed/NCBI | |
|
Park SB, Goldstein D, Krishnan AV, Lin CS, Friedlander ML, Cassidy J, Koltzenburg M and Kiernan MC: Chemotherapy-induced peripheral neurotoxicity: A critical analysis. CA Cancer J Clin. 63:419–437. 2013.PubMed/NCBI | |
|
Mort MK, Sen JM, Morris AL, DeGregory KA, McLoughlin EM, Mort JF, Dunn SP, Abuannadi M and Keng MK: Evaluation of cardiomyopathy in acute myeloid leukemia patients treated with anthracyclines. J Oncol Pharm Pract. 26:680–687. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Wallace KB: Doxorubicin-induced cardiac mitochondrionopathy. Pharmacol Toxicol. 93:105–115. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Pogorzala M, Kubicka M, Rafinska B, Wysocki M and Styczynski J: Drug-resistance profile in multiple-relapsed childhood acute lymphoblastic leukemia. Anticancer Res. 35:5667–5670. 2015.PubMed/NCBI | |
|
Xia CQ and Smith PG: Drug efflux transporters and multidrug resistance in acute leukemia: Therapeutic impact and novel approaches to mediation. Mol Pharmacol. 82:1008–1021. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Kantarjian HM, Keating MJ and Freireich EJ: Toward the potential cure of leukemias in the next decade. Cancer. 124:4301–4313. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Bhansali RS, Pratz KW and Lai C: Recent advances in targeted therapies in acute myeloid leukemia. J Hematol Oncol. 16:292023. View Article : Google Scholar : PubMed/NCBI | |
|
Brivio E, Baruchel A, Beishuizen A, Bourquin JP, Brown PA, Cooper T, Gore L, Kolb EA, Locatelli F, Maude SL, et al: Targeted inhibitors and antibody immunotherapies: Novel therapies for paediatric leukaemia and lymphoma. Eur J Cancer. 164:1–17. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Das AB, Smith-Díaz CC and Vissers MCM: Emerging epigenetic therapeutics for myeloid leukemia: Modulating demethylase activity with ascorbate. Haematologica. 106:14–25. 2021.PubMed/NCBI | |
|
Zhang X, Wang H, Zhang Y and Wang X: Advances in epigenetic alterations of chronic lymphocytic leukemia: From pathogenesis to treatment. Clin Exp Med. 24:542024. View Article : Google Scholar : PubMed/NCBI | |
|
Bian J and Zhang L, Han Y, Wang C and Zhang L: Histone deacetylase inhibitors: Potent anti-leukemic agents. Curr Med Chem. 22:2065–2074. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Gaál Z, Oláh É, Rejtő L, Erdődi F and Csernoch L: Strong correlation between the expression levels of HDAC4 and SIRT6 in hematological malignancies of the adults. Pathol Oncol Res. 23:493–504. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Wang F, Li Z, Zhou J, Wang G, Zhang W, Xu J and Liang A: SIRT1 regulates the phosphorylation and degradation of P27 by deacetylating CDK2 to promote T-cell acute lymphoblastic leukemia progression. J Exp Clin Cancer Res. 40:2592021. View Article : Google Scholar : PubMed/NCBI | |
|
Merarchi M, Sethi G, Shanmugam MK, Fan L, Arfuso F and Ahn KS: Role of natural products in modulating histone deacetylases in cancer. Molecules. 24:10472019. View Article : Google Scholar : PubMed/NCBI | |
|
Singh AK, Bishayee A and Pandey AK: Targeting histone deacetylases with natural and synthetic agents: An emerging anticancer strategy. Nutrients. 10:7312018. View Article : Google Scholar : PubMed/NCBI | |
|
Janssens Y, Wynendaele E, Vanden Berghe W and De Spiegeleer B: Peptides as epigenetic modulators: Therapeutic implications. Clin Epigenetics. 11:1012019. View Article : Google Scholar : PubMed/NCBI | |
|
Yang XJ and Seto E: HATs and HDACs: From structure, function and regulation to novel strategies for therapy and prevention. Oncogene. 26:5310–5318. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Gray SG and Teh BT: Histone acetylation/deacetylation and cancer: An ‘open’ and ‘shut’ case? Curr Mol Med. 1:401–429. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Lawson M, Uciechowska U, Schemies J, Rumpf T, Jung M and Sippl W: Inhibitors to understand molecular mechanisms of NAD(+)-dependent deacetylases (sirtuins). Biochim Biophys Acta. 1799:726–739. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Seto E and Yoshida M: Erasers of histone acetylation: The histone deacetylase enzymes. Cold Spring Harb Perspect Biol. 6:a0187132014. View Article : Google Scholar : PubMed/NCBI | |
|
Asmamaw MD, He A, Zhang LR, Liu HM and Gao Y: Histone deacetylase complexes: Structure, regulation and function. Biochim Biophys Acta Rev Cancer. 1879:1891502024. View Article : Google Scholar : PubMed/NCBI | |
|
Duan Z, Zarebski A, Montoya-Durango D, Grimes HL and Horwitz M: Gfi1 coordinates epigenetic repression of p21 Cip/WAF1 by recruitment of histone lysine methyltransferase G9a and histone deacetylase 1. Mol Cell biol. 25:10338–10351. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Fujiwara T, Lee HY, Sanalkumar R and Bresnick EH: Building multifunctionality into a complex containing master regulators of hematopoiesis. Proc Natl Acad Sci USA. 107:20429–20434. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
van Oorschot R, Hansen M, Koornneef JM, Marneth AE, Bergevoet SM, van Bergen MGJM, van Alphen FPJ, van der Zwaan C, Martens JHA, Vermeulen M, et al: Molecular mechanisms of bleeding disorder associated GFI1BQ287* mutation and its affected pathways in megakaryocytes and platelets. Haematologica. 104:1460–1472. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Calderon A, Mestvirishvili T, Boccalatte F, Ruggles KV and David G: Chromatin accessibility and cell cycle progression are controlled by the HDAC-associated Sin3B protein in murine hematopoietic stem cells. Epigenetics Chromatin. 17:22024. View Article : Google Scholar : PubMed/NCBI | |
|
Wada T, Kikuchi J, Nishimura N, Shimizu R, Kitamura T and Furukawa Y: Expression levels of histone deacetylases determine the cell fate of hematopoietic progenitors. J Biol Chem. 284:30673–30683. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Wang P, Wang Z and Liu J: Role of HDACs in normal and malignant hematopoiesis. Mol Cancer. 19:52020. View Article : Google Scholar : PubMed/NCBI | |
|
Yan B, Yang J, Kim MY, Luo H, Cesari N, Yang T, Strouboulis J, Zhang J, Hardison R, Huang S and Qiu Y: HDAC1 is required for GATA-1 transcription activity, global chromatin occupancy and hematopoiesis. Nucleic Acids Res. 49:9783–9798. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Iwasaki H, Mizuno S, Arinobu Y, Ozawa H, Mori Y, Shigematsu H, Takatsu K, Tenen DG and Akashi K: The order of expression of transcription factors directs hierarchical specification of hematopoietic lineages. Genes Dev. 20:3010–3021. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Yamamura K, Ohishi K, Katayama N, Yu Z, Kato K, Masuya M, Fujieda A, Sugimoto Y, Miyata E, Shibasaki T, et al: Pleiotropic role of histone deacetylases in the regulation of human adult erythropoiesis. Br J Haematol. 135:242–253. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Das Gupta K, Shakespear MR, Iyer A, Fairlie DP and Sweet MJ: Histone deacetylases in monocyte/macrophage development, activation and metabolism: refining HDAC targets for inflammatory and infectious diseases. Clin Transl Immunol. 5:e622016. View Article : Google Scholar : PubMed/NCBI | |
|
Heideman MR, Lancini C, Proost N, Yanover E, Jacobs H and Dannenberg JH: Sin3a-associated Hdac1 and Hdac2 are essential for hematopoietic stem cell homeostasis and contribute differentially to hematopoiesis. Haematologica. 99:1292–1303. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Liu B, Ohishi K, Yamamura K, Suzuki K, Monma F, Ino K, Nishii K, Masuya M, Sekine T, Heike Y, et al: A potential activity of valproic acid in the stimulation of interleukin-3−mediated megakaryopoiesis and erythropoiesis. Exp Hematol. 38:685–695. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Yamaguchi T, Cubizolles F, Zhang Y, Reichert N, Kohler H, Seiser C and Matthias P: Histone deacetylases 1 and 2 act in concert to promote the G1-to-S progression. Genes Dev. 24:455–469. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Boucheron N, Tschismarov R, Göschl L, Moser MA, Lagger S, Sakaguchi S, Winter M, Lenz F, Vitko D, Breitwieser FP, et al: CD4+ T cell lineage integrity is controlled by the histone deacetylases HDAC1 and HDAC2. Nat Immunol. 15:439–448. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Ni L, Wang L, Yao C, Ni Z, Liu F, Gong C, Zhu X, Yan X, Watowich SS, Lee DA and Zhu S: The histone deacetylase inhibitor valproic acid inhibits NKG2D expression in natural killer cells through suppression of STAT3 and HDAC3. Sci Rep. 7:452662017. View Article : Google Scholar : PubMed/NCBI | |
|
Lemercier C, Brocard MP, Puvion-Dutilleul F, Kao HY, Albagli O and Khochbin S: Class II histone deacetylases are directly recruited by BCL6 transcriptional repressor. J Biol Chem. 277:22045–22052. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Kasler HG and Verdin E: Histone deacetylase 7 functions as a key regulator of genes involved in both positive and negative selection of thymocytes. Mol Cell Biol. 27:5184–5200. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Li J, Li X, Sun W, Zhang J, Yan Q, Wu J, Jin J, Lu R and Miao D: Specific overexpression of SIRT1 in mesenchymal stem cells rescues hematopoiesis niche in BMI1 knockout mice through promoting CXCL12 expression. Int J Biol Sci. 18:2091–2103. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Skokowa J, Lan D, Thakur BK, Wang F, Gupta K, Cario G, Brechlin AM, Schambach A, Hinrichsen L, Meyer G, et al: NAMPT is essential for the G-CSF-induced myeloid differentiation via a NAD(+)-sirtuin-1-dependent pathway. Nat Med. 15:151–158. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Ou X, Chae HD, Wang RH, Shelley WC, Cooper S, Taylor T, Kim YJ, Deng CX, Yoder MC and Broxmeyer HE: SIRT1 deficiency compromises mouse embryonic stem cell hematopoietic differentiation, and embryonic and adult hematopoiesis in the mouse. Blood. 117:440–450. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Brown K, Xie S, Qiu X, Mohrin M, Shin J, Liu Y, Zhang D, Scadden DT and Chen D: SIRT3 reverses aging-associated degeneration. Cell Rep. 3:319–327. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Kaiser A, Schmidt M, Huber O, Frietsch JJ, Scholl S, Heidel FH, Hochhaus A, Müller JP and Ernst T: SIRT7: An influence factor in healthy aging and the development of age-dependent myeloid stem-cell disorders. Leukemia. 34:2206–2216. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Luo H, Mu WC, Karki R, Chiang HH, Mohrin M, Shin JJ, Ohkubo R, Ito K, Kanneganti TD and Chen D: Mitochondrial stress-Initiated aberrant activation of the NLRP3 inflammasome regulates the functional deterioration of hematopoietic stem cell aging. Cell Rep. 26:945–954.e4. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Sahakian E, Chen J, Powers JJ, Chen X, Maharaj K, Deng SL, Achille AN, Lienlaf M, Wang HW, Cheng F, et al: Essential role for histone deacetylase 11 (HDAC11) in neutrophil biology. J Leukoc Biol. 102:475–486. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Grignani F, De Matteis S, Nervi C, Tomassoni L, Gelmetti V, Cioce M, Fanelli M, Ruthardt M, Ferrara FF, Zamir I, et al: Fusion proteins of the retinoic acid receptor-alpha recruit histone deacetylase in promyelocytic leukaemia. Nature. 391:815–818. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Gelmetti V, Zhang J, Fanelli M, Minucci S, Pelicci PG and Lazar MA: Aberrant recruitment of the nuclear receptor corepressor-histone deacetylase complex by the acute myeloid leukemia fusion partner ETO. Mol Cell Biol. 18:7185–7191. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Girard N, Tremblay M, Humbert M, Grondin B, Haman A, Labrecque J, Chen B, Chen Z, Chen SJ and Hoang T: RARα-PLZF oncogene inhibits C/EBPα function in myeloid cells. Proc Natl Acad Sci USA. 110:13522–13527. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang J, Hug BA, Huang EY, Chen CW, Gelmetti V, Maccarana M, Minucci S, Pelicci PG and Lazar MA: Oligomerization of ETO is obligatory for corepressor interaction. Mol Cell Biol. 21:156–163. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Vishwakarma BA, Nguyen N, Makishima H, Hosono N, Gudmundsson KO, Negi V, Oakley K, Han Y, Przychodzen B, Maciejewski JP and Du Y: Runx1 repression by histone deacetylation is critical for Setbp1-induced mouse myeloid leukemia development. Leukemia. 30:200–208. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Nakata S, Yoshida T, Horinaka M, Shiraishi T, Wakada M and Sakai T: Histone deacetylase inhibitors upregulate death receptor 5/TRAIL-R2 and sensitize apoptosis induced by TRAIL/APO2-L in human malignant tumor cells. Oncogene. 23:6261–6271. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Yoo CB and Jones PA: Epigenetic therapy of cancer: past, present and future. Nat Rev Drug Discov. 5:37–50. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Mehrpouri M, Pourbagheri-Sigaroodi A and Bashash D: The contributory roles of histone deacetylases (HDACs) in hematopoiesis regulation and possibilities for pharmacologic interventions in hematologic malignancies. Int Immunopharmacol. 100:1081142021. View Article : Google Scholar : PubMed/NCBI | |
|
Van Damme M, Crompot E, Meuleman N, Mineur P, Bron D, Lagneaux L and Stamatopoulos B: HDAC isoenzyme expression is deregulated in chronic lymphocytic leukemia B-cells and has a complex prognostic significance. Epigenetics. 7:1403–1412. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Verbeek TCAI, Vrenken KS, Arentsen-Peters STCJM, Castro PG, van de Ven M, van Tellingen O, Pieters R and Stam RW: Selective inhibition of HDAC class IIA as therapeutic intervention for KMT2A-rearranged acute lymphoblastic leukemia. Commun Biol. 7:12572024. View Article : Google Scholar : PubMed/NCBI | |
|
Gu W and Roeder RG: Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell. 90:595–606. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Molica M, Mazzone C, Niscola P and de Fabritiis P: TP53 mutations in acute myeloid leukemia: Still a daunting challenge? Front Oncol. 10:6108202021. View Article : Google Scholar : PubMed/NCBI | |
|
Kuo YH, Qi J and Cook GJ: Regain control of p53: Targeting leukemia stem cells by isoform-specific HDAC inhibition. Exp Hematol. 44:315–321. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Qi J, Singh S, Hua WK, Cai Q, Chao SW, Li L, Liu H, Ho Y, McDonald T, Lin A, et al: HDAC8 inhibition specifically targets inv(16) acute myeloid leukemic stem cells by restoring p53 acetylation. Cell Stem Cell. 17:597–610. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Lee SM, Bae JH, Kim MJ, Lee HS, Lee MK, Chung BS, Kim DW, Kang CD and Kim SH: Bcr-Abl-independent imatinib-resistant K562 cells show aberrant protein acetylation and increased sensitivity to histone deacetylase inhibitors. J Pharmacol Exp Ther. 322:1084–1092. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Burgess M, Chen YCE, Mapp S, Blumenthal A, Mollee P, Gill D and Saunders NA: HDAC7 is an actionable driver of therapeutic antibody resistance by macrophages from CLL patients. Oncogene. 39:5756–5767. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Micelli C and Rastelli G: Histone deacetylases: Structural determinants of inhibitor selectivity. Drug Discov Today. 20:718–735. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang L, Zhang J, Jiang Q, Zhang L and Song W: Zinc binding groups for histone deacetylase inhibitors. J Enzyme Inhib Med Chem. 33:714–721. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Rajak H, Singh A, Dewangan PK, Patel V, Jain DK, Tiwari SK, Veerasamy R and Sharma PC: Peptide based aacrocycles: Selective histone deacetylase inhibitors with antiproliferative activity. Curr Med Chem. 20:1887–1903. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Curcio A, Rocca R, Alcaro S and Artese A: The histone deacetylase family: Structural features and application of combined computational methods. Pharmaceuticals (Basel). 17:6202024. View Article : Google Scholar : PubMed/NCBI | |
|
Davie JR: Inhibition of histone deacetylase activity by butyrate. J Nutr. 133 (7 Suppl):2485S–2493S. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Luu M, Riester Z, Baldrich A, Reichardt N, Yuille S, Busetti A, Klein M, Wempe A, Leister H, Raifer H, et al: Microbial short-chain fatty acids modulate CD8(+) T cell responses and improve adoptive immunotherapy for cancer. Nat Commun. 12:40772021. View Article : Google Scholar : PubMed/NCBI | |
|
Ozkan AD, Eskiler GG, Kazan N and Turna O: Histone deacetylase inhibitor sodium butyrate regulates the activation of toll-like receptor 4/interferon regulatory factor-3 signaling pathways in prostate cancer cells. J Cancer Res Ther. 19:1812–1817. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Sampathkumar SG, Jones MB, Meledeo MA, Campbell CT, Choi SS, Hida K, Gomutputra P, Sheh A, Gilmartin T, Head SR and Yarema KJ: Targeting glycosylation pathways and the cell cycle: Sugar-dependent activity of butyrate-carbohydrate cancer prodrugs. Chem Biol. 13:1265–1275. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Steliou K, Boosalis MS, Perrine SP, Sangerman J and Faller DV: Butyrate histone deacetylase inhibitors. Biores Open Access. 1:192–198. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Tang R, Faussat AM, Majdak P, Perrot JY, Chaoui D, Legrand O and Marie JP: Valproic acid inhibits proliferation and induces apoptosis in acute myeloid leukemia cells expressing P-gp and MRP1. Leukemia. 18:1246–1251. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Zapotocky M, Mejstrikova E, Smetana K, Stary J, Trka J and Starkova J: Valproic acid triggers differentiation and apoptosis in AML1/ETO-positive leukemic cells specifically. Cancer Lett. 319:144–153. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Fredly H, Gjertsen BT and Bruserud Ø: Histone deacetylase inhibition in the treatment of acute myeloid leukemia: The effects of valproic acid on leukemic cells, and the clinical and experimental evidence for combining valproic acid with other antileukemic agents. Clin Epigenetics. 5:122013. View Article : Google Scholar : PubMed/NCBI | |
|
Garcia-Manero G, Kantarjian HM, Sanchez-Gonzalez B, Yang H, Rosner G, Verstovsek S, Rytting M, Wierda WG, Ravandi F, Koller C, et al: Phase 1/2 study of the combination of 5-aza-2′-deoxycytidine with valproic acid in patients with leukemia. Blood. 108:3271–3279. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Peiffer L, Poll-Wolbeck SJ, Flamme H, Gehrke I, Hallek M and Kreuzer KA: Trichostatin A effectively induces apoptosis in chronic lymphocytic leukemia cells via inhibition of Wnt signaling and histone deacetylation. J Cancer Res Clin Oncol. 140:1283–1293. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Khan N, Jeffers M, Kumar S, Hackett C, Boldog F, Khramtsov N, Qian X, Mills E, Berghs SC, Carey N, et al: Determination of the class and isoform selectivity of small-molecule histone deacetylase inhibitors. Biochem J. 409:581–589. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Duvic M, Talpur R, Ni X, Zhang C, Hazarika P, Kelly C, Chiao JH, Reilly JF, Ricker JL, Richon VM and Frankel SR: Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL). Blood. 109:31–39. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Campbell P and Thomas CM: Belinostat for the treatment of relapsed or refractory peripheral T-cell lymphoma. J Oncol Pharm Pract. 23:143–147. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Laubach JP, Moreau P, San-Miguel JF and Richardson PG: Panobinostat for the treatment of multiple myeloma. Clin Cancer Res. 21:4767–4773. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Wagner JM, Hackanson B, Lübbert M and Jung M: Histone deacetylase (HDAC) inhibitors in recent clinical trials for cancer therapy. Clin Epigenetics. 1:117–136. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Batlevi CL, Crump M, Andreadis C, Rizzieri D, Assouline SE, Fox S, van der Jagt RHC, Copeland A, Potvin D, Chao R and Younes A: A phase 2 study of mocetinostat, a histone deacetylase inhibitor, in relapsed or refractory lymphoma. Br J Haematol. 178:434–441. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Carraway HE, Sawalha Y, Gojo I, Lee MJ, Lee S, Tomita Y, Yuno A, Greer J, Smith BD, Pratz KW, et al: Phase 1 study of the histone deacetylase inhibitor entinostat plus clofarabine for poor-risk Philadelphia chromosome-negative (newly diagnosed older adults or adults with relapsed refractory disease) acute lymphoblastic leukemia or biphenotypic leukemia. Leuk Res. 110:1067072021. View Article : Google Scholar : PubMed/NCBI | |
|
Maolanon AR, Kristensen HM, Leman LJ, Ghadiri MR and Olsen CA: Natural and synthetic macrocyclic inhibitors of the histone deacetylase enzymes. Chembiochem. 18:5–49. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Ueda H, Manda T, Matsumoto S, Mukumoto S, Nishigaki F, Kawamura I and Shimomura K: FR901228, a novel antitumor bicyclic depsipeptide produced by Chromobacterium violaceum No. 968. III. Antitumor activities on experimental tumors in mice. J Antibiot (Tokyo). 47:315–323. 1994. View Article : Google Scholar : PubMed/NCBI | |
|
Furumai R, Matsuyama A, Kobashi N, Lee KH, Nishiyama M, Nakajima H, Tanaka A, Komatsu Y, Nishino N, Yoshida M and Horinouchi S: FK228 (depsipeptide) as a natural prodrug that inhibits class I histone deacetylases. Cancer Res. 62:4916–4921. 2002.PubMed/NCBI | |
|
Murata M, Towatari M, Kosugi H, Tanimoto M, Ueda R, Saito H and Naoe T: Apoptotic cytotoxic effects of a histone deacetylase inhibitor, FK228, on malignant lymphoid cells. Jpn J Cancer Res. 91:1154–1160. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Campas-Moya C: Romidepsin for the treatment of cutaneous T-cell lymphoma. Drugs Today (Barc). 45:787–795. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Coiffier B, Pro B, Prince HM, Foss F, Sokol L, Greenwood M, Caballero D, Morschhauser F, Wilhelm M, Pinter-Brown L, et al: Romidepsin for the treatment of relapsed/refractory peripheral T-cell lymphoma: Pivotal study update demonstrates durable responses. J Hematol Oncol. 7:112014. View Article : Google Scholar : PubMed/NCBI | |
|
Savickiene J, Treigyte G, Borutinskaite V, Navakauskiene R and Magnusson KE: The histone deacetylase inhibitor FK228 distinctly sensitizes the human leukemia cells to retinoic acid-induced differentiation. Ann NY Acad Sci. 1091:368–384. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Kosugi H, Ito M, Yamamoto Y, Towatari M, Ito M, Ueda R, Saito H and Naoe T: In vivo effects of a histone deacetylase inhibitor, FK228, on human acute promyelocytic leukemia in NOD/Shi-scid/scid mice. Jpn J Cancer Res. 92:529–536. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Okabe S, Tauchi T, Nakajima A, Sashida G, Gotoh A, Broxmeyer HE, Ohyashiki JH and Ohyashiki K: Depsipeptide (FK228) preferentially induces apoptosis in BCR/ABL-expressing cell lines and cells from patients with chronic myelogenous leukemia in blast crisis. Stem Cells Dev. 16:503–514. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Klisovic MI, Maghraby EA, Parthun MR, Guimond M, Sklenar AR, Whitman SP, Chan KK, Murphy T, Anon J, Archer KJ, et al: Depsipeptide (FR 901228) promotes histone acetylation, gene transcription, apoptosis and its activity is enhanced by DNA methyltransferase inhibitors in AML1/ETO-positive leukemic cells. Leukemia. 17:350–358. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Shaker S, Bernstein M, Momparler LF and Momparler RL: Preclinical evaluation of antineoplastic activity of inhibitors of DNA methylation (5-aza-2′-deoxycytidine) and histone deacetylation (trichostatin A, depsipeptide) in combination against myeloid leukemic cells. Leuk Res. 27:437–444. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Brunvand MW and Carson J: Complete remission with romidepsin in a patient with T-cell acute lymphoblastic leukemia refractory to induction hyper-CVAD. Hematol Oncol. 36:340–343. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Cox WPJ, Evander N, Van Ingen Schenau DS, Stoll GR, Anderson N, De Groot L, Grünewald KJT, Hagelaar R, Butler M, Kuiper RP, et al: Histone deacetylase inhibition sensitizes p53-deficient B-cell precursor acute lymphoblastic leukemia to chemotherapy. Haematologica. 109:1755–1765. 2024.PubMed/NCBI | |
|
Foley N, Riedell PA, Bartlett NL, Cashen AF, Kahl BS, Fehniger TA, Fischer A, Moreno C, Liu J, Carson KR and Mehta-Shah N: A phase I study of romidepsin in combination with gemcitabine, oxaliplatin, and dexamethasone in patients with relapsed or refractory aggressive lymphomas enriched for T-Cell lymphomas. Clin Lymphoma Myeloma Leuk. 25:328–336. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Seiser T, Kamena F and Cramer N: Synthesis and biological activity of largazole and derivatives. Angew Chem Int Ed Engl. 47:6483–6485. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Bowers A, West N, Taunton J, Schreiber SL, Bradner JE and Williams RM: Total synthesis and biological mode of action of largazole: A potent class I histone deacetylase inhibitor. J Am Chem Soc. 130:11219–11222. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Taori K, Paul VJ and Luesch H: Structure and activity of largazole, a potent antiproliferative agent from the floridian marine cyanobacterium symploca sp. J Am Chem Soc. 130:1806–1807. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Souto JA, Vaz E, Lepore I, Pöppler AC, Franci G, Alvarez R, Altucci L and de Lera AR: Synthesis and biological characterization of the histone deacetylase inhibitor largazole and C7-modified analogues. J Med Chem. 53:4654–4667. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang B, Ruan ZW, Luo D, Zhu Y, Ding T, Sui Q and Lei X: Unexpected enhancement of HDACs inhibition by MeS substitution at C-2 position of fluoro largazole. Mar Drugs. 18:3442020. View Article : Google Scholar : PubMed/NCBI | |
|
Wang M, Sun XY, Zhou YC, Zhang KJ, Lu YZ, Liu J, Huang YC, Wang GZ, Jiang S and Zhou GB: Suppression of Musashi-2 by the small compound largazole exerts inhibitory effects on malignant cells. Int J Oncol. 56:1274–1283. 2020.PubMed/NCBI | |
|
Yurek-George A, Habens F, Brimmell M, Packham G and Ganesan A: Total synthesis of spiruchostatin A, a potent histone deacetylase inhibitor. J Am Chem Soc. 126:1030–1031. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Narita K, Fukui Y, Sano Y, Yamori T, Ito A, Yoshida M and Katoh T: Total synthesis of bicyclic depsipeptides spiruchostatins C and D and investigation of their histone deacetylase inhibitory and antiproliferative activities. Eur J Med Chem. 60:295–304. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Kanno S, Maeda N, Tomizawa A, Yomogida S, Katoh T and Ishikawa M: Involvement of p21waf1/cip1 expression in the cytotoxicity of the potent histone deacetylase inhibitor spiruchostatin B towards susceptible NALM-6 human B cell leukemia cells. Int J Oncol. 40:1391–1396. 2012.PubMed/NCBI | |
|
Rehman MU, Jawaid P, Yoshihisa Y, Li P, Zhao QL, Narita K, Katoh T, Kondo T and Shimizu T: Spiruchostatin A and B, novel histone deacetylase inhibitors, induce apoptosis through reactive oxygen species-mitochondria pathway in human lymphoma U937 cells. Chem Biol Interact. 221:24–34. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Yao L: Aplidin PharmaMar. IDrugs. 6:246–250. 2003.PubMed/NCBI | |
|
Erba E, Bassano L, Di Liberti G, Muradore I, Chiorino G, Ubezio P, Vignati S, Codegoni A, Desiderio MA, Faircloth G, et al: Cell cycle phase perturbations and apoptosis in tumour cells induced by aplidine. Br J Cancer. 86:1510–1517. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Erba E, Serafini M, Gaipa G, Tognon G, Marchini S, Celli N, Rotilio D, Broggini M, Jimeno J, Faircloth GT, et al: Effect of aplidin in acute lymphoblastic leukaemia cells. Br J Cancer. 89:763–773. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Bresters D, Broekhuizen AJ, Kaaijk P, Faircloth GT, Jimeno J and Kaspers GJ: In vitro cytotoxicity of aplidin and crossresistance with other cytotoxic drugs in childhood leukemic and normal bone marrow and blood samples: A rational basis for clinical development. Leukemia. 17:1338–1343. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Gómez SG, Bueren JA, Faircloth GT, Jimeno J and Albella B: In vitro toxicity of three new antitumoral drugs (trabectedin, aplidin, and kahalalide F) on hematopoietic progenitors and stem cells. Exp Hematol. 31:1104–1111. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Gajate C, An F and Mollinedo F: Rapid and selective apoptosis in human leukemic cells induced by Aplidine through a Fas/CD95- and mitochondrial-mediated mechanism. Clin Cancer Res. 9:1535–1545. 2003.PubMed/NCBI | |
|
Mitsiades CS, Ocio EM, Pandiella A, Maiso P, Gajate C, Garayoa M, Vilanova D, Montero JC, Mitsiades N, McMullan CJ, et al: Aplidin, a marine organism-derived compound with potent antimyeloma activity in vitro and in vivo. Cancer Res. 68:5216–5225. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Muñoz-Alonso MJ, Álvarez E, Guillén-Navarro MJ, Pollán M, Avilés P, Galmarini CM and Muñoz A: c-Jun N-terminal kinase phosphorylation is a biomarker of plitidepsin activity. Mar Drugs. 11:1677–1692. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Broggini M, Marchini SV, Galliera E, Borsotti P, Taraboletti G, Erba E, Sironi M, Jimeno J, Faircloth GT, Giavazzi R and D'Incalci M: Aplidine, a new anticancer agent of marine origin, inhibits vascular endothelial growth factor (VEGF) secretion and blocks VEGF-VEGFR-1 (flt-1) autocrine loop in human leukemia cells MOLT-4. Leukemia. 17:52–59. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Morande PE, Zanetti SR, Borge M, Nannini P, Jancic C, Bezares RF, Bitsmans A, González M, Rodríguez AL, Galmarini CM, et al: The cytotoxic activity of Aplidin in chronic lymphocytic leukemia (CLL) is mediated by a direct effect on leukemic cells and an indirect effect on monocyte-derived cells. Invest New Drugs. 30:1830–1840. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Barboza NM, Medina DJ, Budak-Alpdogan T, Aracil M, Jimeno JM, Bertino JR and Banerjee D: Plitidepsin (Aplidin) is a potent inhibitor of diffuse large cell and Burkitt lymphoma and is synergistic with rituximab. Cancer Biol Ther. 13:114–122. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Humeniuk R, Menon LG, Mishra PJ, Saydam G, Longo-Sorbello GS, Elisseyeff Y, Lewis LD, Aracil M, Jimeno J, Bertino JR and Banerjee D: Aplidin synergizes with cytosine arabinoside: Functional relevance of mitochondria in Aplidin-induced cytotoxicity. Leukemia. 21:2399–2405. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Spicka I, Ocio EM, Oakervee HE, Greil R, Banh RH, Huang SY, D'Rozario JM, Dimopoulos MA, Martínez S, Extremera S, et al: Randomized phase III study (ADMYRE) of plitidepsin in combination with dexamethasone vs. dexamethasone alone in patients with relapsed/refractory multiple myeloma. Ann Hematol. 98:2139–2150. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Mateos MV, Prosper F, Martin Sánchez J, Ocio EM, Oriol A, Motlló C, Michot JM, Jarque I, Iglesias R, Solé M, et al: Phase I study of plitidepsin in combination with bortezomib and dexamethasone in patients with relapsed/refractory multiple myeloma. Cancer Med. 12:3999–4009. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Itazaki H, Nagashima K, Sugita K, Yoshida H, Kawamura Y, Yasuda Y, Matsumoto K, Ishii K, Uotani N, Nakai H, et al: Isolation and structural elucidation of new cyclotetrapeptides, trapoxins A and B, having detransformation activities as antitumor agents. J Antibiot (Tokyo). 43:1524–1532. 1990. View Article : Google Scholar : PubMed/NCBI | |
|
Furumai R, Komatsu Y, Nishino N, Khochbin S, Yoshida M and Horinouchi S: Potent histone deacetylase inhibitors built from trichostatin A and cyclic tetrapeptide antibiotics including trapoxin. Proc Natl Acad Sci USA. 98:87–92. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Kijima M, Yoshida M, Sugita K, Horinouchi S and Beppu T: Trapoxin, an antitumor cyclic tetrapeptide, is an irreversible inhibitor of mammalian histone deacetylase. J Biol Chem. 268:22429–22435. 1993. View Article : Google Scholar : PubMed/NCBI | |
|
Kosugi H, Towatari M, Hatano S, Kitamura K, Kiyoi H, Kinoshita T, Tanimoto M, Murate T, Kawashima K, Saito H and Naoe T: Histone deacetylase inhibitors are the potent inducer/enhancer of differentiation in acute myeloid leukemia: A new approach to anti-leukemia therapy. Leukemia. 13:1316–1324. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Maeda T, Towatari M, Kosugi H and Saito H: Up-regulation of costimulatory/adhesion molecules by histone deacetylase inhibitors in acute myeloid leukemia cells. Blood. 96:3847–3856. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Park JS, Lee KR, Kim JC, Lim SH, Seo JA and Lee YW: A hemorrhagic factor (Apicidin) produced by toxic Fusarium isolates from soybean seeds. Appl Environ Microbiol. 65:126–130. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Han JW, Ahn SH, Park SH, Wang SY, Bae GU, Seo DW, Kwon HK, Hong S, Lee HY, Lee YW and Lee HW: Apicidin, a histone deacetylase inhibitor, inhibits proliferation of tumor cells via induction of p21WAF1/Cip1 and gelsolin. Cancer Res. 60:6068–6074. 2000.PubMed/NCBI | |
|
Cheong JW, Chong SY, Kim JY, Eom JI, Jeung HK, Maeng HY, Lee ST and Min YH: Induction of apoptosis by apicidin, a histone deacetylase inhibitor, via the activation of mitochondria-dependent caspase cascades in human Bcr-Abl-positive leukemia cells. Clin Cancer Res. 9:5018–5027. 2003.PubMed/NCBI | |
|
Kim JS, Jeung HK, Cheong JW, Maeng H, Lee ST, Hahn JS, Ko YW and Min YH: Apicidin potentiates the imatinib-induced apoptosis of Bcr-Abl-positive human leukaemia cells by enhancing the activation of mitochondria-dependent caspase cascades. Br J Haematol. 124:166–178. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Ferrante F, Giaimo BD, Bartkuhn M, Zimmermann T, Close V, Mertens D, Nist A, Stiewe T, Meier-Soelch J, Kracht M, et al: HDAC3 functions as a positive regulator in Notch signal transduction. Nucleic Acids Res. 48:3496–3512. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Mori H, Urano Y, Abe F, Furukawa S, Furukawa S, Tsurumi Y, Sakamoto K, Hashimoto M, Takase S, Hino M and Fujii T: FR235222, a fungal metabolite, is a novel immunosuppressant that inhibits mammalian histone deacetylase (HDAC). I. Taxonomy, fermentation, isolation and biological activities. J Antibiot (Tokyo). 56:72–79. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Petrella A, D'Acunto CW, Rodriquez M, Festa M, Tosco A, Bruno I, Terracciano S, Taddei M, Paloma LG and Parente L: Effects of FR235222, a novel HDAC inhibitor, in proliferation and apoptosis of human leukaemia cell lines: Role of annexin A1. Eur J Cancer. 44:740–749. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
D'Acunto CW, Carratù A, Rodriquez M, Taddei M, Parente L and Petrella A: LGP1, A histone deacetylase inhibitor analogue of FR235222, sensitizes promyelocytic leukaemia U937 cells to TRAIL-mediated apoptosis. Anticancer Res. 30:887–894. 2010.PubMed/NCBI | |
|
Fuentes-Baile M, García-Morales P, Pérez-Valenciano E, Mata-Balaguer T, Menéndez-Gutiérrez MP, de Juan Romero C, Rodríguez-Lescure Á, Martín-Orozco E, Mallavia R, Barberá VM and Saceda M: Insights into histone deacetylase inhibitors-induced cell death in cancer cell lines. Biomed Pharmacother. 191:1185412025. View Article : Google Scholar : PubMed/NCBI | |
|
Li Z, Qiu H, Lu W, Duan N, Fan S, Zhou R, Li X, Zhang H, Liu N and Yang F: Design and synthesis of thiazole-based hydroxamate histone deacetylase inhibitors with potent antitumor efficacy by inducing apoptosis, pyroptosis and cell cycle arrest. Sci Rep. 15:245892025. View Article : Google Scholar : PubMed/NCBI | |
|
Aroonthongsawat P, Manocheewa S, Srisawat C, Punnakitikashem P and Suwanwong Y: Enhancement of the in vitro anti-leukemic effect of the histone deacetylase inhibitor romidepsin using Poly-(D, L-lactide-co-glycolide) nanoparticles as a drug carrier. Eur J Pharm Sci. 207:1070432025. View Article : Google Scholar : PubMed/NCBI | |
|
Pal I, Illendula A, Joyner AM, Manavalan JS, Deddens TM, Sabzevari A, Damera DP, Zuberi S, Marchi E, Fox TE, et al: Nanoromidepsin, a polymer nanoparticle of the HDAC inhibitor, improves safety and efficacy in models of T-cell lymphoma. Blood. Sep 2–2025.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI | |
|
Xiao W, Jiang W, Chen Z, Huang Y, Mao J, Zheng W, Hu Y and Shi J: Advance in peptide-based drug development: delivery platforms, therapeutics and vaccines. Signal Transduct Target Ther. 10:742025. View Article : Google Scholar : PubMed/NCBI | |
|
Rizwan A, Aqeel A and Farooqi H: Decoding HDACs and its inhibitors-artificial intelligence assisted smart software based super computational modelling technology in targeting cancer and neurological disorders of the brain. Netw Modeling Anal Health Inform Bioinform. 14:1042025. View Article : Google Scholar | |
|
Wang D, Li W, Zhao R, Chen L, Liu N, Tian Y, Zhao H, Xie M, Lu F, Fang Q, et al: Stabilized peptide HDAC inhibitors derived from HDAC1 substrate H3K56 for the treatment of cancer stem-like cells in vivo. Cancer Res. 79:1769–1783. 2019. View Article : Google Scholar : PubMed/NCBI |