Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
January-2026 Volume 55 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2026 Volume 55 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Role of histone deacetylases in blood cancer: Exploring peptide‑based inhibitors as therapeutic strategies for leukemia treatment (Review)

  • Authors:
    • Yaneenart Suwanwong
    • Phornthip Ploensil
  • View Affiliations / Copyright

    Affiliations: Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand, Faculty of Medical Technology, Rangsit University, Pathumthani 12000, Thailand
    Copyright: © Suwanwong et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 17
    |
    Published online on: November 14, 2025
       https://doi.org/10.3892/or.2025.9022
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Leukemia is a group of hematologic malignancies characterized by the uncontrolled proliferation of abnormal white blood cells, posing significant challenges for diagnosis and treatment because of its complex etiology. Both genetic and environmental factors contribute to leukemogenesis, with recent research highlighting the critical role of epigenetic modifications, particularly histone acetylation and deacetylation, in regulating gene expression and disease progression. Dysregulation of histone deacetylases (HDACs) is frequently observed in leukemia and is correlated with poor prognosis and resistance to conventional therapies. This observation has led to the development of epigenetic drugs for leukemia treatment. The emergence of HDAC inhibitors (HDACis) as targeted therapeutics offers promising avenues for more selective and effective leukemia treatments. The present review covers basic aspects of histone modification and its role in leukemogenesis and evaluates the potential of peptide‑based HDACis as novel drugs for leukemia therapy.
View Figures

Figure 1

Mechanisms leading to imbalance of
HAT and HDAC function, which results in leukemia progression. HDAC,
histone deacetylase.

Figure 2

Function of HDACis to transform
leukemic cells into normal WBCs. HDACs promote tumor suppressor
gene silencing in leukemic cells. The major inhibitory mechanism of
HDACis is to disrupt HDAC substrate binding, hence restoring
histone acetylation and reactivating tumor suppressor genes. HDAC,
histone deacetylase; HDACis, HDAC inhibitors; WBCs, white blood
cells; HATs, histone acetyltransferases.

Figure 3

Chemical structures of 7 cyclic
peptide HDAC inhibitors that have been investigated as
anti-leukemic agents. Chemical structures were created using
https://pubchem.ncbi.nlm.nih.gov.
View References

1 

Brown G: Introduction and Classification of Leukemias. Leukemia Stem Cells: Methods and Protocols. Cobaleda C and Sánchez-García I: Springer; New York, NY: pp. 3–23. 2021

2 

Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 74:229–263. 2024.PubMed/NCBI

3 

Daltveit DS, Morgan E, Colombet M, Steliarova-Foucher E, Bendahhou K, Marcos-Gragera R, Rongshou Z, Smith A, Wei H and Soerjomataram I: Global patterns of leukemia by subtype, age, and sex in 185 countries in 2022. Leukemia. 39:412–419. 2025. View Article : Google Scholar : PubMed/NCBI

4 

Du M, Chen W, Liu K, Wang L, Hu Y, Mao Y, Sun X, Luo Y, Shi J, Shao K, et al: The global burden of leukemia and its attributable factors in 204 countries and territories: Findings from the Global Burden of Disease 2019 study and projections to 2030. J Oncol. 2022:16127022022. View Article : Google Scholar : PubMed/NCBI

5 

Dong Y, Shi O, Zeng Q, Lu X, Wang W, Li Y and Wang Q: Leukemia incidence trends at the global, regional, and national level between 1990 and 2017. Exp Hematol Oncol. 9:142020. View Article : Google Scholar : PubMed/NCBI

6 

Sharma R and Jani C: Mapping incidence and mortality of leukemia and its subtypes in 21 world regions in last three decades and projections to 2030. Ann Hematol. 101:1523–1534. 2022. View Article : Google Scholar : PubMed/NCBI

7 

Briot T, Roger E, Thépot S and Lagarce F: Advances in treatment formulations for acute myeloid leukemia. Drug Discov Today. 23:1936–1949. 2018. View Article : Google Scholar : PubMed/NCBI

8 

Škubník J, Pavlíčková VS, Ruml T and Rimpelová S: Vincristine in combination therapy of cancer: Emerging trends in clinics. Biology (Basel). 10:8492021.PubMed/NCBI

9 

Park SB, Goldstein D, Krishnan AV, Lin CS, Friedlander ML, Cassidy J, Koltzenburg M and Kiernan MC: Chemotherapy-induced peripheral neurotoxicity: A critical analysis. CA Cancer J Clin. 63:419–437. 2013.PubMed/NCBI

10 

Mort MK, Sen JM, Morris AL, DeGregory KA, McLoughlin EM, Mort JF, Dunn SP, Abuannadi M and Keng MK: Evaluation of cardiomyopathy in acute myeloid leukemia patients treated with anthracyclines. J Oncol Pharm Pract. 26:680–687. 2020. View Article : Google Scholar : PubMed/NCBI

11 

Wallace KB: Doxorubicin-induced cardiac mitochondrionopathy. Pharmacol Toxicol. 93:105–115. 2003. View Article : Google Scholar : PubMed/NCBI

12 

Pogorzala M, Kubicka M, Rafinska B, Wysocki M and Styczynski J: Drug-resistance profile in multiple-relapsed childhood acute lymphoblastic leukemia. Anticancer Res. 35:5667–5670. 2015.PubMed/NCBI

13 

Xia CQ and Smith PG: Drug efflux transporters and multidrug resistance in acute leukemia: Therapeutic impact and novel approaches to mediation. Mol Pharmacol. 82:1008–1021. 2012. View Article : Google Scholar : PubMed/NCBI

14 

Kantarjian HM, Keating MJ and Freireich EJ: Toward the potential cure of leukemias in the next decade. Cancer. 124:4301–4313. 2018. View Article : Google Scholar : PubMed/NCBI

15 

Bhansali RS, Pratz KW and Lai C: Recent advances in targeted therapies in acute myeloid leukemia. J Hematol Oncol. 16:292023. View Article : Google Scholar : PubMed/NCBI

16 

Brivio E, Baruchel A, Beishuizen A, Bourquin JP, Brown PA, Cooper T, Gore L, Kolb EA, Locatelli F, Maude SL, et al: Targeted inhibitors and antibody immunotherapies: Novel therapies for paediatric leukaemia and lymphoma. Eur J Cancer. 164:1–17. 2022. View Article : Google Scholar : PubMed/NCBI

17 

Das AB, Smith-Díaz CC and Vissers MCM: Emerging epigenetic therapeutics for myeloid leukemia: Modulating demethylase activity with ascorbate. Haematologica. 106:14–25. 2021.PubMed/NCBI

18 

Zhang X, Wang H, Zhang Y and Wang X: Advances in epigenetic alterations of chronic lymphocytic leukemia: From pathogenesis to treatment. Clin Exp Med. 24:542024. View Article : Google Scholar : PubMed/NCBI

19 

Bian J and Zhang L, Han Y, Wang C and Zhang L: Histone deacetylase inhibitors: Potent anti-leukemic agents. Curr Med Chem. 22:2065–2074. 2015. View Article : Google Scholar : PubMed/NCBI

20 

Gaál Z, Oláh É, Rejtő L, Erdődi F and Csernoch L: Strong correlation between the expression levels of HDAC4 and SIRT6 in hematological malignancies of the adults. Pathol Oncol Res. 23:493–504. 2017. View Article : Google Scholar : PubMed/NCBI

21 

Wang F, Li Z, Zhou J, Wang G, Zhang W, Xu J and Liang A: SIRT1 regulates the phosphorylation and degradation of P27 by deacetylating CDK2 to promote T-cell acute lymphoblastic leukemia progression. J Exp Clin Cancer Res. 40:2592021. View Article : Google Scholar : PubMed/NCBI

22 

Merarchi M, Sethi G, Shanmugam MK, Fan L, Arfuso F and Ahn KS: Role of natural products in modulating histone deacetylases in cancer. Molecules. 24:10472019. View Article : Google Scholar : PubMed/NCBI

23 

Singh AK, Bishayee A and Pandey AK: Targeting histone deacetylases with natural and synthetic agents: An emerging anticancer strategy. Nutrients. 10:7312018. View Article : Google Scholar : PubMed/NCBI

24 

Janssens Y, Wynendaele E, Vanden Berghe W and De Spiegeleer B: Peptides as epigenetic modulators: Therapeutic implications. Clin Epigenetics. 11:1012019. View Article : Google Scholar : PubMed/NCBI

25 

Yang XJ and Seto E: HATs and HDACs: From structure, function and regulation to novel strategies for therapy and prevention. Oncogene. 26:5310–5318. 2007. View Article : Google Scholar : PubMed/NCBI

26 

Gray SG and Teh BT: Histone acetylation/deacetylation and cancer: An ‘open’ and ‘shut’ case? Curr Mol Med. 1:401–429. 2001. View Article : Google Scholar : PubMed/NCBI

27 

Lawson M, Uciechowska U, Schemies J, Rumpf T, Jung M and Sippl W: Inhibitors to understand molecular mechanisms of NAD(+)-dependent deacetylases (sirtuins). Biochim Biophys Acta. 1799:726–739. 2010. View Article : Google Scholar : PubMed/NCBI

28 

Seto E and Yoshida M: Erasers of histone acetylation: The histone deacetylase enzymes. Cold Spring Harb Perspect Biol. 6:a0187132014. View Article : Google Scholar : PubMed/NCBI

29 

Asmamaw MD, He A, Zhang LR, Liu HM and Gao Y: Histone deacetylase complexes: Structure, regulation and function. Biochim Biophys Acta Rev Cancer. 1879:1891502024. View Article : Google Scholar : PubMed/NCBI

30 

Duan Z, Zarebski A, Montoya-Durango D, Grimes HL and Horwitz M: Gfi1 coordinates epigenetic repression of p21 Cip/WAF1 by recruitment of histone lysine methyltransferase G9a and histone deacetylase 1. Mol Cell biol. 25:10338–10351. 2005. View Article : Google Scholar : PubMed/NCBI

31 

Fujiwara T, Lee HY, Sanalkumar R and Bresnick EH: Building multifunctionality into a complex containing master regulators of hematopoiesis. Proc Natl Acad Sci USA. 107:20429–20434. 2010. View Article : Google Scholar : PubMed/NCBI

32 

van Oorschot R, Hansen M, Koornneef JM, Marneth AE, Bergevoet SM, van Bergen MGJM, van Alphen FPJ, van der Zwaan C, Martens JHA, Vermeulen M, et al: Molecular mechanisms of bleeding disorder associated GFI1BQ287* mutation and its affected pathways in megakaryocytes and platelets. Haematologica. 104:1460–1472. 2019. View Article : Google Scholar : PubMed/NCBI

33 

Calderon A, Mestvirishvili T, Boccalatte F, Ruggles KV and David G: Chromatin accessibility and cell cycle progression are controlled by the HDAC-associated Sin3B protein in murine hematopoietic stem cells. Epigenetics Chromatin. 17:22024. View Article : Google Scholar : PubMed/NCBI

34 

Wada T, Kikuchi J, Nishimura N, Shimizu R, Kitamura T and Furukawa Y: Expression levels of histone deacetylases determine the cell fate of hematopoietic progenitors. J Biol Chem. 284:30673–30683. 2009. View Article : Google Scholar : PubMed/NCBI

35 

Wang P, Wang Z and Liu J: Role of HDACs in normal and malignant hematopoiesis. Mol Cancer. 19:52020. View Article : Google Scholar : PubMed/NCBI

36 

Yan B, Yang J, Kim MY, Luo H, Cesari N, Yang T, Strouboulis J, Zhang J, Hardison R, Huang S and Qiu Y: HDAC1 is required for GATA-1 transcription activity, global chromatin occupancy and hematopoiesis. Nucleic Acids Res. 49:9783–9798. 2021. View Article : Google Scholar : PubMed/NCBI

37 

Iwasaki H, Mizuno S, Arinobu Y, Ozawa H, Mori Y, Shigematsu H, Takatsu K, Tenen DG and Akashi K: The order of expression of transcription factors directs hierarchical specification of hematopoietic lineages. Genes Dev. 20:3010–3021. 2006. View Article : Google Scholar : PubMed/NCBI

38 

Yamamura K, Ohishi K, Katayama N, Yu Z, Kato K, Masuya M, Fujieda A, Sugimoto Y, Miyata E, Shibasaki T, et al: Pleiotropic role of histone deacetylases in the regulation of human adult erythropoiesis. Br J Haematol. 135:242–253. 2006. View Article : Google Scholar : PubMed/NCBI

39 

Das Gupta K, Shakespear MR, Iyer A, Fairlie DP and Sweet MJ: Histone deacetylases in monocyte/macrophage development, activation and metabolism: refining HDAC targets for inflammatory and infectious diseases. Clin Transl Immunol. 5:e622016. View Article : Google Scholar : PubMed/NCBI

40 

Heideman MR, Lancini C, Proost N, Yanover E, Jacobs H and Dannenberg JH: Sin3a-associated Hdac1 and Hdac2 are essential for hematopoietic stem cell homeostasis and contribute differentially to hematopoiesis. Haematologica. 99:1292–1303. 2014. View Article : Google Scholar : PubMed/NCBI

41 

Liu B, Ohishi K, Yamamura K, Suzuki K, Monma F, Ino K, Nishii K, Masuya M, Sekine T, Heike Y, et al: A potential activity of valproic acid in the stimulation of interleukin-3−mediated megakaryopoiesis and erythropoiesis. Exp Hematol. 38:685–695. 2010. View Article : Google Scholar : PubMed/NCBI

42 

Yamaguchi T, Cubizolles F, Zhang Y, Reichert N, Kohler H, Seiser C and Matthias P: Histone deacetylases 1 and 2 act in concert to promote the G1-to-S progression. Genes Dev. 24:455–469. 2010. View Article : Google Scholar : PubMed/NCBI

43 

Boucheron N, Tschismarov R, Göschl L, Moser MA, Lagger S, Sakaguchi S, Winter M, Lenz F, Vitko D, Breitwieser FP, et al: CD4+ T cell lineage integrity is controlled by the histone deacetylases HDAC1 and HDAC2. Nat Immunol. 15:439–448. 2014. View Article : Google Scholar : PubMed/NCBI

44 

Ni L, Wang L, Yao C, Ni Z, Liu F, Gong C, Zhu X, Yan X, Watowich SS, Lee DA and Zhu S: The histone deacetylase inhibitor valproic acid inhibits NKG2D expression in natural killer cells through suppression of STAT3 and HDAC3. Sci Rep. 7:452662017. View Article : Google Scholar : PubMed/NCBI

45 

Lemercier C, Brocard MP, Puvion-Dutilleul F, Kao HY, Albagli O and Khochbin S: Class II histone deacetylases are directly recruited by BCL6 transcriptional repressor. J Biol Chem. 277:22045–22052. 2002. View Article : Google Scholar : PubMed/NCBI

46 

Kasler HG and Verdin E: Histone deacetylase 7 functions as a key regulator of genes involved in both positive and negative selection of thymocytes. Mol Cell Biol. 27:5184–5200. 2007. View Article : Google Scholar : PubMed/NCBI

47 

Li J, Li X, Sun W, Zhang J, Yan Q, Wu J, Jin J, Lu R and Miao D: Specific overexpression of SIRT1 in mesenchymal stem cells rescues hematopoiesis niche in BMI1 knockout mice through promoting CXCL12 expression. Int J Biol Sci. 18:2091–2103. 2022. View Article : Google Scholar : PubMed/NCBI

48 

Skokowa J, Lan D, Thakur BK, Wang F, Gupta K, Cario G, Brechlin AM, Schambach A, Hinrichsen L, Meyer G, et al: NAMPT is essential for the G-CSF-induced myeloid differentiation via a NAD(+)-sirtuin-1-dependent pathway. Nat Med. 15:151–158. 2009. View Article : Google Scholar : PubMed/NCBI

49 

Ou X, Chae HD, Wang RH, Shelley WC, Cooper S, Taylor T, Kim YJ, Deng CX, Yoder MC and Broxmeyer HE: SIRT1 deficiency compromises mouse embryonic stem cell hematopoietic differentiation, and embryonic and adult hematopoiesis in the mouse. Blood. 117:440–450. 2011. View Article : Google Scholar : PubMed/NCBI

50 

Brown K, Xie S, Qiu X, Mohrin M, Shin J, Liu Y, Zhang D, Scadden DT and Chen D: SIRT3 reverses aging-associated degeneration. Cell Rep. 3:319–327. 2013. View Article : Google Scholar : PubMed/NCBI

51 

Kaiser A, Schmidt M, Huber O, Frietsch JJ, Scholl S, Heidel FH, Hochhaus A, Müller JP and Ernst T: SIRT7: An influence factor in healthy aging and the development of age-dependent myeloid stem-cell disorders. Leukemia. 34:2206–2216. 2020. View Article : Google Scholar : PubMed/NCBI

52 

Luo H, Mu WC, Karki R, Chiang HH, Mohrin M, Shin JJ, Ohkubo R, Ito K, Kanneganti TD and Chen D: Mitochondrial stress-Initiated aberrant activation of the NLRP3 inflammasome regulates the functional deterioration of hematopoietic stem cell aging. Cell Rep. 26:945–954.e4. 2019. View Article : Google Scholar : PubMed/NCBI

53 

Sahakian E, Chen J, Powers JJ, Chen X, Maharaj K, Deng SL, Achille AN, Lienlaf M, Wang HW, Cheng F, et al: Essential role for histone deacetylase 11 (HDAC11) in neutrophil biology. J Leukoc Biol. 102:475–486. 2017. View Article : Google Scholar : PubMed/NCBI

54 

Grignani F, De Matteis S, Nervi C, Tomassoni L, Gelmetti V, Cioce M, Fanelli M, Ruthardt M, Ferrara FF, Zamir I, et al: Fusion proteins of the retinoic acid receptor-alpha recruit histone deacetylase in promyelocytic leukaemia. Nature. 391:815–818. 1998. View Article : Google Scholar : PubMed/NCBI

55 

Gelmetti V, Zhang J, Fanelli M, Minucci S, Pelicci PG and Lazar MA: Aberrant recruitment of the nuclear receptor corepressor-histone deacetylase complex by the acute myeloid leukemia fusion partner ETO. Mol Cell Biol. 18:7185–7191. 1998. View Article : Google Scholar : PubMed/NCBI

56 

Girard N, Tremblay M, Humbert M, Grondin B, Haman A, Labrecque J, Chen B, Chen Z, Chen SJ and Hoang T: RARα-PLZF oncogene inhibits C/EBPα function in myeloid cells. Proc Natl Acad Sci USA. 110:13522–13527. 2013. View Article : Google Scholar : PubMed/NCBI

57 

Zhang J, Hug BA, Huang EY, Chen CW, Gelmetti V, Maccarana M, Minucci S, Pelicci PG and Lazar MA: Oligomerization of ETO is obligatory for corepressor interaction. Mol Cell Biol. 21:156–163. 2001. View Article : Google Scholar : PubMed/NCBI

58 

Vishwakarma BA, Nguyen N, Makishima H, Hosono N, Gudmundsson KO, Negi V, Oakley K, Han Y, Przychodzen B, Maciejewski JP and Du Y: Runx1 repression by histone deacetylation is critical for Setbp1-induced mouse myeloid leukemia development. Leukemia. 30:200–208. 2016. View Article : Google Scholar : PubMed/NCBI

59 

Nakata S, Yoshida T, Horinaka M, Shiraishi T, Wakada M and Sakai T: Histone deacetylase inhibitors upregulate death receptor 5/TRAIL-R2 and sensitize apoptosis induced by TRAIL/APO2-L in human malignant tumor cells. Oncogene. 23:6261–6271. 2004. View Article : Google Scholar : PubMed/NCBI

60 

Yoo CB and Jones PA: Epigenetic therapy of cancer: past, present and future. Nat Rev Drug Discov. 5:37–50. 2006. View Article : Google Scholar : PubMed/NCBI

61 

Mehrpouri M, Pourbagheri-Sigaroodi A and Bashash D: The contributory roles of histone deacetylases (HDACs) in hematopoiesis regulation and possibilities for pharmacologic interventions in hematologic malignancies. Int Immunopharmacol. 100:1081142021. View Article : Google Scholar : PubMed/NCBI

62 

Van Damme M, Crompot E, Meuleman N, Mineur P, Bron D, Lagneaux L and Stamatopoulos B: HDAC isoenzyme expression is deregulated in chronic lymphocytic leukemia B-cells and has a complex prognostic significance. Epigenetics. 7:1403–1412. 2012. View Article : Google Scholar : PubMed/NCBI

63 

Verbeek TCAI, Vrenken KS, Arentsen-Peters STCJM, Castro PG, van de Ven M, van Tellingen O, Pieters R and Stam RW: Selective inhibition of HDAC class IIA as therapeutic intervention for KMT2A-rearranged acute lymphoblastic leukemia. Commun Biol. 7:12572024. View Article : Google Scholar : PubMed/NCBI

64 

Gu W and Roeder RG: Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell. 90:595–606. 1997. View Article : Google Scholar : PubMed/NCBI

65 

Molica M, Mazzone C, Niscola P and de Fabritiis P: TP53 mutations in acute myeloid leukemia: Still a daunting challenge? Front Oncol. 10:6108202021. View Article : Google Scholar : PubMed/NCBI

66 

Kuo YH, Qi J and Cook GJ: Regain control of p53: Targeting leukemia stem cells by isoform-specific HDAC inhibition. Exp Hematol. 44:315–321. 2016. View Article : Google Scholar : PubMed/NCBI

67 

Qi J, Singh S, Hua WK, Cai Q, Chao SW, Li L, Liu H, Ho Y, McDonald T, Lin A, et al: HDAC8 inhibition specifically targets inv(16) acute myeloid leukemic stem cells by restoring p53 acetylation. Cell Stem Cell. 17:597–610. 2015. View Article : Google Scholar : PubMed/NCBI

68 

Lee SM, Bae JH, Kim MJ, Lee HS, Lee MK, Chung BS, Kim DW, Kang CD and Kim SH: Bcr-Abl-independent imatinib-resistant K562 cells show aberrant protein acetylation and increased sensitivity to histone deacetylase inhibitors. J Pharmacol Exp Ther. 322:1084–1092. 2007. View Article : Google Scholar : PubMed/NCBI

69 

Burgess M, Chen YCE, Mapp S, Blumenthal A, Mollee P, Gill D and Saunders NA: HDAC7 is an actionable driver of therapeutic antibody resistance by macrophages from CLL patients. Oncogene. 39:5756–5767. 2020. View Article : Google Scholar : PubMed/NCBI

70 

Micelli C and Rastelli G: Histone deacetylases: Structural determinants of inhibitor selectivity. Drug Discov Today. 20:718–735. 2015. View Article : Google Scholar : PubMed/NCBI

71 

Zhang L, Zhang J, Jiang Q, Zhang L and Song W: Zinc binding groups for histone deacetylase inhibitors. J Enzyme Inhib Med Chem. 33:714–721. 2018. View Article : Google Scholar : PubMed/NCBI

72 

Rajak H, Singh A, Dewangan PK, Patel V, Jain DK, Tiwari SK, Veerasamy R and Sharma PC: Peptide based aacrocycles: Selective histone deacetylase inhibitors with antiproliferative activity. Curr Med Chem. 20:1887–1903. 2013. View Article : Google Scholar : PubMed/NCBI

73 

Curcio A, Rocca R, Alcaro S and Artese A: The histone deacetylase family: Structural features and application of combined computational methods. Pharmaceuticals (Basel). 17:6202024. View Article : Google Scholar : PubMed/NCBI

74 

Davie JR: Inhibition of histone deacetylase activity by butyrate. J Nutr. 133 (7 Suppl):2485S–2493S. 2003. View Article : Google Scholar : PubMed/NCBI

75 

Luu M, Riester Z, Baldrich A, Reichardt N, Yuille S, Busetti A, Klein M, Wempe A, Leister H, Raifer H, et al: Microbial short-chain fatty acids modulate CD8(+) T cell responses and improve adoptive immunotherapy for cancer. Nat Commun. 12:40772021. View Article : Google Scholar : PubMed/NCBI

76 

Ozkan AD, Eskiler GG, Kazan N and Turna O: Histone deacetylase inhibitor sodium butyrate regulates the activation of toll-like receptor 4/interferon regulatory factor-3 signaling pathways in prostate cancer cells. J Cancer Res Ther. 19:1812–1817. 2023. View Article : Google Scholar : PubMed/NCBI

77 

Sampathkumar SG, Jones MB, Meledeo MA, Campbell CT, Choi SS, Hida K, Gomutputra P, Sheh A, Gilmartin T, Head SR and Yarema KJ: Targeting glycosylation pathways and the cell cycle: Sugar-dependent activity of butyrate-carbohydrate cancer prodrugs. Chem Biol. 13:1265–1275. 2006. View Article : Google Scholar : PubMed/NCBI

78 

Steliou K, Boosalis MS, Perrine SP, Sangerman J and Faller DV: Butyrate histone deacetylase inhibitors. Biores Open Access. 1:192–198. 2012. View Article : Google Scholar : PubMed/NCBI

79 

Tang R, Faussat AM, Majdak P, Perrot JY, Chaoui D, Legrand O and Marie JP: Valproic acid inhibits proliferation and induces apoptosis in acute myeloid leukemia cells expressing P-gp and MRP1. Leukemia. 18:1246–1251. 2004. View Article : Google Scholar : PubMed/NCBI

80 

Zapotocky M, Mejstrikova E, Smetana K, Stary J, Trka J and Starkova J: Valproic acid triggers differentiation and apoptosis in AML1/ETO-positive leukemic cells specifically. Cancer Lett. 319:144–153. 2012. View Article : Google Scholar : PubMed/NCBI

81 

Fredly H, Gjertsen BT and Bruserud Ø: Histone deacetylase inhibition in the treatment of acute myeloid leukemia: The effects of valproic acid on leukemic cells, and the clinical and experimental evidence for combining valproic acid with other antileukemic agents. Clin Epigenetics. 5:122013. View Article : Google Scholar : PubMed/NCBI

82 

Garcia-Manero G, Kantarjian HM, Sanchez-Gonzalez B, Yang H, Rosner G, Verstovsek S, Rytting M, Wierda WG, Ravandi F, Koller C, et al: Phase 1/2 study of the combination of 5-aza-2′-deoxycytidine with valproic acid in patients with leukemia. Blood. 108:3271–3279. 2006. View Article : Google Scholar : PubMed/NCBI

83 

Peiffer L, Poll-Wolbeck SJ, Flamme H, Gehrke I, Hallek M and Kreuzer KA: Trichostatin A effectively induces apoptosis in chronic lymphocytic leukemia cells via inhibition of Wnt signaling and histone deacetylation. J Cancer Res Clin Oncol. 140:1283–1293. 2014. View Article : Google Scholar : PubMed/NCBI

84 

Khan N, Jeffers M, Kumar S, Hackett C, Boldog F, Khramtsov N, Qian X, Mills E, Berghs SC, Carey N, et al: Determination of the class and isoform selectivity of small-molecule histone deacetylase inhibitors. Biochem J. 409:581–589. 2008. View Article : Google Scholar : PubMed/NCBI

85 

Duvic M, Talpur R, Ni X, Zhang C, Hazarika P, Kelly C, Chiao JH, Reilly JF, Ricker JL, Richon VM and Frankel SR: Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL). Blood. 109:31–39. 2007. View Article : Google Scholar : PubMed/NCBI

86 

Campbell P and Thomas CM: Belinostat for the treatment of relapsed or refractory peripheral T-cell lymphoma. J Oncol Pharm Pract. 23:143–147. 2017. View Article : Google Scholar : PubMed/NCBI

87 

Laubach JP, Moreau P, San-Miguel JF and Richardson PG: Panobinostat for the treatment of multiple myeloma. Clin Cancer Res. 21:4767–4773. 2015. View Article : Google Scholar : PubMed/NCBI

88 

Wagner JM, Hackanson B, Lübbert M and Jung M: Histone deacetylase (HDAC) inhibitors in recent clinical trials for cancer therapy. Clin Epigenetics. 1:117–136. 2010. View Article : Google Scholar : PubMed/NCBI

89 

Batlevi CL, Crump M, Andreadis C, Rizzieri D, Assouline SE, Fox S, van der Jagt RHC, Copeland A, Potvin D, Chao R and Younes A: A phase 2 study of mocetinostat, a histone deacetylase inhibitor, in relapsed or refractory lymphoma. Br J Haematol. 178:434–441. 2017. View Article : Google Scholar : PubMed/NCBI

90 

Carraway HE, Sawalha Y, Gojo I, Lee MJ, Lee S, Tomita Y, Yuno A, Greer J, Smith BD, Pratz KW, et al: Phase 1 study of the histone deacetylase inhibitor entinostat plus clofarabine for poor-risk Philadelphia chromosome-negative (newly diagnosed older adults or adults with relapsed refractory disease) acute lymphoblastic leukemia or biphenotypic leukemia. Leuk Res. 110:1067072021. View Article : Google Scholar : PubMed/NCBI

91 

Maolanon AR, Kristensen HM, Leman LJ, Ghadiri MR and Olsen CA: Natural and synthetic macrocyclic inhibitors of the histone deacetylase enzymes. Chembiochem. 18:5–49. 2017. View Article : Google Scholar : PubMed/NCBI

92 

Ueda H, Manda T, Matsumoto S, Mukumoto S, Nishigaki F, Kawamura I and Shimomura K: FR901228, a novel antitumor bicyclic depsipeptide produced by Chromobacterium violaceum No. 968. III. Antitumor activities on experimental tumors in mice. J Antibiot (Tokyo). 47:315–323. 1994. View Article : Google Scholar : PubMed/NCBI

93 

Furumai R, Matsuyama A, Kobashi N, Lee KH, Nishiyama M, Nakajima H, Tanaka A, Komatsu Y, Nishino N, Yoshida M and Horinouchi S: FK228 (depsipeptide) as a natural prodrug that inhibits class I histone deacetylases. Cancer Res. 62:4916–4921. 2002.PubMed/NCBI

94 

Murata M, Towatari M, Kosugi H, Tanimoto M, Ueda R, Saito H and Naoe T: Apoptotic cytotoxic effects of a histone deacetylase inhibitor, FK228, on malignant lymphoid cells. Jpn J Cancer Res. 91:1154–1160. 2000. View Article : Google Scholar : PubMed/NCBI

95 

Campas-Moya C: Romidepsin for the treatment of cutaneous T-cell lymphoma. Drugs Today (Barc). 45:787–795. 2009. View Article : Google Scholar : PubMed/NCBI

96 

Coiffier B, Pro B, Prince HM, Foss F, Sokol L, Greenwood M, Caballero D, Morschhauser F, Wilhelm M, Pinter-Brown L, et al: Romidepsin for the treatment of relapsed/refractory peripheral T-cell lymphoma: Pivotal study update demonstrates durable responses. J Hematol Oncol. 7:112014. View Article : Google Scholar : PubMed/NCBI

97 

Savickiene J, Treigyte G, Borutinskaite V, Navakauskiene R and Magnusson KE: The histone deacetylase inhibitor FK228 distinctly sensitizes the human leukemia cells to retinoic acid-induced differentiation. Ann NY Acad Sci. 1091:368–384. 2006. View Article : Google Scholar : PubMed/NCBI

98 

Kosugi H, Ito M, Yamamoto Y, Towatari M, Ito M, Ueda R, Saito H and Naoe T: In vivo effects of a histone deacetylase inhibitor, FK228, on human acute promyelocytic leukemia in NOD/Shi-scid/scid mice. Jpn J Cancer Res. 92:529–536. 2001. View Article : Google Scholar : PubMed/NCBI

99 

Okabe S, Tauchi T, Nakajima A, Sashida G, Gotoh A, Broxmeyer HE, Ohyashiki JH and Ohyashiki K: Depsipeptide (FK228) preferentially induces apoptosis in BCR/ABL-expressing cell lines and cells from patients with chronic myelogenous leukemia in blast crisis. Stem Cells Dev. 16:503–514. 2007. View Article : Google Scholar : PubMed/NCBI

100 

Klisovic MI, Maghraby EA, Parthun MR, Guimond M, Sklenar AR, Whitman SP, Chan KK, Murphy T, Anon J, Archer KJ, et al: Depsipeptide (FR 901228) promotes histone acetylation, gene transcription, apoptosis and its activity is enhanced by DNA methyltransferase inhibitors in AML1/ETO-positive leukemic cells. Leukemia. 17:350–358. 2003. View Article : Google Scholar : PubMed/NCBI

101 

Shaker S, Bernstein M, Momparler LF and Momparler RL: Preclinical evaluation of antineoplastic activity of inhibitors of DNA methylation (5-aza-2′-deoxycytidine) and histone deacetylation (trichostatin A, depsipeptide) in combination against myeloid leukemic cells. Leuk Res. 27:437–444. 2003. View Article : Google Scholar : PubMed/NCBI

102 

Brunvand MW and Carson J: Complete remission with romidepsin in a patient with T-cell acute lymphoblastic leukemia refractory to induction hyper-CVAD. Hematol Oncol. 36:340–343. 2018. View Article : Google Scholar : PubMed/NCBI

103 

Cox WPJ, Evander N, Van Ingen Schenau DS, Stoll GR, Anderson N, De Groot L, Grünewald KJT, Hagelaar R, Butler M, Kuiper RP, et al: Histone deacetylase inhibition sensitizes p53-deficient B-cell precursor acute lymphoblastic leukemia to chemotherapy. Haematologica. 109:1755–1765. 2024.PubMed/NCBI

104 

Foley N, Riedell PA, Bartlett NL, Cashen AF, Kahl BS, Fehniger TA, Fischer A, Moreno C, Liu J, Carson KR and Mehta-Shah N: A phase I study of romidepsin in combination with gemcitabine, oxaliplatin, and dexamethasone in patients with relapsed or refractory aggressive lymphomas enriched for T-Cell lymphomas. Clin Lymphoma Myeloma Leuk. 25:328–336. 2025. View Article : Google Scholar : PubMed/NCBI

105 

Seiser T, Kamena F and Cramer N: Synthesis and biological activity of largazole and derivatives. Angew Chem Int Ed Engl. 47:6483–6485. 2008. View Article : Google Scholar : PubMed/NCBI

106 

Bowers A, West N, Taunton J, Schreiber SL, Bradner JE and Williams RM: Total synthesis and biological mode of action of largazole: A potent class I histone deacetylase inhibitor. J Am Chem Soc. 130:11219–11222. 2008. View Article : Google Scholar : PubMed/NCBI

107 

Taori K, Paul VJ and Luesch H: Structure and activity of largazole, a potent antiproliferative agent from the floridian marine cyanobacterium symploca sp. J Am Chem Soc. 130:1806–1807. 2008. View Article : Google Scholar : PubMed/NCBI

108 

Souto JA, Vaz E, Lepore I, Pöppler AC, Franci G, Alvarez R, Altucci L and de Lera AR: Synthesis and biological characterization of the histone deacetylase inhibitor largazole and C7-modified analogues. J Med Chem. 53:4654–4667. 2010. View Article : Google Scholar : PubMed/NCBI

109 

Zhang B, Ruan ZW, Luo D, Zhu Y, Ding T, Sui Q and Lei X: Unexpected enhancement of HDACs inhibition by MeS substitution at C-2 position of fluoro largazole. Mar Drugs. 18:3442020. View Article : Google Scholar : PubMed/NCBI

110 

Wang M, Sun XY, Zhou YC, Zhang KJ, Lu YZ, Liu J, Huang YC, Wang GZ, Jiang S and Zhou GB: Suppression of Musashi-2 by the small compound largazole exerts inhibitory effects on malignant cells. Int J Oncol. 56:1274–1283. 2020.PubMed/NCBI

111 

Yurek-George A, Habens F, Brimmell M, Packham G and Ganesan A: Total synthesis of spiruchostatin A, a potent histone deacetylase inhibitor. J Am Chem Soc. 126:1030–1031. 2004. View Article : Google Scholar : PubMed/NCBI

112 

Narita K, Fukui Y, Sano Y, Yamori T, Ito A, Yoshida M and Katoh T: Total synthesis of bicyclic depsipeptides spiruchostatins C and D and investigation of their histone deacetylase inhibitory and antiproliferative activities. Eur J Med Chem. 60:295–304. 2013. View Article : Google Scholar : PubMed/NCBI

113 

Kanno S, Maeda N, Tomizawa A, Yomogida S, Katoh T and Ishikawa M: Involvement of p21waf1/cip1 expression in the cytotoxicity of the potent histone deacetylase inhibitor spiruchostatin B towards susceptible NALM-6 human B cell leukemia cells. Int J Oncol. 40:1391–1396. 2012.PubMed/NCBI

114 

Rehman MU, Jawaid P, Yoshihisa Y, Li P, Zhao QL, Narita K, Katoh T, Kondo T and Shimizu T: Spiruchostatin A and B, novel histone deacetylase inhibitors, induce apoptosis through reactive oxygen species-mitochondria pathway in human lymphoma U937 cells. Chem Biol Interact. 221:24–34. 2014. View Article : Google Scholar : PubMed/NCBI

115 

Yao L: Aplidin PharmaMar. IDrugs. 6:246–250. 2003.PubMed/NCBI

116 

Erba E, Bassano L, Di Liberti G, Muradore I, Chiorino G, Ubezio P, Vignati S, Codegoni A, Desiderio MA, Faircloth G, et al: Cell cycle phase perturbations and apoptosis in tumour cells induced by aplidine. Br J Cancer. 86:1510–1517. 2002. View Article : Google Scholar : PubMed/NCBI

117 

Erba E, Serafini M, Gaipa G, Tognon G, Marchini S, Celli N, Rotilio D, Broggini M, Jimeno J, Faircloth GT, et al: Effect of aplidin in acute lymphoblastic leukaemia cells. Br J Cancer. 89:763–773. 2003. View Article : Google Scholar : PubMed/NCBI

118 

Bresters D, Broekhuizen AJ, Kaaijk P, Faircloth GT, Jimeno J and Kaspers GJ: In vitro cytotoxicity of aplidin and crossresistance with other cytotoxic drugs in childhood leukemic and normal bone marrow and blood samples: A rational basis for clinical development. Leukemia. 17:1338–1343. 2003. View Article : Google Scholar : PubMed/NCBI

119 

Gómez SG, Bueren JA, Faircloth GT, Jimeno J and Albella B: In vitro toxicity of three new antitumoral drugs (trabectedin, aplidin, and kahalalide F) on hematopoietic progenitors and stem cells. Exp Hematol. 31:1104–1111. 2003. View Article : Google Scholar : PubMed/NCBI

120 

Gajate C, An F and Mollinedo F: Rapid and selective apoptosis in human leukemic cells induced by Aplidine through a Fas/CD95- and mitochondrial-mediated mechanism. Clin Cancer Res. 9:1535–1545. 2003.PubMed/NCBI

121 

Mitsiades CS, Ocio EM, Pandiella A, Maiso P, Gajate C, Garayoa M, Vilanova D, Montero JC, Mitsiades N, McMullan CJ, et al: Aplidin, a marine organism-derived compound with potent antimyeloma activity in vitro and in vivo. Cancer Res. 68:5216–5225. 2008. View Article : Google Scholar : PubMed/NCBI

122 

Muñoz-Alonso MJ, Álvarez E, Guillén-Navarro MJ, Pollán M, Avilés P, Galmarini CM and Muñoz A: c-Jun N-terminal kinase phosphorylation is a biomarker of plitidepsin activity. Mar Drugs. 11:1677–1692. 2013. View Article : Google Scholar : PubMed/NCBI

123 

Broggini M, Marchini SV, Galliera E, Borsotti P, Taraboletti G, Erba E, Sironi M, Jimeno J, Faircloth GT, Giavazzi R and D'Incalci M: Aplidine, a new anticancer agent of marine origin, inhibits vascular endothelial growth factor (VEGF) secretion and blocks VEGF-VEGFR-1 (flt-1) autocrine loop in human leukemia cells MOLT-4. Leukemia. 17:52–59. 2003. View Article : Google Scholar : PubMed/NCBI

124 

Morande PE, Zanetti SR, Borge M, Nannini P, Jancic C, Bezares RF, Bitsmans A, González M, Rodríguez AL, Galmarini CM, et al: The cytotoxic activity of Aplidin in chronic lymphocytic leukemia (CLL) is mediated by a direct effect on leukemic cells and an indirect effect on monocyte-derived cells. Invest New Drugs. 30:1830–1840. 2012. View Article : Google Scholar : PubMed/NCBI

125 

Barboza NM, Medina DJ, Budak-Alpdogan T, Aracil M, Jimeno JM, Bertino JR and Banerjee D: Plitidepsin (Aplidin) is a potent inhibitor of diffuse large cell and Burkitt lymphoma and is synergistic with rituximab. Cancer Biol Ther. 13:114–122. 2012. View Article : Google Scholar : PubMed/NCBI

126 

Humeniuk R, Menon LG, Mishra PJ, Saydam G, Longo-Sorbello GS, Elisseyeff Y, Lewis LD, Aracil M, Jimeno J, Bertino JR and Banerjee D: Aplidin synergizes with cytosine arabinoside: Functional relevance of mitochondria in Aplidin-induced cytotoxicity. Leukemia. 21:2399–2405. 2007. View Article : Google Scholar : PubMed/NCBI

127 

Spicka I, Ocio EM, Oakervee HE, Greil R, Banh RH, Huang SY, D'Rozario JM, Dimopoulos MA, Martínez S, Extremera S, et al: Randomized phase III study (ADMYRE) of plitidepsin in combination with dexamethasone vs. dexamethasone alone in patients with relapsed/refractory multiple myeloma. Ann Hematol. 98:2139–2150. 2019. View Article : Google Scholar : PubMed/NCBI

128 

Mateos MV, Prosper F, Martin Sánchez J, Ocio EM, Oriol A, Motlló C, Michot JM, Jarque I, Iglesias R, Solé M, et al: Phase I study of plitidepsin in combination with bortezomib and dexamethasone in patients with relapsed/refractory multiple myeloma. Cancer Med. 12:3999–4009. 2023. View Article : Google Scholar : PubMed/NCBI

129 

Itazaki H, Nagashima K, Sugita K, Yoshida H, Kawamura Y, Yasuda Y, Matsumoto K, Ishii K, Uotani N, Nakai H, et al: Isolation and structural elucidation of new cyclotetrapeptides, trapoxins A and B, having detransformation activities as antitumor agents. J Antibiot (Tokyo). 43:1524–1532. 1990. View Article : Google Scholar : PubMed/NCBI

130 

Furumai R, Komatsu Y, Nishino N, Khochbin S, Yoshida M and Horinouchi S: Potent histone deacetylase inhibitors built from trichostatin A and cyclic tetrapeptide antibiotics including trapoxin. Proc Natl Acad Sci USA. 98:87–92. 2001. View Article : Google Scholar : PubMed/NCBI

131 

Kijima M, Yoshida M, Sugita K, Horinouchi S and Beppu T: Trapoxin, an antitumor cyclic tetrapeptide, is an irreversible inhibitor of mammalian histone deacetylase. J Biol Chem. 268:22429–22435. 1993. View Article : Google Scholar : PubMed/NCBI

132 

Kosugi H, Towatari M, Hatano S, Kitamura K, Kiyoi H, Kinoshita T, Tanimoto M, Murate T, Kawashima K, Saito H and Naoe T: Histone deacetylase inhibitors are the potent inducer/enhancer of differentiation in acute myeloid leukemia: A new approach to anti-leukemia therapy. Leukemia. 13:1316–1324. 1999. View Article : Google Scholar : PubMed/NCBI

133 

Maeda T, Towatari M, Kosugi H and Saito H: Up-regulation of costimulatory/adhesion molecules by histone deacetylase inhibitors in acute myeloid leukemia cells. Blood. 96:3847–3856. 2000. View Article : Google Scholar : PubMed/NCBI

134 

Park JS, Lee KR, Kim JC, Lim SH, Seo JA and Lee YW: A hemorrhagic factor (Apicidin) produced by toxic Fusarium isolates from soybean seeds. Appl Environ Microbiol. 65:126–130. 1999. View Article : Google Scholar : PubMed/NCBI

135 

Han JW, Ahn SH, Park SH, Wang SY, Bae GU, Seo DW, Kwon HK, Hong S, Lee HY, Lee YW and Lee HW: Apicidin, a histone deacetylase inhibitor, inhibits proliferation of tumor cells via induction of p21WAF1/Cip1 and gelsolin. Cancer Res. 60:6068–6074. 2000.PubMed/NCBI

136 

Cheong JW, Chong SY, Kim JY, Eom JI, Jeung HK, Maeng HY, Lee ST and Min YH: Induction of apoptosis by apicidin, a histone deacetylase inhibitor, via the activation of mitochondria-dependent caspase cascades in human Bcr-Abl-positive leukemia cells. Clin Cancer Res. 9:5018–5027. 2003.PubMed/NCBI

137 

Kim JS, Jeung HK, Cheong JW, Maeng H, Lee ST, Hahn JS, Ko YW and Min YH: Apicidin potentiates the imatinib-induced apoptosis of Bcr-Abl-positive human leukaemia cells by enhancing the activation of mitochondria-dependent caspase cascades. Br J Haematol. 124:166–178. 2004. View Article : Google Scholar : PubMed/NCBI

138 

Ferrante F, Giaimo BD, Bartkuhn M, Zimmermann T, Close V, Mertens D, Nist A, Stiewe T, Meier-Soelch J, Kracht M, et al: HDAC3 functions as a positive regulator in Notch signal transduction. Nucleic Acids Res. 48:3496–3512. 2020. View Article : Google Scholar : PubMed/NCBI

139 

Mori H, Urano Y, Abe F, Furukawa S, Furukawa S, Tsurumi Y, Sakamoto K, Hashimoto M, Takase S, Hino M and Fujii T: FR235222, a fungal metabolite, is a novel immunosuppressant that inhibits mammalian histone deacetylase (HDAC). I. Taxonomy, fermentation, isolation and biological activities. J Antibiot (Tokyo). 56:72–79. 2003. View Article : Google Scholar : PubMed/NCBI

140 

Petrella A, D'Acunto CW, Rodriquez M, Festa M, Tosco A, Bruno I, Terracciano S, Taddei M, Paloma LG and Parente L: Effects of FR235222, a novel HDAC inhibitor, in proliferation and apoptosis of human leukaemia cell lines: Role of annexin A1. Eur J Cancer. 44:740–749. 2008. View Article : Google Scholar : PubMed/NCBI

141 

D'Acunto CW, Carratù A, Rodriquez M, Taddei M, Parente L and Petrella A: LGP1, A histone deacetylase inhibitor analogue of FR235222, sensitizes promyelocytic leukaemia U937 cells to TRAIL-mediated apoptosis. Anticancer Res. 30:887–894. 2010.PubMed/NCBI

142 

Fuentes-Baile M, García-Morales P, Pérez-Valenciano E, Mata-Balaguer T, Menéndez-Gutiérrez MP, de Juan Romero C, Rodríguez-Lescure Á, Martín-Orozco E, Mallavia R, Barberá VM and Saceda M: Insights into histone deacetylase inhibitors-induced cell death in cancer cell lines. Biomed Pharmacother. 191:1185412025. View Article : Google Scholar : PubMed/NCBI

143 

Li Z, Qiu H, Lu W, Duan N, Fan S, Zhou R, Li X, Zhang H, Liu N and Yang F: Design and synthesis of thiazole-based hydroxamate histone deacetylase inhibitors with potent antitumor efficacy by inducing apoptosis, pyroptosis and cell cycle arrest. Sci Rep. 15:245892025. View Article : Google Scholar : PubMed/NCBI

144 

Aroonthongsawat P, Manocheewa S, Srisawat C, Punnakitikashem P and Suwanwong Y: Enhancement of the in vitro anti-leukemic effect of the histone deacetylase inhibitor romidepsin using Poly-(D, L-lactide-co-glycolide) nanoparticles as a drug carrier. Eur J Pharm Sci. 207:1070432025. View Article : Google Scholar : PubMed/NCBI

145 

Pal I, Illendula A, Joyner AM, Manavalan JS, Deddens TM, Sabzevari A, Damera DP, Zuberi S, Marchi E, Fox TE, et al: Nanoromidepsin, a polymer nanoparticle of the HDAC inhibitor, improves safety and efficacy in models of T-cell lymphoma. Blood. Sep 2–2025.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI

146 

Xiao W, Jiang W, Chen Z, Huang Y, Mao J, Zheng W, Hu Y and Shi J: Advance in peptide-based drug development: delivery platforms, therapeutics and vaccines. Signal Transduct Target Ther. 10:742025. View Article : Google Scholar : PubMed/NCBI

147 

Rizwan A, Aqeel A and Farooqi H: Decoding HDACs and its inhibitors-artificial intelligence assisted smart software based super computational modelling technology in targeting cancer and neurological disorders of the brain. Netw Modeling Anal Health Inform Bioinform. 14:1042025. View Article : Google Scholar

148 

Wang D, Li W, Zhao R, Chen L, Liu N, Tian Y, Zhao H, Xie M, Lu F, Fang Q, et al: Stabilized peptide HDAC inhibitors derived from HDAC1 substrate H3K56 for the treatment of cancer stem-like cells in vivo. Cancer Res. 79:1769–1783. 2019. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Suwanwong Y and Ploensil P: Role of histone deacetylases in blood cancer: Exploring peptide‑based inhibitors as therapeutic strategies for leukemia treatment (Review). Oncol Rep 55: 17, 2026.
APA
Suwanwong, Y., & Ploensil, P. (2026). Role of histone deacetylases in blood cancer: Exploring peptide‑based inhibitors as therapeutic strategies for leukemia treatment (Review). Oncology Reports, 55, 17. https://doi.org/10.3892/or.2025.9022
MLA
Suwanwong, Y., Ploensil, P."Role of histone deacetylases in blood cancer: Exploring peptide‑based inhibitors as therapeutic strategies for leukemia treatment (Review)". Oncology Reports 55.1 (2026): 17.
Chicago
Suwanwong, Y., Ploensil, P."Role of histone deacetylases in blood cancer: Exploring peptide‑based inhibitors as therapeutic strategies for leukemia treatment (Review)". Oncology Reports 55, no. 1 (2026): 17. https://doi.org/10.3892/or.2025.9022
Copy and paste a formatted citation
x
Spandidos Publications style
Suwanwong Y and Ploensil P: Role of histone deacetylases in blood cancer: Exploring peptide‑based inhibitors as therapeutic strategies for leukemia treatment (Review). Oncol Rep 55: 17, 2026.
APA
Suwanwong, Y., & Ploensil, P. (2026). Role of histone deacetylases in blood cancer: Exploring peptide‑based inhibitors as therapeutic strategies for leukemia treatment (Review). Oncology Reports, 55, 17. https://doi.org/10.3892/or.2025.9022
MLA
Suwanwong, Y., Ploensil, P."Role of histone deacetylases in blood cancer: Exploring peptide‑based inhibitors as therapeutic strategies for leukemia treatment (Review)". Oncology Reports 55.1 (2026): 17.
Chicago
Suwanwong, Y., Ploensil, P."Role of histone deacetylases in blood cancer: Exploring peptide‑based inhibitors as therapeutic strategies for leukemia treatment (Review)". Oncology Reports 55, no. 1 (2026): 17. https://doi.org/10.3892/or.2025.9022
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team