|
1
|
Tung CH, Huang MF, Liang CH, Wu YY, Wu JE,
Hsu CL, Chen YL and Hong TM: α-Catulin promotes cancer stemness by
antagonizing WWP1-mediated KLF5 degradation in lung cancer.
Theranostics. 12:1173–1186. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
He Q, Yang L, Gao K, Ding P, Chen Q, Xiong
J, Yang W, Song Y, Wang L, Wang Y, et al: FTSJ1 regulates tRNA
2′-O-methyladenosine modification and suppresses the malignancy of
NSCLC via inhibiting DRAM1 expression. Cell Death Dis. 11:3482020.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Jia Z, Wang K, Duan Y, Hu K, Zhang Y, Wang
M, Xiao K, Liu S, Pan Z and Ding X: Claudin1 decrease induced by
1,25-dihydroxy-vitamin D3 potentiates gefitinib resistance therapy
through inhibiting AKT activation-mediated cancer stem-like
properties in NSCLC cells. Cell Death Discov. 8:1222022. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Zhou Y, Dang J, Chang KY, Yau E, Aza-Blanc
P, Moscat J and Rana TM: miR-1298 inhibits Mutant KRAS-driven tumor
growth by repressing FAK and LAMB3. Cancer Res. 76:5777–5787. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Skoulidis F and Heymach JV: Co-occurring
genomic alterations in non-small-cell lung cancer biology and
therapy. Nat Rev Cancer. 19:495–509. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Zhang P, Yorke E, Mageras G, Rimner A,
Sonke JJ and Deasy JO: Validating a predictive atlas of tumor
shrinkage for adaptive radiotherapy of locally advanced lung
cancer. Int J Radiat Oncol Biol Phys. 102:978–986. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Lahiri A, Maji A, Potdar PD, Singh N,
Parikh P, Bisht B, Mukherjee A and Paul MK: Lung cancer
immunotherapy: Progress, pitfalls, and promises. Mol Cancer.
22:402023. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Sarkar A and Hochedlinger K: The sox
family of transcription factors: Versatile regulators of stem and
progenitor cell fate. Cell Stem Cell. 12:15–30. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Saloni, Sachan M, Rahul Verma RS and Patel
GK: SOXs: Master architects of development and versatile emulators
of oncogenesis. Biochim Biophys Acta Rev Cancer. 1880:1892952025.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Tang Q, Chen J, Di Z, Yuan W, Zhou Z, Liu
Z, Han S, Liu Y, Ying G, Shu X and Di M: TM4SF1 promotes EMT and
cancer stemness via the Wnt/β-catenin/SOX2 pathway in colorectal
cancer. J Exp Clin Cancer Res. 39:2322020. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Bagati A, Kumar S, Jiang P, Pyrdol J, Zou
AE, Godicelj A, Mathewson ND, Cartwright ANR, Cejas P, Brown M, et
al: Integrin αvβ6-TGFβ-SOX4 pathway drives immune evasion in
triple-negative breast cancer. Cancer Cell. 39:54–67.e9. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Ma XL, Hu B, Tang WG, Xie SH, Ren N, Guo L
and Lu RQ: CD73 sustained cancer-stem-cell traits by promoting SOX9
expression and stability in hepatocellular carcinoma. J Hematol
Oncol. 13:112020. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Shang J, Zheng Y, Mo J, Wang W, Luo Z, Li
Y, Chen X, Zhang Q, Wu K, Liu W and Wu J: Sox4 represses host
innate immunity to facilitate pathogen infection by hijacking the
TLR signaling networks. Virulence. 12:704–722. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Zu F, Chen C, Geng Q, Li H, Chan B, Luo G,
Wu M, Ilmer M, Renz BW, Bentum-Ennin L, et al: Smad2 cooperating
with TGIF2 contributes to EMT and cancer stem cells properties in
pancreatic cancer via co-targeting SOX2. Int J Biol Sci.
21:524–543. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Balgkouranidou I, Chimonidou M, Milaki G,
Tsaroucha E, Kakolyris S, Georgoulias V and Lianidou E: SOX17
promoter methylation in plasma circulating tumor DNA of patients
with non-small cell lung cancer. Clin Chem Lab Med. 54:1385–1393.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Cao YH, Ding J, Tang QH, Zhang J, Huang
ZY, Tang XM, Liu JB, Ma YS and Fu D: Deciphering cell-cell
interactions and communication in the tumor microenvironment and
unraveling intratumoral genetic heterogeneity via single-cell
genomic sequencing. Bioengineered. 13:14974–14986. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Dehshahri A, Biagioni A, Bayat H, Lee EHC,
Hashemabadi M, Fekri HS, Zarrabi A, Mohammadinejad R and Kumar AP:
Editing SOX genes by CRISPR-Cas: Current insights and future
perspectives. Int J Mol Sci. 22:113212021. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Tripathi SK and Biswal BK: SOX9 promotes
epidermal growth factor receptor-tyrosine kinase inhibitor
resistance via targeting β-catenin and epithelial to mesenchymal
transition in lung cancer. Life Sci. 277:1196082021. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Hushmandi K, Saadat SH, Mirilavasani S,
Daneshi S, Aref AR, Nabavi N, Raesi R, Taheriazam A and Hashemi M:
The multifaceted role of SOX2 in breast and lung cancer dynamics.
Pathol Res Pract. 260:1553862024. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Chen S, Xu Y, Chen Y, Li X, Mou W, Wang L,
Liu Y, Reisfeld RA, Xiang R, Lv D and Li N: SOX2 gene regulates the
transcriptional network of oncogenes and affects tumorigenesis of
human lung cancer cells. PLoS One. 7:e363262012. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Li Y, Chen P, Zu L, Liu B, Wang M and Zhou
Q: MicroRNA-338-3p suppresses metastasis of lung cancer cells by
targeting the EMT regulator Sox4. Am J Cancer Res. 6:127–140.
2016.PubMed/NCBI
|
|
22
|
Liang Z, Xu J and Gu C: Novel role of the
SRY-related high-mobility-group box D gene in cancer. Semin Cancer
Biol. 67:83–90. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Jones K, Ramirez-Perez S, Niu S,
Gangishetti U, Drissi H and Bhattaram P: SOX4 and RELA function as
transcriptional partners to regulate the expression of
TNF-responsive genes in fibroblast-like synoviocytes. Front
Immunol. 13:7893492022. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Xia X, Huo W, Wan R, Zhang L, Xia X and
Chang Z: Molecular cloning and expression analysis of Sox3 during
gonad and embryonic development in Misgurnus
anguillicaudatus. Int J Dev Biol. 61:565–570. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Baroti T, Schillinger A, Wegner M and
Stolt CC: Sox13 functionally complements the related Sox5 and Sox6
as important developmental modulators in mouse spinal cord
oligodendrocytes. J Neurochem. 136:316–328. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Wan H, Liao J, Zhang Z, Zeng X, Liang K
and Wang Y: Molecular cloning, characterization, and expression
analysis of a sex-biased transcriptional factor sox9 gene of mud
crab Scylla paramamosain. Gene. 774:1454232021. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Olbromski M, Podhorska-Okołów M and
Dzięgiel P: Role of SOX protein groups F and H in lung cancer
progression. Cancers (Basel). 12:32352020. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Toschi L, Finocchiaro G, Nguyen TT, Skokan
MC, Giordano L, Gianoncelli L, Perrino M, Siracusano L, Di Tommaso
L, Infante M, et al: Increased SOX2 gene copy number is associated
with FGFR1 and PIK3CA gene gain in non-small cell lung cancer and
predicts improved survival in early stage disease. PLoS One.
9:e953032014. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Pradhan S, Guddattu V and Solomon MC:
Association of the co-expression of SOX2 and Podoplanin in the
progression of oral squamous cell carcinomas-an immunohistochemical
study. J Appl Oral Sci. 27:e201803482019. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Choi CM, Jang SJ, Park SY, Choi YB, Jeong
JH, Kim DS, Kim HK, Park KS, Nam BH, Kim HR, et al:
Transglutaminase 2 as an independent prognostic marker for survival
of patients with non-adenocarcinoma subtype of non-small cell lung
cancer. Mol Cancer. 10:1192011. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Li C, He B, Huang C, Yang H, Cao L, Huang
J and Hu C: Sex-determining region Y-box 2 promotes growth of lung
squamous cell carcinoma and directly targets cyclin D1. DNA Cell
Biol. 36:264–272. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Liu B, Liu Y, Zou J, Zou M and Cheng Z:
Smoking is associated with lung adenocarcinoma and lung squamous
cell carcinoma progression through inducing distinguishing lncRNA
alterations in different genders. Anticancer Agents Med Chem.
22:1541–1550. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Zhou Y, Wang X, Huang Y, Chen Y, Zhao G,
Yao Q, Jin C, Huang Y, Liu X and Li G: Down-regulated SOX4
expression suppresses cell proliferation, metastasis and induces
apoptosis in Xuanwei female lung cancer patients. J Cell Biochem.
116:1007–1018. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Wang D, Hao T, Pan Y, Qian X and Zhou D:
Increased expression of SOX4 is a biomarker for malignant status
and poor prognosis in patients with non-small cell lung cancer. Mol
Cell Biochem. 402:75–82. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Wen T, Zhang X, Gao Y, Tian H, Fan L and
Yang P: SOX4-BMI1 axis promotes non-small cell lung cancer
progression and facilitates angiogenesis by suppressing ZNF24. Cell
Death Dis. 15:6982024. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Liu X, Wang Y, Zhou G, Zhou J, Tian Z and
Xu J: circGRAMD1B contributes to migration, invasion and
epithelial-mesenchymal transition of lung adenocarcinoma cells via
modulating the expression of SOX4. Funct Integr Genomics.
23:752023. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Sasaki A, Abe H, Mochizuki S, Shimoda M
and Okada Y: SOX4, an epithelial-mesenchymal transition inducer,
transactivates ADAM28 gene expression and co-localizes with ADAM28
at the invasive front of human breast and lung carcinomas. Pathol
Int. June 7–2018.(Epub ahead of print). View Article : Google Scholar
|
|
38
|
Sun J, Xiong Y, Jiang K, Xin B, Jiang T,
Wei R, Zou Y, Tan H, Jiang T, Yang A, et al: Hypoxia-sensitive long
noncoding RNA CASC15 promotes lung tumorigenesis by regulating the
SOX4/β-catenin axis. J Exp Clin Cancer Res. 40:122021. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Wu J, Zhu MX, Li KS, Peng L and Zhang PF:
Circular RNA drives resistance to anti-PD-1 immunotherapy by
regulating the miR-30a-5p/SOX4 axis in non-small cell lung cancer.
Cancer Drug Resist. 5:261–270. 2022.PubMed/NCBI
|
|
40
|
Fois SS, Paliogiannis P, Zinellu A, Fois
AG, Cossu A and Palmieri G: Molecular epidemiology of the main
druggable genetic alterations in non-small cell lung cancer. Int J
Mol Sci. 22:6122021. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Capaccione KM, Hong X, Morgan KM, Liu W,
Bishop JM, Liu L, Markert E, Deen M, Minerowicz C, Bertino JR, et
al: Sox9 mediates Notch1-induced mesenchymal features in lung
adenocarcinoma. Oncotarget. 5:3636–3650. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Zhong H, Lu W, Tang Y, Wiel C, Wei Y, Cao
J, Riedlinger G, Papagiannakopoulos T, Guo JY, Bergo MO, et al:
SOX9 drives KRAS-induced lung adenocarcinoma progression and
suppresses anti-tumor immunity. Oncogene. 42:2183–2194. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Chen NM, Singh G, Koenig A, Liou GY, Storz
P, Zhang JS, Regul L, Nagarajan S, Kühnemuth B, Johnsen SA, et al:
NFATc1 links EGFR signaling to induction of Sox9 transcription and
acinar-ductal transdifferentiation in the pancreas.
Gastroenterology. 148:1024–1034.e9. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Ling S, Chang X, Schultz L, Lee TK, Chaux
A, Marchionni L, Netto GJ, Sidransky D and Berman DM: An
EGFR-ERK-SOX9 signaling cascade links urothelial development and
regeneration to cancer. Cancer Res. 71:3812–3821. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Xue VW, Ng SSM, Tsang HF, Wong HT, Leung
WW, Wong YN, Wong YKE, Yu ACS, Yim AKY, Cho WCS, et al: The
non-invasive diagnosis of colorectal cancer via a SOX9-based gene
panel. Clin Exp Med. 23:2421–2432. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Ramakrishnan AB, Burby PE, Adiga K and
Cadigan KM: SOX9 and TCF transcription factors associate to mediate
Wnt/β-catenin target gene activation in colorectal cancer. J Biol
Chem. 299:1027352023. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Zhou H, Qin Y, Ji S, Ling J, Fu J, Zhuang
Z, Fan X, Song L, Yu X and Chiao PJ: SOX9 activity is induced by
oncogenic Kras to affect MDC1 and MCMs expression in pancreatic
cancer. Oncogene. 37:912–923. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Kopp JL, von Figura G, Mayes E, Liu FF,
Dubois CL, Morris JP IV, Pan FC, Akiyama H, Wright CV, Jensen K, et
al: Identification of Sox9-dependent acinar-to-ductal reprogramming
as the principal mechanism for initiation of pancreatic ductal
adenocarcinoma. Cancer Cell. 22:737–750. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Zou H, Wang S, Wang S, Wu H, Yu J, Chen Q,
Cui W, Yuan Y, Wen X, He J, et al: SOX5 interacts with YAP1 to
drive malignant potential of non-small cell lung cancer cells. Am J
Cancer Res. 8:866–878. 2018.PubMed/NCBI
|
|
50
|
Chen D, Wang R, Yu C, Cao F, Zhang X, Yan
F, Chen L, Zhu H, Yu Z and Feng J: FOX-A1 contributes to
acquisition of chemoresistance in human lung adenocarcinoma via
transactivation of SOX5. EBioMedicine. 44:150–161. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Chen R, Zhang C, Cheng Y, Wang S, Lin H
and Zhang H: LncRNA UCC promotes epithelial-mesenchymal transition
via the miR-143-3p/SOX5 axis in non-small-cell lung cancer. Lab
Invest. 101:1153–1165. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Chen X, Fu Y, Xu H, Teng P, Xie Q, Zhang
Y, Yan C, Xu Y, Li C, Zhou J, et al: SOX5 predicts poor prognosis
in lung adenocarcinoma and promotes tumor metastasis through
epithelial-mesenchymal transition. Oncotarget. 9:10891–10904. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Xue JD, Xiang WF, Cai MQ and Lv XY:
Biological functions and therapeutic potential of SRY related high
mobility group box 5 in human cancer. Front Oncol. 14:13321482024.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Jethon A, Pula B, Olbromski M, Werynska B,
Muszczynska-Bernhard B, Witkiewicz W, Dziegiel P and
Podhorska-Okolow M: Prognostic significance of SOX18 expression in
non-small cell lung cancer. Int J Oncol. 46:123–132. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Olbromski M, Grzegrzolka J,
Jankowska-Konsur A, Witkiewicz W, Podhorska-Okolow M and Dziegiel
P: MicroRNAs modulate the expression of the SOX18 transcript in
lung squamous cell carcinoma. Oncol Rep. 36:2884–2892. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
de Souza Silva FH, Underwood A, Almeida
CP, Ribeiro TS, Souza-Fagundes EM, Martins AS, Eliezeck M,
Guatimosim S, Andrade LO, Rezende L, et al: Transcription factor
SOX3 upregulated pro-apoptotic genes expression in human breast
cancer. Med Oncol. 39:2122022. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Guo Y, Yin J, Tang M and Yu X:
Downregulation of SOX3 leads to the inhibition of the
proliferation, migration and invasion of osteosarcoma cells. Int J
Oncol. 52:1277–1284. 2018.PubMed/NCBI
|
|
58
|
Del Puerto HL, Miranda APGS, Qutob D,
Ferreira E, Silva FHS, Lima BM, Carvalho BA, Roque-Souza B, Gutseit
E, Castro DC, et al: Clinical correlation of transcription factor
SOX3 in cancer: Unveiling its role in tumorigenesis. Genes (Basel).
15:7772024. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Qiu M, Chen D, Shen C, Shen J, Zhao H and
He Y: Sex-determining region Y-box protein 3 induces
epithelial-mesenchymal transition in osteosarcoma cells via
transcriptional activation of Snail1. J Exp Clin Cancer Res.
36:462017. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Wu D, Jiang C, Zheng JJ, Luo DS, Ma J, Que
HF, Li C, Ma C, Wang HY, Wang W and Xu HT: Bioinformatics analysis
of SOXF family genes reveals potential regulatory mechanism and
diagnostic value in cancers. Ann Transl Med. 10:7012022. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Cook M, Qorri B, Baskar A, Ziauddin J,
Pani L, Yenkanchi S and Geraci J: Small patient datasets reveal
genetic drivers of non-small cell lung cancer subtypes using
machine learning for hypothesis generation. Exp Med. 4:428–440.
2023. View Article : Google Scholar
|
|
62
|
Hayano T, Garg M, Yin D, Sudo M, Kawamata
N, Shi S, Chien W, Ding LW, Leong G, Mori S, et al: SOX7 is
down-regulated in lung cancer. J Exp Clin Cancer Res. 32:172013.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Wu X, Liu H, Zhang M, Ma J, Qi S, Tan Q,
Jiang Y, Hong Y and Yan L: miR-200a-3p promoted cell proliferation
and metastasis by downregulating SOX17 in non-small cell lung
cancer cells. J Biochem Mol Toxicol. 36:e230372022. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Zang K, Yu ZH, Wang M, Huang Y, Zhu XX and
Yao B: SOX2 como posible biomarcador pronóstico y diana molecular
en el cáncer de pulmón: Metaanálisis. Rev Clin Esp (Barc).
222:584–592. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Wang S, Li Z, Li P, Li L, Liu Y, Feng Y,
Li R and Xia S: SOX2 promotes radioresistance in non-small cell
lung cancer by regulating tumor cells dedifferentiation. Int J Med
Sci. 20:781–796. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Yun HS, Baek JH, Yim JH, Um HD, Park JK,
Song JY, Park IC, Kim JS, Lee SJ, Lee CW and Hwang SG: Radiotherapy
diagnostic biomarkers in radioresistant human H460 lung cancer
stem-like cells. Cancer Biol Ther. 17:208–218. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Gomez-Casal R, Bhattacharya C, Ganesh N,
Bailey L, Basse P, Gibson M, Epperly M and Levina V: Non-small cell
lung cancer cells survived ionizing radiation treatment display
cancer stem cell and epithelial-mesenchymal transition phenotypes.
Mol Cancer. 12:942013. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Huang Y, Wang X, Hu R, Pan G and Lin X:
SOX2 regulates paclitaxel resistance of A549 non-small cell lung
cancer cells via promoting transcription of ClC-3. Oncol Rep.
48:1812022. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Chen TY, Zhou J, Li PC, Tang CH, Xu K, Li
T and Ren T: SOX2 knockdown with siRNA reverses cisplatin
resistance in NSCLC by regulating APE1 signaling. Med Oncol.
39:362022. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Han F, Liu W, Jiang X, Shi X, Yin L, Ao L,
Cui Z, Li Y, Huang C, Cao J and Liu J: SOX30, a novel epigenetic
silenced tumor suppressor, promotes tumor cell apoptosis by
transcriptional activating p53 in lung cancer. Oncogene.
34:4391–4402. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Lv L, Zhou M, Zhang J, Liu F, Qi L, Zhang
S, Bi Y and Yu Y: SOX6 suppresses the development of lung
adenocarcinoma by regulating expression of p53, p21CIPI,
cyclin D1 and β-catenin. FEBS Open Bio. 10:135–146. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Liu H, Zhong L, Lu Y, Liu X, Wei J, Ding
Y, Huang H, Nie Q and Liao X: Deubiquitylase OTUD1 confers
Erlotinib sensitivity in non-small cell lung cancer through
inhibition of nuclear translocation of YAP1. Cell Death Discov.
8:4032022. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Yu Y, Luo Y, Zheng Y, Zheng X, Li W, Yang
L and Jiang J: Exploring the mechanism of non-small-cell lung
cancer cell lines resistant to epidermal growth factor receptor
tyrosine kinase inhibitor. J Cancer Res Ther. 12:121–125. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Du Q, Liu J, Zhang X, Zhang X, Zhu H, Wei
M and Wang S: Propofol inhibits proliferation, migration, and
invasion but promotes apoptosis by regulation of Sox4 in
endometrial cancer cells. Braz J Med Biol Res. 51:e68032018.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Li J, Zhu Z, Li S, Han Z, Meng F and Wei
L: Circ_0089823 reinforces malignant behaviors of non-small cell
lung cancer by acting as a sponge for microRNAs targeting SOX4.
Neoplasia. 23:887–897. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Han F, Zhang MQ, Liu WB, Sun L, Hao XL,
Yin L, Jiang X, Cao J and Liu JY: SOX30 specially prevents
Wnt-signaling to suppress metastasis and improve prognosis of lung
adenocarcinoma patients. Respir Res. 19:2412018. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Chang SY, Wu TH, Shih YL, Chen YC, Su HY,
Chian CF and Lin YW: SOX1 functions as a tumor suppressor by
repressing HES1 in lung cancer. Cancers (Basel). 15:22072023.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Li D, Wang D, Liu H and Jiang X: LEM
domain containing 1 (LEMD1) transcriptionally activated by
SRY-related high-mobility-group box 4 (SOX4) accelerates the
progression of colon cancer by upregulating phosphatidylinositol
3-kinase (PI3K)/protein kinase B (Akt) signaling pathway.
Bioengineered. 13:8087–8100. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Jin L, Chen C, Huang L, Sun Q and Bu L:
Long noncoding RNA NR2F1-AS1 stimulates the tumorigenic behavior of
non-small cell lung cancer cells by sponging miR-363-3p to increase
SOX4. Open Med (Wars). 17:87–95. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Chang J, Gao F, Chu H, Lou L, Wang H and
Chen Y: miR-363-3p inhibits migration, invasion, and
epithelial-mesenchymal transition by targeting NEDD9 and SOX4 in
non-small-cell lung cancer. J Cell Physiol. 235:1808–1820. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Ye Q, Raese R, Luo D, Cao S, Wan YW, Qian
Y and Guo NL: MicroRNA, mRNA, and proteomics biomarkers and
therapeutic targets for improving lung cancer treatment outcomes.
Cancers (Basel). 15:22942023. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Martínez-Espinosa I, Serrato JA,
Cabello-Gutiérrez C, Carlos-Reyes Á and Ortiz-Quintero B:
Mechanisms of microRNA regulation of the epithelial-mesenchymal
transition (EMT) in lung cancer. Life (Basel).
14:14312024.PubMed/NCBI
|
|
83
|
Han F, Liu WB, Shi XY, Yang JT, Zhang X,
Li ZM, Jiang X, Yin L, Li JJ, Huang CS, et al: SOX30 inhibits tumor
metastasis through attenuating Wnt-signaling via transcriptional
and posttranslational regulation of β-catenin in lung cancer.
EBioMedicine. 31:253–266. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Wang Y, Zhang L, Yang J and Sun R: LncRNA
KCNQ1OT1 promotes cell proliferation, migration and invasion via
regulating miR-129-5p/JAG1 axis in non-small cell lung cancer.
Cancer Cell Int. 20:1442020. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Liu C, Yang H, Xu Z, Li D, Zhou M, Xiao K,
Shi Z, Zhu L, Yang L and Zhou R: microRNA-548l is involved in the
migration and invasion of non-small cell lung cancer by targeting
the AKT1 signaling pathway. J Cancer Res Clin Oncol. 141:431–441.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Wang X, Chen Y, Wang X, Tian H, Wang Y,
Jin J, Shan Z, Liu Y, Cai Z, Tong X, et al: Stem cell factor SOX2
confers ferroptosis resistance in lung cancer via upregulation of
SLC7A11. Cancer Res. 81:5217–5229. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Loh JJ and Ma S: Hallmarks of cancer
stemness. Cell Stem Cell. 31:617–639. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Wan X, Ma D, Song G, Tang L, Jiang X, Tian
Y, Yi Z, Jiang C, Jin Y, Hu A and Bai Y: The SOX2/PDIA6 axis
mediates aerobic glycolysis to promote stemness in non-small cell
lung cancer cells. J Bioenerg Biomembr. 56:323–332. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Yan F, Teng Y, Li X, Zhong Y, Li C, Yan F
and He X: Hypoxia promotes non-small cell lung cancer cell
stemness, migration, and invasion via promoting glycolysis by
lactylation of SOX9. Cancer Biol Ther. 25:23041612024. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Jia Z, Zhang Y, Yan A, Wang M, Han Q, Wang
K, Wang J, Qiao C, Pan Z, Chen C, et al: 1,25-Dihydroxyvitamin D3
signaling-induced decreases in IRX4 inhibits NANOG-mediated cancer
stem-like properties and gefitinib resistance in NSCLC cells. Cell
Death Dis. 11:6702020. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
He J, Shi J, Zhang K, Xue J, Li J, Yang J,
Chen J, Wei J, Ren H and Liu X: Sox2 inhibits Wnt-β-catenin
signaling and metastatic potency of cisplatin-resistant lung
adenocarcinoma cells. Mol Med Rep. 15:1693–1701. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Zhou W, Cai C, Lu J and Fan Q: miR-129-2
upregulation induces apoptosis and promotes NSCLC chemosensitivity
by targeting SOX4. Thorac Cancer. 13:956–964. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Huang Q, Xing S, Peng A and Yu Z: NORAD
accelerates chemo-resistance of non-small-cell lung cancer via
targeting at miR-129-1-3p/SOX4 axis. Biosci Rep.
40:BSR201934892020. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Xia Y, Tang G, Chen Y, Wang C, Guo M, Xu
T, Zhao M and Zhou Y: Tumor-targeted delivery of siRNA to silence
Sox2 gene expression enhances therapeutic response in
hepatocellular carcinoma. Bioact Mater. 6:1330–1340.
2020.PubMed/NCBI
|
|
95
|
Masarwy R, Breier D, Stotsky-Oterin L,
Ad-El N, Qassem S, Naidu GS, Aitha A, Ezra A, Goldsmith M,
Hazan-Halevy I and Peer D: Targeted CRISPR/Cas9 lipid nanoparticles
elicits therapeutic genome editing in head and neck cancer. Adv Sci
(Weinh). 12:e24110322025. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Chen D, Hu C, Wen G, Yang Q, Zhang C and
Yang H: DownRegulated SOX4 expression suppresses cell
proliferation, migration, and induces apoptosis in osteosarcoma in
vitro and in vivo. Calcif Tissue Int. 102:117–127. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Adham AN, Abdelfatah S, Naqishbandi A,
Sugimoto Y, Fleischer E and Efferth T: Transcriptomics, molecular
docking, and cross-resistance profiling of nobiletin in cancer
cells and synergistic interaction with doxorubicin upon SOX5
transfection. Phytomedicine. 100:1540642022. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Guo K, Ma Z, Zhang Y, Han L, Shao C, Feng
Y, Gao F, Di S, Zhang Z, Zhang J, et al: HDAC7 promotes NSCLC
proliferation and metastasis via stabilization by deubiquitinase
USP10 and activation of β-catenin-FGF18 pathway. J Exp Clin Cancer
Res. 41:912022. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Taniguchi J, Pandian GN, Hidaka T, Hashiya
K, Bando T, Kim KK and Sugiyama H: A synthetic DNA-binding
inhibitor of SOX2 guides human induced pluripotent stem cells to
differentiate into mesoderm. Nucleic Acids Res. 45:9219–9228. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Panda M, Tripathi SK and Biswal BK: SOX9:
An emerging driving factor from cancer progression to drug
resistance. Biochim Biophys Acta Rev Cancer. 1875:1885172021.
View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Liu Z, Liao Z, Chen Y, Zhou L, Huangting W
and Xiao H: Research on CRISPR/system in major cancers and its
potential in cancer treatments. Clin Transl Oncol. 23:425–433.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Fu Y, Foden JA, Khayter C, Maeder ML,
Reyon D, Joung JK and Sander JD: High-frequency off-target
mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat
Biotechnol. 31:822–826. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Komor AC, Kim YB, Packer MS, Zuris JA and
Liu DR: Programmable editing of a target base in genomic DNA
without double-stranded DNA cleavage. Nature. 533:420–424. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Hu B, Zhong L, Weng Y, Peng L, Huang Y,
Zhao Y and Liang XJ: Therapeutic siRNA: State of the art. Signal
Transduct Target Ther. 5:1012020. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Bobbin ML and Rossi JJ: RNA interference
(RNAi)-based therapeutics: Delivering on the promise? Annu Rev
Pharmacol Toxicol. 56:103–122. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Cina C, Majeti B, O'Brien Z, Wang L,
Clamme JP, Adami R, Tsang KY, Harborth J, Ying W and Zabludoff S: A
novel lipid nanoparticle NBF-006 encapsulating glutathione
S-transferase P siRNA for the treatment of KRAS-driven non-small
cell lung cancer. Mol Cancer Ther. 24:7–17. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Kumthekar P, Ko CH, Paunesku T, Dixit K,
Sonabend AM, Bloch O, Tate M, Schwartz M, Zuckerman L, Lezon R, et
al: A first-in-human phase 0 clinical study of RNA
interference-based spherical nucleic acids in patients with
recurrent glioblastoma. Sci Transl Med. 13:eabb39452021. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Zuckerman JE, Gritli I, Tolcher A, Heidel
JD, Lim D, Morgan R, Chmielowski B, Ribas A, Davis ME and Yen Y:
Correlating animal and human phase Ia/Ib clinical data with
CALAA-01, a targeted, polymer-based nanoparticle containing siRNA.
Proc Natl Acad Sci USA. 111:11449–11454. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Molinar C, Tannous M, Meloni D, Cavalli R
and Scomparin A: Current status and trends in nucleic acids for
cancer therapy: A focus on polysaccharide-based nanomedicines.
Macromol Biosci. 23:e23001022023. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Torres-Mejia E, Weng S, Whittaker CA,
Nguyen KB, Duong E, Yim L and Spranger S: Lung cancer-intrinsic
SOX2 expression mediates resistance to checkpoint blockade therapy
by inducing treg-dependent CD8+ T-cell exclusion. Cancer Immunol
Res. 13:496–516. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Njouendou AJ, Szarvas T, Tiofack AAZ,
Kenfack RN, Tonouo PD, Ananga SN, Bell EHMD, Simo G, Hoheisel JD,
Siveke JT and Lueong SS: SOX2 dosage sustains tumor-promoting
inflammation to drive disease aggressiveness by modulating the
FOSL2/IL6 axis. Mol Cancer. 22:522023. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Jiang J, Wang Y, Sun M, Luo X, Zhang Z,
Wang Y, Li S, Hu D, Zhang J, Wu Z, et al: SOX on tumors, a comfort
or a constraint? Cell Death Discov. 10:672024. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Wang K and Zhou H: Proteolysis targeting
chimera (PROTAC) for epidermal growth factor receptor enhances
anti-tumor immunity in non-small cell lung cancer. Drug Dev Res.
82:422–429. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Jie C, Li R, Cheng Y, Wang Z, Wu Q and Xie
C: Prospects and feasibility of synergistic therapy with
radiotherapy, immunotherapy, and DNA methyltransferase inhibitors
in non-small cell lung cancer. Front Immunol. 14:11223522023.
View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Memon D, Schoenfeld AJ, Ye D, Fromm G,
Rizvi H, Zhang X, Keddar MR, Mathew D, Yoo KJ, Qiu J, et al:
Clinical and molecular features of acquired resistance to
immunotherapy in non-small cell lung cancer. Cancer Cell.
42:209–224.e9. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Rotow J and Bivona TG: Understanding and
targeting resistance mechanisms in NSCLC. Nat Rev Cancer.
17:637–658. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Justilien V, Walsh MP, Ali SA, Thompson
EA, Murray NR and Fields AP: The PRKCI and SOX2 oncogenes are
coamplified and cooperate to activate Hedgehog signaling in lung
squamous cell carcinoma. Cancer Cell. 25:139–151. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Wu JL, Xu CF, Yang XH and Wang MS:
Fibronectin promotes tumor progression through integrin
αvβ3/PI3K/AKT/SOX2 signaling in non-small cell lung cancer.
Heliyon. 9:e201852023. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Huang JQ, Wei FK, Xu XL, Ye SX, Song JW,
Ding PK, Zhu J, Li HF, Luo XP, Gong H, et al: SOX9 drives the
epithelial-mesenchymal transition in non-small-cell lung cancer
through the Wnt/β-catenin pathway. J Transl Med. 17:1432019.
View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Singh S, Trevino J, Bora-Singhal N,
Coppola D, Haura E, Altiok S and Chellappan SP: EGFR/Src/Akt
signaling modulates Sox2 expression and self-renewal of stem-like
side-population cells in non-small cell lung cancer. Mol Cancer.
11:732012. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Voronkova MA, Rojanasakul LW,
Kiratipaiboon C and Rojanasakul Y: The SOX9-aldehyde dehydrogenase
axis determines resistance to chemotherapy in non-small-cell lung
cancer. Mol Cell Biol. 40:e00307–19. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Weina K and Utikal J: SOX2 and cancer:
Current research and its implications in the clinic. Clin Transl
Med. 3:192014. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Ciccone G, Ibba ML, Coppola G, Catuogno S
and Esposito CL: The small RNA landscape in NSCLC: Current
therapeutic applications and progresses. Int J Mol Sci.
24:61212023. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Paul A, Muralidharan A, Biswas A, Kamath
BV, Joseph A and Alex AT: siRNA therapeutics and its challenges:
Recent advances in effective delivery for cancer therapy. OpenNano.
7:1000632022. View Article : Google Scholar
|
|
125
|
Khan P, Siddiqui JA, Lakshmanan I, Ganti
AK, Salgia R, Jain M, Batra SK and Nasser MW: RNA-based therapies:
A cog in the wheel of lung cancer defense. Mol Cancer. 20:542021.
View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Li JW, Zheng G, Kaye FJ and Wu L: PROTAC
therapy as a new targeted therapy for lung cancer. Mol Ther.
31:647–656. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Li S, Wang X, Huang J, Cao X, Liu Y, Bai
S, Zeng T, Chen Q, Li C, Lu C and Yang H: Decoy-PROTAC for specific
degradation of ‘undruggable’ STAT3 transcription factor. Cell Death
Dis. 16:1972025. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Ravindran Menon D, Luo Y, Arcaroli JJ, Liu
S, KrishnanKutty LN, Osborne DG, Li Y, Samson JM, Bagby S, Tan AC,
et al: CDK1 interacts with SOX2 and promotes tumor initiation in
human melanoma. Cancer Res. 78:6561–6574. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Maurizi G, Verma N, Gadi A, Mansukhani A
and Basilico C: SOX2 is required for tumor development and cancer
cell proliferation in osteosarcoma. Oncogene. 37:4626–4632. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Domenici G, Aurrekoetxea-Rodríguez I,
Simões BM, Rábano M, Lee SY, Millán JS, Comaills V, Oliemuller E,
López-Ruiz JA, Zabalza I, et al: A Sox2-Sox9 signalling axis
maintains human breast luminal progenitor and breast cancer stem
cells. Oncogene. 38:3151–3169. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Wang Q, Li J, Zhu J, Mao J, Duan C, Liang
X, Zhu L, Zhu M, Zhang Z, Lin F and Guo R: Genome-wide CRISPR/Cas9
screening for therapeutic targets in NSCLC carrying wild-type TP53
and receptor tyrosine kinase genes. Clin Transl Med. 12:e8822022.
View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Liu B, Wang Z, Gu M, Wang J and Tan J:
Research into overcoming drug resistance in lung cancer treatment
using CRISPR-Cas9 technology: A narrative review. Transl Lung
Cancer Res. 13:2067–2081. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Li N and Li S: Epigenetic inactivation of
SOX1 promotes cell migration in lung cancer. Tumour Biol.
36:4603–4610. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Ai C, Huang Z, Rong T, Shen W, Yang F, Li
Q, Bi L and Li W: The impact of SOX4-activated CTHRC1
transcriptional activity regulating DNA damage repair on cisplatin
resistance in lung adenocarcinoma. Electrophoresis. 45:1408–1417.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Chen X, Zheng Q, Li W, Lu Y, Ni Y, Ma L
and Fu Y: SOX5 induces lung adenocarcinoma angiogenesis by inducing
the expression of VEGF through STAT3 signaling. Onco Targets Ther.
11:5733–5741. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Zhou Y, Zheng X, Chen LJ, Xu B and Jiang
JT: microRNA-181b suppresses the metastasis of lung cancer cells by
targeting sex determining region Y-related high mobility group-box
6 (Sox6). Pathol Res Pract. 215:335–342. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Sun QY, Ding LW, Johnson K, Zhou S, Tyner
JW, Yang H, Doan NB, Said JW, Xiao JF, Loh XY, et al: SOX7
regulates MAPK/ERK-BIM mediated apoptosis in cancer cells.
Oncogene. 38:6196–6210. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Hao X, Han F, Ma B, Zhang N, Chen H, Jiang
X, Yin L, Liu W, Ao L, Cao J and Liu J: SOX30 is a key regulator of
desmosomal gene suppressing tumor growth and metastasis in lung
adenocarcinoma. J Exp Clin Cancer Res. 37:1112018. View Article : Google Scholar : PubMed/NCBI
|