You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
|
Lim CY, Ng GWY, Goh CK, Lee MKC, Cheong I, Ooi EE, Liu J, West RB, Loh KS and Tay JK: Impact of high-risk EBV strains on nasopharyngeal carcinoma gene expression. Oral Oncol. 157:1069412024. View Article : Google Scholar : PubMed/NCBI | |
|
Yip PL, Lee AWM and Chua MLK: Adjuvant chemotherapy in nasopharyngeal carcinoma. Lancet Oncol. 24:713–715. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al: Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Lee S, Hwang N, Seok BG, Lee S, Lee SJ and Chung SW: Autophagy mediates an amplification loop during ferroptosis. Cell Death Dis. 14:4642023. View Article : Google Scholar : PubMed/NCBI | |
|
Kinowaki Y, Taguchi T, Onishi I, Kirimura S, Kitagawa M and Yamamoto K: Overview of ferroptosis and synthetic lethality strategies. Int J Mol Sci. 22:92712021. View Article : Google Scholar : PubMed/NCBI | |
|
Alborzinia H, Chen Z, Yildiz U, Freitas FP, Vogel FCE, Varga JP, Batani J, Bartenhagen C, Schmitz W, Büchel G, et al: LRP8-mediated selenocysteine uptake is a targetable vulnerability in MYCN-amplified neuroblastoma. EMBO Mol Med. 15:e180142023. View Article : Google Scholar : PubMed/NCBI | |
|
Floros KV, Cai J, Jacob S, Kurupi R, Fairchild CK, Shende M, Coon CM, Powell KM, Belvin BR, Hu B, et al: MYCN-amplified neuroblastoma is addicted to iron and vulnerable to inhibition of the system Xc-/glutathione axis. Cancer Res. 81:1896–1908. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Lu Y, Yang Q, Su Y, Ji Y, Li G, Yang X, Xu L, Lu Z, Dong J, Wu Y, et al: MYCN mediates TFRC-dependent ferroptosis and reveals vulnerabilities in neuroblastoma. Cell Death Dis. 12:5112021. View Article : Google Scholar : PubMed/NCBI | |
|
Lei G, Zhuang L and Gan B: Targeting ferroptosis as a vulnerability in cancer. Nat Rev Cancer. 22:381–396. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou J, Guo T, Zhou L, Bao M, Wang L, Zhou W, Tan S, Li G, He B and Guo Z: The ferroptosis signature predicts the prognosis and immune microenvironment of nasopharyngeal carcinoma. Sci Rep. 13:18612023. View Article : Google Scholar : PubMed/NCBI | |
|
Teng Y, Gao L, Mäkitie AA, Florek E, Czarnywojtek A, Saba NF and Ferlito A: Iron, ferroptosis, and head and neck cancer. Int J Mol Sci. 24:151272023. View Article : Google Scholar : PubMed/NCBI | |
|
Mao C, Wang M, Zhuang L and Gan B: Metabolic cell death in cancer: Ferroptosis, cuproptosis, disulfidptosis, and beyond. Protein Cell. 15:642–660. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Luo T, Wang Y and Wang J: Ferroptosis assassinates tumor. J Nanobiotechnology. 20:4672022. View Article : Google Scholar : PubMed/NCBI | |
|
Xu Y, Wang Q, Li X, Chen Y and Xu G: Itraconazole attenuates the stemness of nasopharyngeal carcinoma cells via triggering ferroptosis. Environ Toxicol. 36:257–266. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Du Y, Zhou Y, Chen Q, Luo Z, Ren Y, Chen X and Chen G: Iron and copper: critical executioners of ferroptosis, cuproptosis and other forms of cell death. Cell Commun Signal. 21:3272023. View Article : Google Scholar : PubMed/NCBI | |
|
Hadian K and Stockwell BR: SnapShot: Ferroptosis. Cell. 181:1188–1188.e1. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Ma TL, Chen JX, Zhu P, Zhang CB, Zhou Y and Duan JX: Focus on ferroptosis regulation: Exploring novel mechanisms and applications of ferroptosis regulator. Life Sci. 307:1208682022. View Article : Google Scholar : PubMed/NCBI | |
|
Gan B: Mitochondrial regulation of ferroptosis. J Cell Biol. 220:e2021050432021. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Y, Guo X, Zeng Y, Mo X, Hong S, He H, Li J, Fatima S and Liu Q: Oxidative stress induces mitochondrial iron overload and ferroptotic cell death. Sci Rep. 13:155152023. View Article : Google Scholar : PubMed/NCBI | |
|
Wahida A and Conrad M: Ferroptosis: Under pressure! Curr Biol. 33:R269–R272. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Lai L, Tan M, Hu M, Yue X, Tao L, Zhai Y and Li Y: Important molecular mechanisms in ferroptosis. Mol Cell Biochem. 480:639–658. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang XD, Liu ZY, Wang MS, Guo YX, Wang XK, Luo K, Huang S and Li RF: Mechanisms and regulations of ferroptosis. Front Immunol. 14:12694512023. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng J and Conrad M: The metabolic underpinnings of ferroptosis. Cell Metab. 32:920–937. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Z, Lu M, Chen C, Tong X, Li Y, Yang K, Lv H, Xu J and Qin L: Holo-lactoferrin: the link between ferroptosis and radiotherapy in triple-negative breast cancer. Theranostics. 11:3167–3182. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Liu J, Kang R and Tang D: Signaling pathways and defense mechanisms of ferroptosis. FEBS J. 289:7038–7050. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Chen X, Li J, Kang R, Klionsky DJ and Tang D: Ferroptosis: Machinery and regulation. Autophagy. 17:2054–2081. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Seibt T, Wahida A, Hoeft K, Kemmner S, Linkermann A, Mishima E and Conrad M: The biology of ferroptosis in kidney disease. Nephrol Dial Transplant. 39:1754–1761. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Dutt S, Hamza I and Bartnikas TB: Molecular mechanisms of iron and heme metabolism. Annu Rev Nutr. 42:311–335. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao Y, Yang M and Liang X: The role of mitochondria in iron overload-induced damage. J Transl Med. 22:10572024. View Article : Google Scholar : PubMed/NCBI | |
|
Wang H, Zhang Z, Ruan S, Yan Q, Chen Y, Cui J, Wang X, Huang S and Hou B: Regulation of iron metabolism and ferroptosis in cancer stem cells. Front Oncol. 13:12515612023. View Article : Google Scholar : PubMed/NCBI | |
|
Li S, Zhang G, Hu J, Tian Y and Fu X: Ferroptosis at the nexus of metabolism and metabolic diseases. Theranostics. 14:5826–5852. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Venkataramani V: Iron homeostasis and metabolism: Two sides of a coin. Adv Exp Med Biol. 1301:25–40. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Huang L, Bian M, Zhang J and Jiang L: Iron metabolism and ferroptosis in peripheral nerve injury. Oxid Med Cell Longev. 2022:59182182022. View Article : Google Scholar : PubMed/NCBI | |
|
Capelletti MM, Manceau H, Puy H and Peoc'h K: Ferroptosis in liver diseases: An Overview. Int J Mol Sci. 21:49082020. View Article : Google Scholar : PubMed/NCBI | |
|
Wu L, Xian X, Tan Z, Dong F, Xu G, Zhang M and Zhang F: The role of iron metabolism, lipid metabolism, and redox homeostasis in Alzheimer's disease: From the perspective of ferroptosis. Mol Neurobiol. 60:2832–2850. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Lyamzaev KG, Panteleeva AA, Simonyan RA, Avetisyan AV and Chernyak BV: Mitochondrial lipid peroxidation is responsible for ferroptosis. Cells. 12:6112023. View Article : Google Scholar : PubMed/NCBI | |
|
Do Q and Xu L: How do different lipid peroxidation mechanisms contribute to ferroptosis? Cell Rep Phys Sci. 4:1016832023. View Article : Google Scholar : PubMed/NCBI | |
|
Naowarojna N, Wu TW, Pan Z, Li M, Han JR and Zou Y: Dynamic regulation of ferroptosis by lipid metabolism. Antioxid Redox Signal. 39:59–78. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Xin S and Schick JA: PUFAs dictate the balance of power in ferroptosis. Cell Calcium. 110:1027032023. View Article : Google Scholar : PubMed/NCBI | |
|
Cui S, Simmons G Jr, Vale G, Deng Y, Kim J, Kim H, Zhang R, McDonald JG and Ye J: FAF1 blocks ferroptosis by inhibiting peroxidation of polyunsaturated fatty acids. Proc Natl Acad Sci USA. 119:e21071891192022. View Article : Google Scholar : PubMed/NCBI | |
|
Qiu B, Zandkarimi F, Bezjian CT, Reznik E, Soni RK, Gu W, Jiang X and Stockwell BR: Phospholipids with two polyunsaturated fatty acyl tails promote ferroptosis. Cell. 187:1177–1190.e18. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Ma XH, Liu JH, Liu CY, Sun WY, Duan WJ, Wang G, Kurihara H, He RR, Li YF, Chen Y and Shang H: ALOX15-launched PUFA-phospholipids peroxidation increases the susceptibility of ferroptosis in ischemia-induced myocardial damage. Signal Transduct Target Ther. 7:2882022. View Article : Google Scholar : PubMed/NCBI | |
|
Do Q, Zhang R, Hooper G and Xu L: Differential contributions of distinct free radical peroxidation mechanisms to the induction of ferroptosis. JACS Au. 3:1100–1117. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Li Z, Ran Q and Wang P: Sterols in ferroptosis: From molecular mechanisms to therapeutic strategies. Trends Mol Med. 31:36–49. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Gan B: ACSL4, PUFA, and ferroptosis: New arsenal in anti-tumor immunity. Signal Transduct Target Ther. 7:1282022. View Article : Google Scholar : PubMed/NCBI | |
|
Sokol KH, Lee CJ, Rogers TJ, Waldhart A, Ellis AE, Madireddy S, Daniels SR, House RRJ, Ye X, Olesnavich M, et al: Lipid availability influences ferroptosis sensitivity in cancer cells by regulating polyunsaturated fatty acid trafficking. Cell Chem Biol. 32:408–422.e6. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Hirata Y, Ferreri C, Yamada Y, Inoue A, Sansone A, Vetica F, Suzuki W, Takano S, Noguchi T, Matsuzawa A and Chatgilialoglu C: Geometrical isomerization of arachidonic acid during lipid peroxidation interferes with ferroptosis. Free Radic Biol Med. 204:374–384. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Liu S, Zhang HL, Li J, Ye ZP, Du T, Li LC, Guo YQ, Yang D, Li ZL, Cao JH, et al: Tubastatin A potently inhibits GPX4 activity to potentiate cancer radiotherapy through boosting ferroptosis. Redox Biol. 62:1026772023. View Article : Google Scholar : PubMed/NCBI | |
|
Nishida Xavier da Silva T, Friedmann Angeli JP and Ingold I: GPX4: Old lessons, new features. Biochem Soc Trans. 50:1205–1213. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Chen T, Leng J, Tan J, Zhao Y, Xie S, Zhao S, Yan X, Zhu L, Luo J, Kong L and Yin Y: Discovery of novel potent covalent glutathione peroxidase 4 inhibitors as highly selective ferroptosis inducers for the treatment of triple-negative breast cancer. J Med Chem. 66:10036–10059. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Rochette L, Dogon G, Rigal E, Zeller M, Cottin Y and Vergely C: Lipid peroxidation and iron metabolism: Two corner stones in the homeostasis control of ferroptosis. Int J Mol Sci. 24:4492022. View Article : Google Scholar : PubMed/NCBI | |
|
Guo W, Li K, Sun B, Xu D, Tong L, Yin H, Liao Y, Song H, Wang T, Jing B, et al: Dysregulated glutamate transporter SLC1A1 propels cystine uptake via Xc− for glutathione synthesis in lung cancer. Cancer Res. 81:552–566. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Li Z, Li Y, Yang Y, Gong Z, Zhu H and Qian Y: In vivo tracking cystine/glutamate antiporter-mediated cysteine/cystine pool under ferroptosis. Anal Chim Acta. 1125:66–75. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Koppula P, Zhuang L and Gan B: Cystine transporter SLC7A11/xCT in cancer: Ferroptosis, nutrient dependency, and cancer therapy. Protein Cell. 12:599–620. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Zheng L, Shang W, Yang Z, Li T, Liu F, Shao W, Lv L, Chai L, Qu L, et al: Wnt/beta-catenin signaling confers ferroptosis resistance by targeting GPX4 in gastric cancer. Cell Death Differ. 29:2190–2202. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Xia C, Xing X, Zhang W, Wang Y, Jin X, Wang Y, Tian M, Ba X and Hao F: Cysteine and homocysteine can be exploited by GPX4 in ferroptosis inhibition independent of GSH synthesis. Redox Biol. 69:1029992024. View Article : Google Scholar : PubMed/NCBI | |
|
Wang F and Min J: DHODH tangoing with GPX4 on the ferroptotic stage. Signal Transduct Target Ther. 6:2442021. View Article : Google Scholar : PubMed/NCBI | |
|
Hu Q, Wei W, Wu D, Huang F, Li M, Li W, Yin J, Peng Y, Lu Y, Zhao Q and Liu L: Blockade of GCH1/BH4 axis activates ferritinophagy to mitigate the resistance of colorectal cancer to erastin-induced ferroptosis. Front Cell Dev Biol. 10:8103272022. View Article : Google Scholar : PubMed/NCBI | |
|
Kraft VAN, Bezjian CT, Pfeiffer S, Ringelstetter L, Müller C, Zandkarimi F, Merl-Pham J, Bao X, Anastasov N, Kössl J, et al: GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling. ACS Cent Sci. 6:41–53. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Feng Y, Feng Y, Gu L, Mo W, Wang X, Song B, Hong M, Geng F, Huang P, Yang H, et al: Tetrahydrobiopterin metabolism attenuates ROS generation and radiosensitivity through LDHA S-nitrosylation: Novel insight into radiogenic lung injury. Exp Mol Med. 56:1107–1122. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Soula M, Weber RA, Zilka O, Alwaseem H, La K, Yen F, Molina H, Garcia-Bermudez J, Pratt DA and Birsoy K: Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers. Nat Chem Biol. 16:1351–1360. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Lv Y, Wu M, Wang Z and Wang J: Ferroptosis: From regulation of lipid peroxidation to the treatment of diseases. Cell Biol Toxicol. 39:827–851. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang S, Kang L, Dai X, Chen J, Chen Z, Wang M, Jiang H, Wang X, Bu S, Liu X, et al: Manganese induces tumor cell ferroptosis through type-I IFN dependent inhibition of mitochondrial dihydroorotate dehydrogenase. Free Radic Biol Med. 193:202–212. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Amos A, Amos A, Wu L and Xia H: The Warburg effect modulates DHODH role in ferroptosis: A review. Cell Commun Signal. 21:1002023. View Article : Google Scholar : PubMed/NCBI | |
|
Mao C, Liu X, Zhang Y, Lei G, Yan Y, Lee H, Koppula P, Wu S, Zhuang L, Fang B, et al: DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature. 593:586–590. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Desler C, Durhuus JA, Hansen TLL, Anugula S, Zelander NT, Bøggild S and Rasmussen LJ: Partial inhibition of mitochondrial-linked pyrimidine synthesis increases tumorigenic potential and lysosome accumulation. Mitochondrion. 64:73–81. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Tarangelo A, Rodencal J, Kim JT, Magtanong L, Long JZ and Dixon SJ: Nucleotide biosynthesis links glutathione metabolism to ferroptosis sensitivity. Life Sci Alliance. 5:e2021011572022. View Article : Google Scholar : PubMed/NCBI | |
|
Yang C, Zhao Y, Wang L, Guo Z, Ma L, Yang R, Wu Y, Li X, Niu J, Chu Q, et al: De novo pyrimidine biosynthetic complexes support cancer cell proliferation and ferroptosis defence. Nat Cell Biol. 25:836–847. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Lu S, Wu LL, Yang L, Yang L and Wang J: The diversified role of mitochondria in ferroptosis in cancer. Cell Death Dis. 14:5192023. View Article : Google Scholar : PubMed/NCBI | |
|
Liang D, Feng Y, Zandkarimi F, Wang H, Zhang Z, Kim J, Cai Y, Gu W, Stockwell BR and Jiang X: Ferroptosis surveillance independent of GPX4 and differentially regulated by sex hormones. Cell. 186:2748–64.e22. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Sun S, Shen J, Jiang J, Wang F and Min J: Targeting ferroptosis opens new avenues for the development of novel therapeutics. Signal Transduct Target Ther. 8:3722023. View Article : Google Scholar : PubMed/NCBI | |
|
Li P, Xu J, Xu B, Hu X, Xiong Y, Wang Y and Liu P: NR5A2 (located on chromosome 1q32) inhibits ferroptosis and promotes drug resistance by regulating phospholipid remodeling in multiple myeloma. Int J Biol Sci. 21:5789–5801. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Phat NK, Tien NTN, Anh NK, Yen NTH, Lee YA, Trinh HKT, Le KM, Ahn S, Cho YS, Park S, et al: Alterations of lipid-related genes during anti-tuberculosis treatment: insights into host immune responses and potential transcriptional biomarkers. Front Immunol. 14:12103722023. View Article : Google Scholar : PubMed/NCBI | |
|
Nguyen HP, Yi D, Lin F, Viscarra JA, Tabuchi C, Ngo K, Shin G, Lee AY, Wang Y and Sul HS: Aifm2, a NADH oxidase, supports robust glycolysis and is required for cold- and diet-induced thermogenesis. Mol Cell. 77:600–617.e4. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Lv Y, Liang C, Sun Q, Zhu J, Xu H, Li X, Li YY, Wang Q, Yuan H, Chu B and Zhu D: Structural insights into FSP1 catalysis and ferroptosis inhibition. Nat Commun. 14:59332023. View Article : Google Scholar : PubMed/NCBI | |
|
Guo J, Chen L and Ma M: Ginsenoside Rg1 suppresses ferroptosis of renal tubular epithelial cells in sepsis-induced acute kidney injury via the FSP1-CoQ10- NAD(P)H pathway. Curr Med Chem. 31:2119–2132. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Mikac S, Dziadosz A, Padariya M, Kalathiya U, Fahraeus R, Marek-Trzonkowska N, Chruściel E, Urban-Wójciuk Z, Papak I, Arcimowicz Ł, et al: Keap1-resistant ΔN-Nrf2 isoform does not translocate to the nucleus upon electrophilic stress. bioRxiv. 2022.06. 10.495609. 2022. | |
|
Zhang Q, Sun T, Yu F, Liu W, Gao J, Chen J, Zheng H, Liu J, Miao C, Guo H, et al: PAFAH2 suppresses synchronized ferroptosis to ameliorate acute kidney injury. Nat Chem Biol. 20:835–846. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Su ZY, Siak PY, Lwin YY and Cheah SC: Epidemiology of nasopharyngeal carcinoma: Current insights and future outlook. Cancer Metastasis Rev. 43:919–939. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Siak PY, Khoo AS, Leong CO, Hoh BP and Cheah SC: Current status and future perspectives about molecular biomarkers of nasopharyngeal carcinoma. Cancers (Basel). 13:34902021. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng MQ, Wang TM, Liao Y, Xue WQ, He YQ, Wu ZY, Yang DW, Li DH, Deng CM, Jia YJ, et al: Nasopharyngeal Epstein-Barr virus DNA loads in high-risk nasopharyngeal carcinoma families: Familial aggregation and host heritability. J Med Virol. 92:3717–3725. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Liao Y, Tong XT, Zhou T, Xue WQ, Wang TM, He YQ, Zheng MQ, Jia YJ, Yang DW, Wu YX, et al: Unveiling familial aggregation of nasopharyngeal carcinoma: Insights from oral microbiome dysbiosis. Cell Rep Med. 6:1019792025. View Article : Google Scholar : PubMed/NCBI | |
|
Li W, Liang L, Liu S, Yi H and Zhou Y: FSP1: A key regulator of ferroptosis. Trends Mol Med. 29:753–764. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Ward NP and DeNicola GM: Long-sought mediator of vitamin K recycling discovered. Nature. 608:673–674. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Feng H, Zhou Y, Wang L, Wang Y, Zhou S and Tian F: Consumption of processed food and risk of nasopharyngeal carcinoma: A systematic review and meta-analysis. Transl Cancer Res. 11:872–879. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhong L, Krummenacher C, Zhang W, Hong J, Feng Q, Chen Y, Zhao Q, Zeng MS, Zeng YX, Xu M, Zhang X, et al: Urgency and necessity of Epstein-Barr virus prophylactic vaccines. NPJ Vaccines. 7:1592022. View Article : Google Scholar : PubMed/NCBI | |
|
Lin JH, Wen CP, Jiang CQ, Yuan JM, Chen CJ, Ho SY, Gao W, Zhang W, Wang R, Chien YC, et al: Smoking and nasopharyngeal cancer: Individual data meta-analysis of six prospective studies on 334 935 men. Int J Epidemiol. 50:975–986. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Arfaeinia H, Ghaemi M, Jahantigh A, Soleimani F and Hashemi H: Secondhand and thirdhand smoke: A review on chemical contents, exposure routes, and protective strategies. Environ Sci Pollut Res Int. 30:78017–78029. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Feng R, Chang ET, Liu Q, Cai Y, Zhang Z, Chen G, Huang QH, Xie SH, Cao SM, Zhang Y, et al: Intake of alcohol and tea and risk of nasopharyngeal carcinoma: A population-based case-control study in Southern China. Cancer Epidemiol Biomarkers Prev. 30:545–553. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
George M, Reddy AP, Reddy PH and Kshirsagar S: Unraveling the NRF2 confusion: Distinguishing nuclear respiratory factor 2 from nuclear erythroid factor 2. Ageing Res Rev. 98:1023532024. View Article : Google Scholar : PubMed/NCBI | |
|
Yan R, Lin B, Jin W, Tang L, Hu S and Cai R: NRF2, a superstar of ferroptosis. Antioxidants (Basel). 12:17392023. View Article : Google Scholar : PubMed/NCBI | |
|
Yuan L, Wang Y, Li N, Yang X, Sun X, Tian He and Zhang Y: Mechanism of action and therapeutic implications of Nrf2/HO-1 in inflammatory bowel disease. Antioxidants (Basel). 13:10122024. View Article : Google Scholar : PubMed/NCBI | |
|
Wang D, Tang L, Zhang Y, Ge G, Jiang X, Mo Y, Wu P, Deng X, Li L, Zuo S, et al: Regulatory pathways and drugs associated with ferroptosis in tumors. Cell Death Dis. 13:5442022. View Article : Google Scholar : PubMed/NCBI | |
|
Huang HC, Tantoh DM, Hsu SY, Nfor ON, Frank CL, Lung CC, Ho CC, Chen CY and Liaw YP: Association between coarse particulate matter (PM10-2.5) and nasopharyngeal carcinoma among Taiwanese men. J Investig Med. 68:419–424. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Xue WQ, Wang TM, Huang JW, Zhang JB, He YQ, Wu ZY, Liao Y, Yuan LL, Mu J and Jia WH: A comprehensive analysis of genetic diversity of EBV reveals potential high-risk subtypes associated with nasopharyngeal carcinoma in China. Virus Evol. 7:veab0102021. View Article : Google Scholar : PubMed/NCBI | |
|
Damania B, Kenney SC and Raab-Traub N: Epstein-Barr virus: Biology and clinical disease. Cell. 185:3652–3670. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Manners O, Murphy JC, Coleman A, Hughes DJ and Whitehouse A: Contribution of the KSHV and EBV lytic cycles to tumourigenesis. Curr Opin Virol. 32:60–70. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Phan TG: Epstein-Barr virus and multiple sclerosis: The dawn of a new age. Clin Transl Immunology. 12:e14572023. View Article : Google Scholar : PubMed/NCBI | |
|
Tyler KL: The enigmatic links between Epstein-Barr virus infection and multiple sclerosis. J Clin Invest. 132:e1604682022. View Article : Google Scholar : PubMed/NCBI | |
|
Lyu L, Li Q and Wang C: EBV latency programs: Molecular and epigenetic regulation and its role in disease pathogenesis. J Med Virol. 97:e705012025. View Article : Google Scholar : PubMed/NCBI | |
|
Murray-Nerger LA, Lozano C, Burton EM, Liao Y, Ungerleider NA, Guo R and Gewurz BE: The nucleic acid binding protein SFPQ represses EBV lytic reactivation by promoting histone H1 expression. Nat Commun. 15:41562024. View Article : Google Scholar : PubMed/NCBI | |
|
Yuan L, Li S, Chen Q, Xia T, Luo D, Li L, Liu S, Guo S, Liu L, Du C, et al: EBV infection-induced GPX4 promotes chemoresistance and tumor progression in nasopharyngeal carcinoma. Cell Death Differ. 29:1513–1527. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
He S, Luo C, Shi F, Zhou J and Shang L: The emerging role of ferroptosis in EBV-associated cancer: Implications for cancer therapy. Biology (Basel). 13:5432024.PubMed/NCBI | |
|
Ge A, Xiang W, Li Y, Zhao D, Chen J, Daga P, Dai CC, Yang K, Yan Y, Hao M, et al: Broadening horizons: The multifaceted role of ferroptosis in breast cancer. Front Immunol. 15:14557412024. View Article : Google Scholar : PubMed/NCBI | |
|
Li X, Zhang R, Zhao X and Zhuang X: Advances in the role of FOXM1 and ferroptosis in the diagnosis, treatment, and prognosis of hepatocellular carcinoma. Curr Protein Pept Sci. Oct 28–2025.(Epub ahead of print). View Article : Google Scholar | |
|
Wu J, Zhu S, Wang P, Wang J, Huang J, Wang T, Guo L, Liang D, Meng Q and Pan H: Regulators of epigenetic change in ferroptosis-associated cancer (Review). Oncol Rep. 48:2152022. View Article : Google Scholar : PubMed/NCBI | |
|
Li J, Zhang XS, Xie D, Deng HX, Gao YF, Chen QY, Huang WL, Masucci MG and Zeng YX: Expression of immune-related molecules in primary EBV-positive Chinese nasopharyngeal carcinoma: Associated with latent membrane protein 1 (LMP1) expression. Cancer Biol Ther. 6:1997–2004. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Abstracts from the 22nd International Symposium on Signal Transduction at the Blood-Brain Barriers. Würzburg, Germany. September 11–13, 2019. Fluids Barriers CNS. 16 (Suppl 2):292019.PubMed/NCBI | |
|
Verhoeven RJA, Tong S, Mok BWY, Liu J, He S, Zong J, Chen Y, Tsao SW, Lung ML and Chen H: Epstein-Barr virus BART long non-coding RNAs function as epigenetic modulators in nasopharyngeal carcinoma. Front Oncol. 9:11202019. View Article : Google Scholar : PubMed/NCBI | |
|
Xu H, Koganti S, Li C, McIntosh MT and Bhaduri-McIntosh S: STAT3, MYC, and EBNA1 cooperate through a ZC3H18 transcriptional network to regulate survival and proliferation of EBV-positive lymphomas. PLoS Pathog. 21:e10131662025. View Article : Google Scholar : PubMed/NCBI | |
|
Ji HZ, Chen L, Ren M, Li S, Liu TY, Chen HJ, Yu HH and Sun Y: CXCL8 promotes endothelial-to-mesenchymal transition of endothelial cells and protects cells from erastin-induced ferroptosis via CXCR2-mediated activation of the NF-κB signaling pathway. Pharmaceuticals (Basel). 16:12102023. View Article : Google Scholar : PubMed/NCBI | |
|
Verhoeven RJA, Tong S, Zong J, Chen Y, Tsao SW, Pan J and Chen H: NF-κB signaling regulates epstein-barr virus BamHI-Q-driven EBNA1 expression. Cancers (Basel). 10:1192018. View Article : Google Scholar : PubMed/NCBI | |
|
Yuan L, Zhang L, Yao N, Wu L, Liu J, Liu F, Zhang H, Hu X, Xiong Y and Xia C: Upregulation of UGT1A1 expression by ursolic acid and oleanolic acid via the inhibition of the PKC/NF-κB signaling pathway. Phytomedicine. 92:1537262021. View Article : Google Scholar : PubMed/NCBI | |
|
Iglesias-Matesanz P, Lacalle-Gonzalez C, Lopez-Blazquez C, Ochieng' Otieno M, Garcia-Foncillas J and Martinez-Useros J: Glutathione peroxidases: An emerging and promising therapeutic target for pancreatic cancer treatment. Antioxidants (Basel). 13:14052024. View Article : Google Scholar : PubMed/NCBI | |
|
Morgos DT, Stefani C, Miricescu D, Greabu M, Stanciu S, Nica S, Stanescu-Spinu II, Balan DG, Balcangiu-Stroescu AE, Coculescu EC, et al: Targeting PI3K/AKT/mTOR and MAPK signaling pathways in gastric cancer. Int J Mol Sci. 25:18482024. View Article : Google Scholar : PubMed/NCBI | |
|
Tóthová Z, Šemeláková M, Solárová Z, Tomc J, Debeljak N and Solár P: The role of PI3K/AKT and MAPK signaling pathways in erythropoietin signalization. Int J Mol Sci. 22:76822021. View Article : Google Scholar : PubMed/NCBI | |
|
Chen K, Wang J, Guo L, Wang J, Yang L, Hu T, Zhao Y, Wang X and Zhu Y: Lactobacillus johnsonii L531 ameliorates salmonella enterica serovar typhimurium diarrhea by modulating iron homeostasis and oxidative stress via the IRP2 pathway. Nutrients. 15:11272023. View Article : Google Scholar : PubMed/NCBI | |
|
Jia F, Li H, Jiao Q, Li C, Fu L, Cui C, Jiang H and Zhang L: Deubiquitylase OTUD3 prevents Parkinson's disease through stabilizing iron regulatory protein 2. Cell Death Dis. 13:4182022. View Article : Google Scholar : PubMed/NCBI | |
|
Jiao Q, Du X, Wei J, Li Y and Jiang H: Oxidative stress regulated iron regulatory protein IRP2 through FBXL5-mediated ubiquitination-proteasome way in SH-SY5Y cells. Front Neurosci. 13:202019. View Article : Google Scholar : PubMed/NCBI | |
|
Terzi EM, Sviderskiy VO, Alvarez SW, Whiten GC and Possemato R: Iron-sulfur cluster deficiency can be sensed by IRP2 and regulates iron homeostasis and sensitivity to ferroptosis independent of IRP1 and FBXL5. Sci Adv. 7:eabg43022021. View Article : Google Scholar : PubMed/NCBI | |
|
Dasgupta S and Gan B: Ferroptosis vulnerability in MYCN-driven neuroblastomas. Clin Transl Med. 12:e9632022. View Article : Google Scholar : PubMed/NCBI | |
|
Hill RA and Liu YY: N6-methyladenosine-RNA methylation promotes expression of solute carrier family 7 member 11, an uptake transporter of cystine for lipid reactive oxygen species scavenger glutathione synthesis, leading to hepatoblastoma ferroptosis resistance. Clin Transl Med. 12:e8892022. View Article : Google Scholar : PubMed/NCBI | |
|
Li X, Qi H, Zhang X, Liang H and Zeng N: Jing-Fang n-butanol extract and its isolated JFNE-C inhibit ferroptosis and inflammation in LPS induced RAW264.7 macrophages via STAT3/p53/SLC7A11 signaling pathway. J Ethnopharmacol. 316:1166892023. View Article : Google Scholar : PubMed/NCBI | |
|
Li X, Zou Y, Fu YY, Xing J, Wang KY, Wan PZ and Zhai XY: A-Lipoic acid alleviates folic acid-induced renal damage through inhibition of ferroptosis. Front Physiol. 12:6805442021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao X, Shi D, Sun L, Gong Z, Liu W, Zhang Y and Luo B: Epstein-Barr virus modulates iron metabolism and ferritin expression to promote tumorigenesis in gastric cancer. J Mol Histol. 56:2312025. View Article : Google Scholar : PubMed/NCBI | |
|
Altamura S, Colucci S, Schmidt J, Muedder K, Neves J, Hentze M and Muckenthaler M: Hepatocyte iron content controls BMP6-dependent hepcidin regulation. Blood. 132 (Suppl 1):S3626. 2018. View Article : Google Scholar | |
|
Cabrera C, Frisk C, Löfström U, Lyngå P, Linde C, Hage C, Persson H, Eriksson MJ, Wallén H, Persson B and Ekström M: Relationship between iron deficiency and expression of genes involved in iron metabolism in human myocardium and skeletal muscle. Int J Cardiol. 379:82–88. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Huang H, Mei L, Wang L, Bai Y, Gao K, Song J, Jiang M, Chen Y, Zhang S, Pang B, et al: Ferroptosis contributes to lead-induced cochlear spiral ganglion neurons injury. Toxicology. 509:1539382024. View Article : Google Scholar : PubMed/NCBI | |
|
Ameziane El Hassani R, Buffet C, Leboulleux S and Dupuy C: Oxidative stress in thyroid carcinomas: Biological and clinical significance. Endocr Relat Cancer. 26:R131–R143. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Backert S, Linz B and Tegtmeyer N: Helicobacter pylori-induced host cell DNA damage and genetics of gastric cancer development. Curr Top Microbiol Immunol. 444:185–206. 2023.PubMed/NCBI | |
|
da Silva MS, Segatto M, Pavani RS, Gutierrez-Rodrigues F, Bispo VD, de Medeiros MH, Calado RT, Elias MC and Cano MI: Consequences of acute oxidative stress in Leishmania amazonensis: From telomere shortening to the selection of the fittest parasites. Biochim Biophys Acta Mol Cell Res. 1864:138–150. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Lee J, Lim JW and Kim H: Astaxanthin inhibits oxidative stress-induced Ku protein degradation and apoptosis in gastric epithelial cells. Nutrients. 14:39392022. View Article : Google Scholar : PubMed/NCBI | |
|
Sekhar KR, Hanna DN, Cyr S, Baechle JJ, Kuravi S, Balusu R, Rathmell K and Baregamian N: Glutathione peroxidase 4 inhibition induces ferroptosis and mTOR pathway suppression in thyroid cancer. Sci Rep. 12:193962022. View Article : Google Scholar : PubMed/NCBI | |
|
Dong Q, Shen X, Fang G, Shi J, Zhu X, Du J, Zhang H and Ge C: Theory-screened Prussian blue analogues-based nanozymes for promoting diabetic wound healing via ferroptosis inhibition. Mater Today Bio. 32:1018392025. View Article : Google Scholar : PubMed/NCBI | |
|
Yang R, Zhou Y, Zhang T, Wang S, Wang J, Cheng Y, Li H, Jiang W, Yang Z and Zhang X: The transcription factor HBP1 promotes ferroptosis in tumor cells by regulating the UHRF1-CDO1 axis. PLoS Biol. 21:e30018622023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu JF, Liu Y, Li WT, Li MH, Zhen CH, Sun PW, Chen JX, Wu WH and Zeng W: Ibrutinib facilitates the sensitivity of colorectal cancer cells to ferroptosis through BTK/NRF2 pathway. Cell Death Dis. 14:1512023. View Article : Google Scholar : PubMed/NCBI | |
|
Hitt MM, Allday MJ, Hara T, Karran L, Jones MD, Busson P, Tursz T, Ernberg I and Griffin BE: EBV gene expression in an NPC-related tumour. EMBO J. 8:2639–2651. 1989. View Article : Google Scholar : PubMed/NCBI | |
|
Chiu SH, Wu MC, Wu CC, Chen YC, Lin SF, Hsu JTA, ang CS, Tsai CH, Takada K, Chen MR and Chen JY: Epstein-Barr virus BALF3 has nuclease activity and mediates mature virion production during the lytic cycle. J Virol. 88:4962–4975. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Ragoczy T, Heston L and Miller G: The Epstein-Barr virus Rta protein activates lytic cycle genes and can disrupt latency in B lymphocytes. J Virol. 72:7978–7984. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Germini D, Sall FB, Shmakova A, Wiels J, Dokudovskaya S, Drouet E and Vassetzky Y: Oncogenic properties of the EBV ZEBRA protein. Cancers (Basel). 12:14792020. View Article : Google Scholar : PubMed/NCBI | |
|
Meng C, Dai X, Sun L, Huang D, Xu X and Cheng Y: Meeting abstracts from the 10th international conference on cGMP: Generators, effectors and therapeutic implications. J Transl Med. Jan 31–2023.(Epub ahead of print). | |
|
Meng C, Dai X, Sun L, Huang D, Xu X, Cheng Y and Zhang W: ZDHHC21-driven S-palmitoylation of Themis regulates the function of T cells and maintains homeostatic balance. Cell Commun Signal. 23:4012025. View Article : Google Scholar : PubMed/NCBI | |
|
Png YT, Yang AZY, Lee MY, Chua MJM and Lim CM: The role of NK cells in EBV infection and EBV-associated NPC. Viruses. 13:3002021. View Article : Google Scholar : PubMed/NCBI | |
|
Hsu WL, Tao J, Fu S, Yu KJ, Simon J, Chen TC, Chen CJ, Goldstein AM, Yu K, Hildesheim A, et al: Kinetics of EBV antibody-based NPC risk scores in Taiwan NPC multiplex families. Int J Cancer. 155:1400–1408. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Wang J and Cao X: Dietary long-chain fatty acid metabolism boosts antitumor immune response. Cancer Commun (Lond). 44:580–583. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Peng WX and Mo YY: Connecting N6-methyladenosine modification to ferroptosis resistance in hepatoblastoma. Clin Transl Med. 12:e8202022. View Article : Google Scholar : PubMed/NCBI | |
|
Chiu SH, Wu CC, Fang CY, Yu SL, Hsu HY, Chow YH and Chen JY: Epstein-Barr virus BALF3 mediates genomic instability and progressive malignancy in nasopharyngeal carcinoma. Oncotarget. 5:8583–8601. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Benedetti F, Curreli S, Gallo RC and Zella D: Tampering of viruses and bacteria with host DNA repair: Implications for cellular transformation. Cancers (Basel). 13:2412021. View Article : Google Scholar : PubMed/NCBI | |
|
Dylawerska A, Barczak W, Wegner A, Golusinski W and Suchorska WM: Association of DNA repair genes polymorphisms and mutations with increased risk of head and neck cancer: A review. Med Oncol. 34:1972017. View Article : Google Scholar : PubMed/NCBI | |
|
Mekonnen N, Yang H and Shin YK: Homologous recombination deficiency in ovarian, breast, colorectal, pancreatic, non-small cell lung and prostate cancers, and the mechanisms of resistance to PARP inhibitors. Front Oncol. 12:8806432022. View Article : Google Scholar : PubMed/NCBI | |
|
No authors listed. The international headache congress-IHS and EHF joint congress 2021: Late breaking abstracts: Virtual. 8–12 September 2021. J Headache Pain. 22 (Suppl 2):S1302021. View Article : Google Scholar | |
|
Abstracts from the 17th European headache congress (EHC). J Headache Pain. 25 (Suppl 1):1232024. View Article : Google Scholar | |
|
Li F, Xu T, Chen P, Sun R, Li C, Zhao X, Ou J, Li J, Liu T, Zeng M, et al: Platelet-derived extracellular vesicles inhibit ferroptosis and promote distant metastasis of nasopharyngeal carcinoma by upregulating ITGB3. Int J Biol Sci. 18:5858–5872. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Jin N, Qian YY, Jiao XF, Wang Z, Li X, Pan W, Jiang JK, Huang P, Wang SY, Jin P, et al: Niraparib restricts intraperitoneal metastases of ovarian cancer by eliciting CD36-dependent ferroptosis. Redox Biol. 80:1035282025. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang B, Hou Q, Zhang X, Ma Y, Yuan J, Li S, Zhao X, Sun L, Wang H and Zheng H: Anesthetic propofol inhibits ferroptosis and aggravates distant cancer metastasis via Nrf2 upregulation. Free Radic Biol Med. 195:298–308. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang R, Shen Y, Zhou X, Li J, Zhao H, Zhang Z, Zhao J, Jin H, Guo S, Ding H, et al: Hypoxia-tropic delivery of nanozymes targeting transferrin receptor 1 for nasopharyngeal carcinoma radiotherapy sensitization. Nat Commun. 16:8902025. View Article : Google Scholar : PubMed/NCBI | |
|
Wang HH, Fan SQ, Zhan YT, Peng SP and Wang WY: Suppression of the SLC7A11/glutathione axis causes ferroptosis and apoptosis and alters the mitogen-activated protein kinase pathway in nasopharyngeal carcinoma. Int J Biol Macromol. 254:1279762024. View Article : Google Scholar : PubMed/NCBI | |
|
Nhung DT, Yousif OEA and Kwon B: Sorafenib induces ferroptosis in human renal cell carcinoma cells through CCAT/enhancer-binding protein homologous protein. Biochem Biophys Rep. 43:1021432025.PubMed/NCBI | |
|
Liu F, Tang L, Liu H, Chen Y, Xiao T, Gu W, Yang H, Wang H and Chen P: Cancer-associated fibroblasts secrete FGF5 to inhibit ferroptosis to decrease cisplatin sensitivity in nasopharyngeal carcinoma through binding to FGFR2. Cell Death Dis. 15:2792024. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Y, Feng Y, Lin Y, Zhou X, Wang L, Zhou Y, Lin K and Cai L: GSTM3 enhances radiosensitivity of nasopharyngeal carcinoma by promoting radiation-induced ferroptosis through USP14/FASN axis and GPX4. Br J Cancer. 130:755–768. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Pu X, Wu H, Liu X and Yang F: PRMT4 reduced erastin-induced ferroptosis in nasopharyngeal carcinoma cisplatin-resistant cells by Nrf2/GPX4 pathway. J Environ Pathol Toxicol Oncol. 44:57–71. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Du P, Luo K, Li G, Zhu J, Xiao Q, Li Y and Zhang X: PRMT4 promotes hepatocellular carcinoma progression by activating AKT/mTOR signaling and indicates poor prognosis. Int J Med Sci. 18:3588–3598. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Berman AY, Manna S, Schwartz NS, Katz YE, Sun Y, Behrmann CA, Yu JJ, Plas DR, Alayev A and Holz MK: ERRα regulates the growth of triple-negative breast cancer cells via S6K1-dependent mechanism. Signal Transduct Target Ther. 2:e170352017. View Article : Google Scholar : PubMed/NCBI | |
|
Xiao H, Zhang F, Zou Y, Li J, Liu Y and Huang W: The function and mechanism of long non-coding RNA-ATB in cancers. Front Physiol. 9:3212018. View Article : Google Scholar : PubMed/NCBI | |
|
Cui X, Gong Y, Ge J, Feng X, Xiong X, Shi Z, Zheng Q, Li D and Bi S: α-Solanine induces ferroptosis in nasopharyngeal carcinoma via targeting HSP90α/p53 axis. J Funct Foods. 104:1055172023. View Article : Google Scholar | |
|
Yap TA, Bessudo A, Hamilton E, Sachdev J, Patel MR, Rodon J, Evilevitch L, Duncan M, Guo W, Kumar S, et al: IOLite: Phase 1b trial of doublet/triplet combinations of dostarlimab with niraparib, carboplatin-paclitaxel, with or without bevacizumab in patients with advanced cancer. J Immunother Cancer. 10:e0039242022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Xu H, Sa Q, Zhou Y, Cheng H, Gao R, Xu B and Wang J: Efficacy and safety of vascular-targeting agents in advanced soft tissue sarcoma: A systematic review and network meta-analysis. Ther Adv Med Oncol. 17:175883592513789342025. View Article : Google Scholar : PubMed/NCBI | |
|
Ochsenreither S, Fiedler WM, Conte GD, Macchini M, Matos I, Habel B, Ahrens-Fath I, Raspagliesi F, Lorusso D, Keilholz U, et al: Safety and preliminary activity results of the GATTO study, a phase Ib study combining the anti-TA-MUC1 antibody gatipotuzumab with the anti-EGFR tomuzotuximab in patients with refractory solid tumors. ESMO Open. 7:1004472022. View Article : Google Scholar : PubMed/NCBI | |
|
Zargarani N, Kavousi M and Aliasgari E: A potential new strategy for BC treatment: NPs containing solanine and evaluation of its anticancer and antimetastatic properties. BMC Cancer. 25:8602025. View Article : Google Scholar : PubMed/NCBI | |
|
Chowański S, Winkiel M, Szymczak-Cendlak M, Marciniak P, Mańczak D, Walkowiak-Nowicka K, Spochacz M, Bufo SA, Scrano L and Adamski Z: Solanaceae glycoalkaloids: α-solanine and α-chaconine modify the cardioinhibitory activity of verapamil. Pharm Biol. 60:1317–1330. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Li W, Liu Y, Wei M, Yang Z, Tang H and Huang W: Chondrocyte-targeted α-Solanine through HIF-1α regulating glycolysis to reduce the ferroptosis of chondrocyte in osteoarthritis. Int Immunopharmacol. 159:1148412025. View Article : Google Scholar : PubMed/NCBI | |
|
Wei Z, Wang H, Zhong R, Chen L, Vigors S and Zhang H: Biodegradation of α-solanine and α-chaconine: Insights into microbial detoxification and enzymatic deglycosylation pathways. Food Chem X. 31:1029682025. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou J, Wu J, Fu F, Yao S, Zheng W, Du W, Luo H, Jin H, Tong P, Wu C and Ruan H: α-Solanine attenuates chondrocyte pyroptosis to improve osteoarthritis via suppressing NF-κB pathway. J Cell Mol Med. 28:e181322024. View Article : Google Scholar : PubMed/NCBI | |
|
Seven D, Dalan AB and Bayrak ÖF: Targeting GSTM3 for therapeutic potential in advanced prostate cancer. BMC Cancer. 25:14932025. View Article : Google Scholar : PubMed/NCBI | |
|
Llavanera M, Ribas-Maynou J, Delgado-Bermúdez A, Recuero S, Salas-Huetos A, Benet J and Yeste M: P-049 sperm GSTM3: A potential molecular biomarker for sperm quality and male (in)fertility. Hum Reprod. 37 (Suppl 1):deac104.111. 2022. View Article : Google Scholar | |
|
Wang B, Gu Q and Li J: DOC-2/DAB2 interactive protein regulates proliferation and mobility of nasopharyngeal carcinoma cells by targeting PI3K/Akt pathway. Oncol Rep. 38:317–324. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Niu Z, Liu H, Zhou M, Wang H, Liu Y, Li X, Xiong W, Ma J, Li X and Li G: Knockdown of c-Myc inhibits cell proliferation by negatively regulating the Cdk/Rb/E2F pathway in nasopharyngeal carcinoma cells. Acta Biochim Biophys Sin (Shanghai). 47:183–191. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Soulage CO, Pelletier CC, Florens N, Lemoine S, Dubourg L, Juillard L and Guebre-Egziabher F: Two toxic lipid aldehydes, 4-hydroxy-2-hexenal (4-HHE) and 4-hydroxy-2-nonenal (4-HNE), accumulate in patients with chronic kidney disease. Toxins (Basel). 12:5672020. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Zhao T, Li J, Xia M, Li Y, Wang X, Liu C, Zheng T, Chen R, Kan D, et al: Oxidative stress and 4-hydroxy-2-nonenal (4-HNE): Implications in the pathogenesis and treatment of aging-related diseases. J Immunol Res. 2022:22339062022.PubMed/NCBI | |
|
Globisch M, Kaden D and Henle T: 4-Hydroxy-2-nonenal (4-HNE) and Its lipation product 2-pentylpyrrole lysine (2-PPL) in peanuts. J Agric Food Chem. 63:5273–81. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Llavanera M, Delgado-Bermúdez A, Fernandez-Fuertes B, Recuero S, Mateo Y, Bonet S, Barranco I and Yeste M: GSTM3, but not IZUMO1, is a cryotolerance marker of boar sperm. J Anim Sci Biotechnol. 10:612019. View Article : Google Scholar : PubMed/NCBI | |
|
Li B, Zhou J, Zhang G, Wang Y, Kang L, Wu J, Chen J and Guan H: Relationship between the altered expression and epigenetics of GSTM3 and age-related cataract. Invest Ophthalmol Vis Sci. 57:4721–4732. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Mandic-Maravic V, Mitkovic-Voncina M, Pljesa-Ercegovac M, Savic-Radojevic A, Djordjevic M, Ercegovac M, Pekmezovic T, Simic T and Pejovic-Milovancevic M: Glutathione S-transferase polymorphisms and clinical characteristics in autism spectrum disorders. Front Psychiatry. 12:6723892021. View Article : Google Scholar : PubMed/NCBI | |
|
Li X, Gou J, Li H and Yang X: Bioinformatic analysis of the expression and prognostic value of chromobox family proteins in human breast cancer. Sci Rep. 10:177392020. View Article : Google Scholar : PubMed/NCBI | |
|
Li G, Cai Y, Wang C, Huang M and Chen J: LncRNA GAS5 regulates the proliferation, migration, invasion and apoptosis of brain glioma cells through targeting GSTM3 expression. The effect of LncRNA GAS5 on glioma cells. J Neurooncol. 143:525–536. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Chen T, Jinlin D, Wang F, Yuan Z, Xue J, Lu T, Huang W, Liu Y and Zhang Y: GSTM3 deficiency impedes DNA mismatch repair to promote gastric tumorigenesis via CAND1/NRF2-KEAP1 signaling. Cancer Lett. 538:2156922022. View Article : Google Scholar : PubMed/NCBI | |
|
Wu Y, Jia Q, Tang Q, Deng H, He Y and Tang F: Berberine-mediated ferroptosis through system Xc−/GSH/GPX4 axis inhibits metastasis of nasopharyngeal carcinoma. J Cancer. 15:685–698. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Hou J, Zi L, Shi M, Wang Y, Gao F and Chen W: The contribution of SLC7A11-mediated ferroptosis to cardiac injury in iron overload cardiomyopathy: An in vitro study. Eur Heart J. 45 (Suppl 1):ehae666.3648. 2024. View Article : Google Scholar | |
|
Wang F, Sun Z, Zhang Q, Yang H, Yang G, Yang Q, Zhu Y, Wu W, Xu W and Wu X: Curdione induces ferroptosis mediated by m6A methylation via METTL14 and YTHDF2 in colorectal cancer. Chin Med. 18:1222023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao YY, Yang YQ, Sheng HH, Tang Q, Han L, Wang SM and Wu WY: GPX4 plays a crucial role in Fuzheng Kang'ai decoction-induced non-small cell lung cancer cell ferroptosis. Front Pharmacol. 13:8516802022. View Article : Google Scholar : PubMed/NCBI | |
|
Gao X, Guo N, Xu H, Pan T, lei H, Yan A, Mi Y and Xu L: Ibuprofen induces ferroptosis of glioblastoma cells via downregulation of nuclear factor erythroid 2-related factor 2 signaling pathway. Anticancer Drugs. 31:27–34. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng J, Fang Y, Zhang M, Gao Q, Li J, Yuan H, Jin W, Lin Z and Lin W: Mechanisms of ferroptosis in hypoxic-ischemic brain damage in neonatal rats. Exp Neurol. 372:1146412024. View Article : Google Scholar : PubMed/NCBI | |
|
Yujiao C, Meng Z, Shanshan L, Wei W, Yipeng W and Chenghong Y: Exposure to bisphenol A induces abnormal fetal heart development by promoting ferroptosis. Ecotoxicol Environ Saf. 255:1147532023. View Article : Google Scholar : PubMed/NCBI | |
|
Wang S, Xu Z, Cai B and Chen Q: Berberine as a potential multi-target agent for metabolic diseases: A review of investigations for berberine. Endocr Metab Immune Disord Drug Targets. 21:971–979. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Chen J, Peng W, Yang W, You Z and Zou Y: Berberine inhibits high glucose-induced ferroptosis in retinal vascular endothelial cells: Mechanism and implications. Exp Eye Res. 259:1105312025. View Article : Google Scholar : PubMed/NCBI | |
|
Bao L, Jin Y, Han J, Wang W, Qian L and Wu W: Berberine regulates GPX4 to inhibit ferroptosis of islet β cells. Planta Med. 89:254–261. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Shah D, Challagundla N, Dave V, Patidar A, Saha B, Nivsarkar M, Trivedi VB and Agrawal-Rajput R: Berberine mediates tumor cell death by skewing tumor-associated immunosuppressive macrophages to inflammatory macrophages. Phytomedicine. 99:1539042022. View Article : Google Scholar : PubMed/NCBI | |
|
Sun Q, Tu K, Xu Q, Yan L, Yang S, Wang J, Lv L, Liu H and Cai L: Berberine suppresses colorectal cancer progression by inducing ferroptosis-mediated energy metabolism disorders. J Adv Res. Oct 24–2025.(Epub ahead of print). View Article : Google Scholar | |
|
Xie Z, Zhou Y, Lin M and Huang C: Binding of berberine to PEBP1 synergizes with sorafenib to induce the ferroptosis of hepatic stellate cells. Amino Acids. 55:1867–1878. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Liu X, Yu M, Xu M, Xiao Y, Ma W, Huang L, Li X and Ye X: Berberine inhibits proliferation and induces G0/G1 phase arrest in colorectal cancer cells by downregulating IGF2BP3. Life Sci. 260:1184132020. View Article : Google Scholar : PubMed/NCBI | |
|
Eke I, Makinde AY, Aryankalayil MJ, Sandfort V, Palayoor ST, Rath BH, Liotta L, Pierobon M, Petricoin EF, Brown MF, et al: Exploiting radiation-induced signaling to increase the susceptibility of resistant cancer cells to targeted drugs: AKT and mTOR inhibitors as an example. Mol Cancer Ther. 17:355–367. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Bagnulo M and García-Martínez A: When less is more: BBR versus LEDBAT++. Comput Netw. 219:1094602022. View Article : Google Scholar | |
|
Atxutegi E, Liberal F, Haile HK, Grinnemo KJ, Brunstrom A and Arvidsson Å: On the use of TCP BBR in cellular networks. IEEE Commun Mag. 56:172–179. 2018. View Article : Google Scholar | |
|
Abdelmawgood IA, Kotb MA, Hassan HS, Mahana NA, Rochdi AM, Sayed NH, Elsafoury RH, Saber AM, Youssef MN, Waheeb NG, et al: Gentisic acid attenuates ovalbumin-induced airway inflammation, oxidative stress, and ferroptosis through the modulation of Nrf2/HO-1 and NF-κB signaling pathways. Int Immunopharmacol. 146:1137642025. View Article : Google Scholar : PubMed/NCBI | |
|
Zhong X, Zhang Z, Shen H, Xiong Y, Shah YM, Liu Y, Liu Y, Fan XG and Rui L: Hepatic NF-κB-inducing kinase and inhibitor of NF-κB kinase subunit α promote liver oxidative stress, ferroptosis, and liver injury. Hepatol Commun. 5:1704–1720. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou JC, Wu B, Zhang JJ and Zhang W: Lupeol triggers oxidative stress, ferroptosis, apoptosis and restrains inflammation in nasopharyngeal carcinoma via AMPK/NF-κB pathway. Immunopharmacol Immunotoxicol. 44:621–631. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Z, Di Y, Ye L, Fang W, Wen X, Zhang X, Qin J, Wang Y, Hu K, Zhu Z, et al: NANS suppresses NF-κB signaling to promote ferroptosis by perturbing iron homeostasis. Cell Rep. 44:1157012025. View Article : Google Scholar : PubMed/NCBI | |
|
Wu S, Zhou Y, Liang J, Ying P, Situ Q, Tan X and Zhu J: Upregulation of NF-κB by USP24 aggravates ferroptosis in diabetic cardiomyopathy. Free Radic Biol Med. 210:352–366. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Luo X, Gong Y, Jiang Q, Wang Q, Li S and Liu L: Isoquercitrin promotes ferroptosis and oxidative stress in nasopharyngeal carcinoma via the AMPK/NF-κB pathway. J Biochem Mol Toxicol. 38:e235422024. View Article : Google Scholar : PubMed/NCBI | |
|
Song X, Zhu H, Chen Z, Wang Y, Zhang J, Wang Y, Rong P and Wang J: Transcutaneous auricular vagus nerve stimulation alleviates inflammation-induced depression by modulating peripheral-central inflammatory cytokines and the NF-κB pathway in rats. Front Immunol. 16:15360562025. View Article : Google Scholar : PubMed/NCBI | |
|
Gong X, Yang Y, Huang L, Zhang Q, Wan RZ, Zhang P and Zhang X: Antioxidation, anti-inflammation and anti-apoptosis by paeonol in LPS/d-GalN-induced acute liver failure in mice. Int Immunopharmacol. 46:124–132. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Zeng MY and Tong QY: Anti-inflammation effects of sinomenine on macrophages through suppressing activated TLR4/NF-κB signaling pathway. Curr Med Sci. 40:130–137. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao S, Zuo W, Chen H, Bao T, Liu X, Sun T and Wang S: Effects of pilose antler peptide on bleomycin-induced pulmonary fibrosis in mice. Biomed Pharmacother. 109:2078–2083. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang J, Qi S, Du Y, Dai H and Lu N: Effect of quercetin on inhibiting gefitinib-activated non-small cell lung cancer-induced cell pyroptosis in cardiomyocytes via modulating mitochondrial autophagy mediated by the SHP2/ROS/AMPK/XBP-1/DJ-1 signaling pathway. Oncol Rep. 53:572025. View Article : Google Scholar : PubMed/NCBI | |
|
Wang N, Chen HQ, Zeng Y, Shi Y, Zhang Z, Li JY, Zhou SM, Li YW, Deng SW, Han X, et al: Benzo(a)pyrene promotes the malignant progression of malignant-transformed BEAS-2B cells by regulating YTH N6-methyladenosine RNA binding protein 1 to inhibit ferroptosis. Toxicology. 507:1538862024. View Article : Google Scholar : PubMed/NCBI | |
|
Shao C, Luo T, Wang S, Li Z, Yu X, Wu Y, Jiang S, Zhou B, Song Q, Song S, et al: Selenium nanoparticles alleviates cadmium induced hepatotoxicity by inhibiting ferroptosis and oxidative stress in vivo and in vitro. Chemosphere. 364:1430042024. View Article : Google Scholar : PubMed/NCBI | |
|
Meng J, Hu C, Qian Z, Yue J, Zhang S, Jiang W, Su R, Jiang G and Huang G: Isoquercitrin inhibits ferroptosis and ameliorates insulin resistance: Evidence from network pharmacology and in vitro studies. Biochem Biophys Res Commun. 781:1525002025. View Article : Google Scholar : PubMed/NCBI | |
|
Lee J, Jang CH, Kim Y, Oh J and Kim JS: Quercetin-Induced glutathione depletion sensitizes colorectal cancer cells to oxaliplatin. Foods. 12:17332023. View Article : Google Scholar : PubMed/NCBI | |
|
Kottakis G, Kambouri K, Giatromanolaki A, Valsami G, Kostomitsopoulos N, Tsaroucha A and Pitiakoudis M: Effects of the antioxidant quercetin in an experimental model of ulcerative colitis in mice. Medicina (Kaunas). 59:872022. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Xu Z, Zhao S, Huang T, Xu J, Wang S, Sang Y, Yu W and Wang X: Oral administration of curcumin and quercetin nanoparticles can improve ulcerative colitis by regulating intestinal microorganisms. Front Nutr. 12:16966992025. View Article : Google Scholar : PubMed/NCBI | |
|
Wei Q, Jiang H, Zeng J, Xu J, Zhang H, Xiao E, Lu Q and Huang G: Quercetin protected the gut barrier in ulcerative colitis by activating aryl hydrocarbon receptor. Phytomedicine. 140:1566332025. View Article : Google Scholar : PubMed/NCBI | |
|
Li J, Yan Y and Chen F: Clinical trial landscape for histone deacetylation inhibitors in breast cancer: A dawn in the darkness? J Transl Med. 22:10812024. View Article : Google Scholar : PubMed/NCBI | |
|
Tan LLY, Le QT, Lee NYY and Chua MLK: JUPITER-02 trial: Advancing survival for recurrent metastatic nasopharyngeal carcinoma and next steps. Cancer Commun (Lond). 42:56–59. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu D, Wang Z, Zhang G, Ma C, Qiu X, Wang Y, Liu M, Guo X, Chen H, Deng Q and Kang X: Periostin promotes nucleus pulposus cells apoptosis by activating the Wnt/β-catenin signaling pathway. FASEB J. 36:e223692022. View Article : Google Scholar : PubMed/NCBI | |
|
Takashima K, Okano H, Ojiro R, Tang Q, Takahashi Y, Ozawa S, Zou X, Koyanagi M, Maronpot RR, Yoshida T and Shibutani M: Continuous exposure to alpha-glycosyl isoquercitrin from gestation ameliorates disrupted hippocampal neurogenesis in rats induced by gestational injection of valproic acid. Neurotox Res. 40:2278–2296. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Takashima K, Okano H, Ojiro R, Tang Q, Takahashi Y, Ozawa S, Zou X, Koyanagi M, Maronpot RR, Yoshida T and Shibutani M: Continuous exposure to alpha-glycosyl isoquercitrin from mid-gestation ameliorates polyinosinic-polycytidylic acid-disrupted hippocampal neurogenesis in rats. J Chem Neuroanat. 128:1022192023. View Article : Google Scholar : PubMed/NCBI | |
|
Huang S, Cao B, Zhang J, Feng Y, Wang L, Chen X, Su H, Liao S, Liu J, Yan J and Liang B: Induction of ferroptosis in human nasopharyngeal cancer cells by cucurbitacin B: Molecular mechanism and therapeutic potential. Cell Death Dis. 12:2372021. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Chen F, Chen J, Chan S, He Y, Liu W and Zhang G: Disulfiram/copper induces antitumor activity against both nasopharyngeal cancer cells and cancer-associated fibroblasts through ROS/MAPK and ferroptosis pathways. Cancers (Basel). 12:1382020. View Article : Google Scholar : PubMed/NCBI | |
|
Chen C, Nie D, Huang Y, Yu X, Chen Z, Zhong M, Liu X, Wang X, Sui S, Liu Z, et al: Anticancer effects of disulfiram in T-cell malignancies through NPL4-mediated ubiquitin-proteasome pathway. J Leukoc Biol. 112:919–929. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Serra R, Zhao T, Huq S, Gorelick NL, Casaos J, Cecia A, Mangraviti A, Bai R, Olivi A, Brem H, et al: Disulfiram and copper combination therapy targets NPL4, cancer stem cells and prolongs survival in group 3 medulloblastoma. Neurosurgery. 87 (Suppl 1):S9082020. | |
|
Serra R, Zhao T, Huq S, Gorelick NL, Casaos J, Cecia A, Mangraviti A, Eberhart C, Bai R, Olivi A, et al: Disulfiram and copper combination therapy targets NPL4, cancer stem cells and extends survival in a medulloblastoma model. PLoS One. 16:e02519572021. View Article : Google Scholar : PubMed/NCBI | |
|
Lian Q, Chen F, Sha Z, Zhao H, Li J, Chen T, Liu C, Wang B, Wang Z and Qiao S: Disulfiram upgrades the radiosensitivity of osteosarcoma by enhancing apoptosis and P53-induced cell cycle arrest. Radiat Res. 202:752–764. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Wu X, Xue X, Wang L, Wang W, Han J, Sun X, Zhang H, Liu Y, Che X, Yang J and Wu C: Suppressing autophagy enhances disulfiram/copper-induced apoptosis in non-small cell lung cancer. Eur J Pharmacol. 827:1–12. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Wang K, Michelakos T, Wang B, Shang Z, DeLeo AB, Duan Z, Hornicek FJ, Schwab JH and Wang X: Targeting cancer stem cells by disulfiram and copper sensitizes radioresistant chondrosarcoma to radiation. Cancer Lett. 505:37–48. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Park YM, Kim DH, Kang MS, Koh YW, Choi EC and Kim SH: Abstract B25: Anticancer effects of disulfiram in head and neck squamous cell carcinoma via autophagic cell death. Clin Cancer Res. 26 (12 Suppl 2):B252020. View Article : Google Scholar | |
|
Li Z, Cao S, Sun Y, Niu Z, Liu X, Niu J and Zhou Y: TIPE3 is a candidate prognostic biomarker promoting tumor progression via elevating RAC1 in pancreatic cancer. Mol Cancer. 21:1602022. View Article : Google Scholar : PubMed/NCBI | |
|
Li Z, Cao S, Sun Y, Niu Z, Liu X, Niu J, PavelM A, Sridhar A, Maienschein-Cline M, Ong SG, et al: Late-breaking basic science abstracts from the american heart association's scientific sessions 2021. Circ Res. Dec 2–2021.(Epub ahead of print). | |
|
Guo J, Ma Y, Tang T, Bian Z, Li Q, Tang L, Li Z, Li M, Wang L, Zeng A, et al: Modulation of immune-responses by DSF/Cu enhances the anti-tumor effects of DTX for metastasis breast cancer. J Cancer. 15:1523–1535. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Ghaffarianhoseini A, Ghaffarianhoseini A, Berardi U, Tookey J, Li DHW and Kariminia S: Exploring the advantages and challenges of double-skin façades (DSFs). Renew Sustain Energy Rev. 60:1052–1065. 2016. View Article : Google Scholar | |
|
Zhu Y, Lei C, Jiang Q, Yu Q and Qiu L: DSF/Cu induces antitumor effect against diffuse large B-cell lymphoma through suppressing NF-κB/BCL6 pathways. Cancer Cell Int. 22:2362022. View Article : Google Scholar : PubMed/NCBI | |
|
Waldron EJ, Snyder D, Fernandez NL, Sileo E, Inoyama D, Freundlich JS, Waters CM, Cooper VS and Neiditch MB: Structural basis of DSF recognition by its receptor RpfR and its regulatory interaction with the DSF synthase RpfF. PLoS Biol. 17:e30001232019. View Article : Google Scholar : PubMed/NCBI | |
|
Gennaro G, Catto Lucchino E, Goia F and Favoino F: Modelling double skin façades (DSFs) in whole-building energy simulation tools: Validation and inter-software comparison of naturally ventilated single-story DSFs. Build Environ. 231:1100022023. View Article : Google Scholar | |
|
Catto Lucchino E, Gelesz A, Skeie K, Gennaro G, Reith A, Serra V and Goia F: Modelling double skin façades (DSFs) in whole-building energy simulation tools: Validation and inter-software comparison of a mechanically ventilated single-story DSF. Build Environ. 199:1079062021. View Article : Google Scholar | |
|
Rempfer C, Hoernstein SNW, van Gessel N, Graf AW, Spiegelhalder RP, Bertolini A, Bohlender LL, Parsons J, Decker EL and Reski R: Differential prolyl hydroxylation by six Physcomitrella prolyl-4 hydroxylases. bioRxiv. 2024. | |
|
Rempfer C, Hoernstein SNW, van Gessel N, Graf AW, Spiegelhalder RP, Bertolini A, Bohlender LL, Parsons J, Decker EL and Reski R: Differential prolyl hydroxylation by six Physcomitrella prolyl-4 hydroxylases. Comput Struct Biotechnol J. 23:2580–2594. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
McKenzie AJ, Hoshino D, Hong NH, Cha DJ, Franklin JL, Coffey RJ, Patton JG and Weaver AM: KRAS-MEK signaling controls Ago2 sorting into exosomes. Cell Rep. 15:978–987. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Hu P, Zhao H, Zhu P, Xiao Y, Miao W, Wang Y and Jin H: Dual regulation of Arabidopsis AGO2 by arginine methylation. Nat Commun. 10:8442019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou R, Qiu L, Zhou L, Geng R, Yang S and Wu J: P4HA1 activates HMGCS1 to promote nasopharyngeal carcinoma ferroptosis resistance and progression. Cell Signal. 105:1106092023. View Article : Google Scholar : PubMed/NCBI | |
|
Meng Y, Sun HY, He Y, Zhou Q, Liu YH, Su H, Yin MZ, Zeng FR, Chen X and Deng GT: BET inhibitors potentiate melanoma ferroptosis and immunotherapy through AKR1C2 inhibition. Mil Med Res. 10:612023.PubMed/NCBI | |
|
Li Q and Gan B: Uncovering the IL-1β-PCAF-NNT axis: A new player in ferroptosis and tumor immune evasion. Cancer Commun (Lond). 43:1048–1050. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Qiu L, Zhou R, Zhou L, Yang S and Wu J: CAPRIN2 upregulation by LINC00941 promotes nasopharyngeal carcinoma ferroptosis resistance and metastatic colonization through HMGCR. Front Oncol 6. 12:9317492022. View Article : Google Scholar : PubMed/NCBI | |
|
Ning Y, Zheng H, Zhan Y, Liu S, Yang Y, Zang H, Wen Q, Zhang Y and Fan S: Overexpression of P4HA1 associates with poor prognosis and promotes cell proliferation and metastasis of lung adenocarcinoma. J Cancer. 12:6685–6694. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Robinson AD, Chakravarthi BVSK, Agarwal S, Chandrashekar DS, Davenport ML, Chen G, Manne U, Beer DG, Edmonds MD and Varambally S: Collagen modifying enzyme P4HA1 is overexpressed and plays a role in lung adenocarcinoma. Transl Oncol. 14:1011282021. View Article : Google Scholar : PubMed/NCBI | |
|
Navarro-Serer B, Wissler MF, Glover BK, Lerner MG, Oza HH, Wang V, Knutsdottir H, Shojaeian F, Noller K, Baskaran SG, et al: P4HA1 mediates hypoxia-induced invasion in human pancreatic cancer organoids. Cancer Res Commun. 5:881–895. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Hu T, Gou W, Ren Z, Liu G, Li Y, Zuo D and Hou W: Icaritin increases radiosensitivity of nasopharyngeal carcinoma cells by regulating iron death. Nan Fang Yi Ke Da Xue Xue Bao. 43:1665–1673. 2023.(In Chinese). PubMed/NCBI | |
|
Zhang D, Wu X, Xue X, Li W, Zhou P, Lv Z, Zhao K and Zhu F: Ancient dormant virus remnant ERVW-1 drives ferroptosis via degradation of GPX4 and SLC3A2 in schizophrenia. Virol Sin. 39:31–43. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Chen H, Li Y, Deng C, Liang X and Liu G: O-254 ACTRT2 deficiency increases spermatogonia vulnerability to ferroptosis. Hum Reprod. 38:dead093.308. 2023. View Article : Google Scholar | |
|
Qin J, Chen Z, Ye M, Liang L and Ding X: High glucose promotes O-GlcNAcylation of ACSL4 to induce ferroptosis of renal tubular epithelial cell. Autoimmunity. 58:25768812025. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou R, Wang X, Jin Y, Chen B, Liu H, Zhao X, Jing D and Zhao B: Mechanism of lidocaine-induced ROS generation triggering DNA double-strand breaks and promoting intervertebral disc cell senescence via the MYC-DUSP1-P53 axis. Free Radic Biol Med. 240:457–471. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Yue C, Qian Y, Wang C, Chen J, Wang J, Wang Z, Wan X, Cao S, Zhu J, Tao Q, et al: TRIM29 acts as a potential senescence suppressor with epigenetic activation in nasopharyngeal carcinoma. Cancer Sci. 114:3176–3189. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Srinivas US, Tan BWQ, Vellayappan BA and Jeyasekharan AD: ROS and the DNA damage response in cancer. Redox Biol. 25:1010842019. View Article : Google Scholar : PubMed/NCBI | |
|
Ding Y, Xiu H, Zhang Y, Ke M, Lin L, Yan H, Hu P, Xiao M, He X and Zhang T: Learning and investigation of the role of angiotensin-converting enzyme in radiotherapy for nasopharyngeal carcinoma. Biomedicines. 11:15812023. View Article : Google Scholar : PubMed/NCBI | |
|
Wang SY, Xu XW, Yao JJ, Peng PJ, Zhou B, Liu QD, Huang XP and Lin Z: Dose escalation of lobaplatin concurrent with IMRT for the treatment of stage III–IVb NPC: A phase I clinical trial. Transl Oncol. 11:1007–1011. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Tang Q, Mei C, Huang B, Huang R, Kang L, Chen A, Lei N, Deng P, Ying S, Zhang P and Qin Y: Risk stratification of LA-NPC during chemoradiotherapy based on clinical classification and TVRR. Cancer Med. 13:e70292024. View Article : Google Scholar : PubMed/NCBI | |
|
Kim KY, Le QT, Yom SS, Ng RHW, Chan KCA, Bratman SV, Welch JJ, Divi RL, Petryshyn RA and Conley BA: Clinical utility of Epstein-Barr virus DNA testing in the treatment of nasopharyngeal carcinoma patients. Int J Radiat Oncol Biol Phys. 98:996–1001. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
He Q, Tuo Y, Zhou Y, Yan Y, Liu X, Zhao D, Wang Q, Luo H, Zhang Z, Meng F, et al: MB based RT-qPCR increase the clinical application of cfEBV DNA for NPC in non-endemic area of China. Sci Rep. 15:91862025. View Article : Google Scholar : PubMed/NCBI | |
|
Burton BK, Ellis AG, Orr B, Chatlani S, Yoon K, Shoaff JR and Gallo D: Estimating the prevalence of Niemann-Pick disease type C (NPC) in the United States. Mol Genet Metab. 134:182–187. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang MD, Li HT, Peng LX, Mei Y, Zheng LS, Li CZ, Meng DF, Lang YH, Xu L, Peng XS, et al: TSPAN1 inhibits metastasis of nasopharyngeal carcinoma via suppressing NF-kB signaling. Cancer Gene Ther. 31:454–463. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang X, Qian S, Wu P, Yu B, Yin D, Peng X, Li S, Xiao Z and Xie Z: Tumor-associated macrophage-derived itaconic acid contributes to nasopharyngeal carcinoma progression by promoting immune escape via TET2. Cell Commun Signal. 22:4132024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang X, Song X, Lai Y, Zhu B, Luo J, Yu H and Yu Y: Identification of key pseudogenes in nasopharyngeal carcinoma based on RNA-Seq analysis. BMC Cancer. 21:4832021. View Article : Google Scholar : PubMed/NCBI | |
|
Renaud S, Lefebvre A, Mordon S, Moralès O and Delhem N: Novel therapies boosting T cell immunity in epstein barr virus-associated nasopharyngeal carcinoma. Int J Mol Sci. 21:42922020. View Article : Google Scholar : PubMed/NCBI | |
|
Cheu JWS, Lee D, Li Q, Goh CC, Bao MHR, Yuen VWH, Zhang MS, Yang C, Chan CY, Tse AP, et al: Ferroptosis suppressor protein 1 inhibition promotes tumor ferroptosis and anti-tumor immune responses in liver cancer. Cell Mol Gastroenterol Hepatol. 16:133–159. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Cui K, Wang K and Huang Z: Ferroptosis and the tumor microenvironment. J Exp Clin Cancer Res. 43:3152024. View Article : Google Scholar : PubMed/NCBI | |
|
Kojima Y, Tanaka M, Sasaki M, Ozeki K, Shimura T, Kubota E and Kataoka H: Induction of ferroptosis by photodynamic therapy and enhancement of antitumor effect with ferroptosis inducers. J Gastroenterol. 59:81–94. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Cai W, Wu S, Lin Z, Ming X, Yang X, Yang M and Chen X: Hypoxia-induced BAP1 enhances erastin-induced ferroptosis in nasopharyngeal carcinoma by stabilizing H2A. Cancer Cell Int. 24:3072024. View Article : Google Scholar : PubMed/NCBI | |
|
Chen W, Zuo F, Zhang K, Xia T, Lei W, Zhang Z, Bao L and You Y: Exosomal MIF derived from nasopharyngeal carcinoma promotes metastasis by repressing ferroptosis of macrophages. Front Cell Dev Biol. 9:7911872021. View Article : Google Scholar : PubMed/NCBI | |
|
Chen X, Wang X, Zou Y, Wang Y, Duan T, Zhou Z, Huang Y and Ye Q: EMC2 suppresses ferroptosis via regulating TFRC in nasopharyngeal carcinoma. Transl Oncol. 52:1022512025. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng D, Chu T, Yang D, Liang S, Yang L, Yang Y, Zhang K and Ma W: Targeting ferroptosis in nasopharyngeal carcinoma: Mechanisms of therapy resistance and therapeutic opportunities. Adv Biol (Weinh). Oct 30–2025.(Epub ahead of print). View Article : Google Scholar | |
|
Liang Z, Zhao W, Li X, Wang L, Meng L and Yu R: Cisplatin synergizes with PRLX93936 to induce ferroptosis in non-small cell lung cancer cells. Biochem Biophys Res Commun. 569:79–85. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Roh JL, Kim EH, Jang H and Shin D: Nrf2 inhibition reverses the resistance of cisplatin-resistant head and neck cancer cells to artesunate-induced ferroptosis. Redox Biol. 11:254–262. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Takahashi R, Kamizaki K, Yamanaka K, Terai Y and Minami Y: Expression of Ferredoxin1 in cisplatin-resistant ovarian cancer cells confers their resistance against ferroptosis induced by cisplatin. Oncol Rep. 49:1242023. View Article : Google Scholar : PubMed/NCBI | |
|
Perera L, Brown SM, Silver BB, Tokar EJ and Sinha BK: Ferroptosis inducers erastin and RSL3 enhance adriamycin and topotecan sensitivity in ABCB1/ABCG2-expressing tumor cells. Int J Mol Sci. 26:6352025. View Article : Google Scholar : PubMed/NCBI | |
|
Bao C, Liu C, Liu Q, Hua L, Hu J, Li Z and Xu S: Liproxstatin-1 alleviates LPS/IL-13-induced bronchial epithelial cell injury and neutrophilic asthma in mice by inhibiting ferroptosis. Int Immunopharmacol. 109:1087702022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang B, Chen X, Ru F, Gan Y, Li B, Xia W, Dai G, He Y and Chen Z: Liproxstatin-1 attenuates unilateral ureteral obstruction-induced renal fibrosis by inhibiting renal tubular epithelial cells ferroptosis. Cell Death Dis. 12:8432021. View Article : Google Scholar : PubMed/NCBI | |
|
Cui J, Chen Y, Yang Q, Zhao P, Yang M, Wang X, Mang G, Yan X, Wang D, Tong Z, et al: Protosappanin A protects DOX-induced myocardial injury and cardiac dysfunction by targeting ACSL4/FTH1 axis-dependent ferroptosis. Adv Sci (Weinh). 11:e23102272024. View Article : Google Scholar : PubMed/NCBI |