Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
March-2026 Volume 55 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2026 Volume 55 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Role of tumor‑infiltrating lymphocytes and miR‑155 in breast cancer: Insights into carcinogenesis and their potential as prognostic biomarkers (Review)

  • Authors:
    • Miriam Monteiro Alvares‑Vilela
    • Franciele Schlemmer
    • Sabrina Simplício de Araújo Romero Ferrari
    • Mary-Ann Elvina Xavier
    • Ricardo Titze‑de‑Almeida
  • View Affiliations / Copyright

    Affiliations: Technology for Gene Therapy Laboratory, Central Institute of Sciences, University of Brasília, Brasília 70910‑900, Brazil
    Copyright: © Alvares‑Vilela et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 42
    |
    Published online on: January 14, 2026
       https://doi.org/10.3892/or.2026.9047
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:


Abstract

Breast cancer is the most common cancer in the female population worldwide. The present review examines the biology of breast cancer, with a focus on the interplay between tumor‑infiltrating lymphocytes (TILs) and microRNAs (miRNAs or miRs). TILs, which reflect the immune system activity in combating tumors, are associated with more favorable prognoses and positive response to therapies. Elevated levels of TILs characterize lymphocyte‑predominant breast cancers (LPBCs), which are associated with higher therapeutic response rates in triple‑negative breast cancer, a type of LPBC. Defining the threshold for LPBCs presents a challenge: TIL levels ≥50% are associated with short‑term pathological complete response as well as long‑term overall and disease‑free survival; however, this percentage is not often achieved in clinical practice. Conversely, a lower threshold of 30% lymphocyte infiltration can predict favorable prognosis for anticancer therapy and allows for the identification of a broader range of patients. The tumor inflammatory landscape is regulated by miRNAs, particularly miR‑155. Elevated levels of miR‑155 are associated with the presence of TILs and a favorable inflammatory profile, leading to a tumor‑inflamed microenvironment. Moreover, miR‑155 is associated with various antitumoral immune cells, including CD8+ T cells and M1 macrophages, but negatively associated with pro‑tumoral regulatory T cells and M2 macrophages. Overexpression of miR‑155 results in an increase in the levels of the C‑X‑C chemokine ligands, constituted by two conserved cysteines separated by a different amino acid which bind to the same chemokine receptor CXC chemokine receptor 3. These results in activation of T cells a process that involves the inhibition of suppressor of cytokine signaling 1 and an elevated ratio of phosphorylated STAT1/STAT3. Additionally, miR‑155 affects key signaling pathways, including the PI3K/AKT and IL‑6/STAT3 pathways, and increases sensitivity to immune checkpoint blockade therapy. In clinical samples from patients with BC, serum levels of miR‑155 align with both tumor miR‑155 levels and the immune status of the tumor. The present review emphasizes the importance of understanding the dynamics between TILs and miRNAs to identify new prognostic and predictive biomarkers, proposing a more integrated and personalized approach in the management of BC.

View Figures

Figure 1

Characterization of breast cancer
grading. The grading system remains the international gold standard
for prognostic stratification in invasive breast carcinoma.

Figure 2

TILs in breast cancer stromal
sections. Higher proportions of TILs are associated with improved
clinical outcomes. TIL, tumor-infiltrating lymphocyte. Image
obtained from International TILS Working Group (70).

Figure 3

Kaplan-Meier curves for survival
based on sTILs. Kaplan-Meier curves of (A) iDFS, (B) D-DFS and (C)
OS according to TILs using a 30% cut-off. Shaded areas correspond
to 95% CI. P-values correspond to log-rank tests. Figure reproduced
with permission from Loi et al, and modified by the author
(99). iDFS, invasive disease-free
survival; D-DFS, distant disease free survival; OS, overall
survival; sTIL, stromal tumor-infiltrating lymphocyte.

Figure 4

Kaplan-Meier survival curves with a
30% TILs cut-off Kaplan-Meier curves of (A) iDFS, (B) D-DFS and (C)
OS in stage I subpopulation according to stromal tumor-infiltrating
lymphocytes using a cut-off of 30%. Figure reproduced with
permission from Park et al, and modified by the author
(100). iDFS, invasive disease
free survival; D-, distant; OS, overall survival; sTIL, stromal
tumor-infiltrating lymphocyte.

Figure 5

Biogenesis and function of miR-155.
TLR stimulation initiates BIC transcription by Pol II in the
nucleus, producing pri-miR-155 (negatively regulated by
BRCA1/SMAD4). Drosha/DGCR8 processing generates pre-miR-155, which
is exported to the cytoplasm via exportin 5. Cytoplasmic
Dicer1/TRBP cleaves pre-miR-155 into a duplex that incorporates
into AGO2, forming the RISC complex. Mature miR-155 mediates mRNA
degradation, destabilization or translational inhibition. miR-155
can be packaged into exosomes for intercellular signaling. miR,
microRNA; TLR, toll-like receptor; pri-miR, primary microRNA;
DGCR8, DiGeorge syndrome critical region 8 protein; TRBP,
transactivation response RNA binding protein; AGO, argonaut
proteins; RISC, RNA-induced silencing; BIC, B cell integration
cluster; Pol, polymerase.
View References

1 

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.PubMed/NCBI

2 

Siegel RL, Miller KD, Wagle NS and Jemal A: Cancer statistics, 2023. CA Cancer J Clin. 73:17–48. 2023.PubMed/NCBI

3 

Blackadar CB: Historical review of the causes of cancer. World J Clin Oncol. 7:54–86. 2016. View Article : Google Scholar : PubMed/NCBI

4 

Tan PH, Ellis I, Allison K, Brogi E, Fox SB, Lakhani S, Lazar AJ, Morris EA, Sahin A, Salgado R, et al: The 2019 World Health Organization classification of tumours of the breast. Histopathology. 77:181–185. 2020. View Article : Google Scholar : PubMed/NCBI

5 

Marra A, Trapani D, Viale G, Criscitiello C and Curigliano G: Practical classification of triple-negative breast cancer: Intratumoral heterogeneity, mechanisms of drug resistance, and novel therapies. NPJ Breast Cancer. 6:542020. View Article : Google Scholar : PubMed/NCBI

6 

Ma Y and Gamagedara S: Biomarker analysis for oncology. Biomark Med. 9:845–850. 2015. View Article : Google Scholar : PubMed/NCBI

7 

Aronson JK and Ferner RE: Biomarkers-A general review. Curr Protoc Pharmacol. 76:9.23.1–9.23.17. 2017.PubMed/NCBI

8 

Barzaman K, Karami J, Zarei Z, Hosseinzadeh A, Kazemi MH, Moradi-Kalbolandi S, Safari E and Farahmand L: Breast cancer: Biology, biomarkers, and treatments. Int Immunopharmacol. 84:1065352020. View Article : Google Scholar : PubMed/NCBI

9 

Tarighati E, Keivan H and Mahani H: A review of prognostic and predictive biomarkers in breast cancer. Clin Exp Med. 15:1–16. 2022.

10 

Yi M, Xu L, Jiao Y, Luo S, Li A and Wu K: The role of cancer-derived microRNAs in cancer immune escape. J Hematol Oncol. 13:252020. View Article : Google Scholar : PubMed/NCBI

11 

Mu D, Han B, Huang H, Zheng Y, Zhang J and Shi Y: Unraveling the advances of non-coding RNAs on the tumor microenvironment: Innovative strategies for cancer therapies. J Transl Med. 23:6142025. View Article : Google Scholar : PubMed/NCBI

12 

Abdul Manap AS, Wisham AA, Wong FW, Najmi HR, Ng ZF and Diba RS: Mapping the function of MicroRNAs as a critical regulator of tumor-immune cell communication in breast cancer and potential treatment strategies. Front Cell Dev Biol. 12:13907042024. View Article : Google Scholar : PubMed/NCBI

13 

Wang Z, Yang X, Shen J, Xu J, Pan M, Liu J and Han S: Gene expression patterns associated with tumor-infiltrating CD4+ and CD8+ T cells in invasive breast carcinomas. Hum Immunol. 82:279–287. 2021. View Article : Google Scholar : PubMed/NCBI

14 

Fu Y, Yang Q, Xu N and Zhang X: MiRNA affects the advancement of breast cancer by modulating the immune system's response. Biochim Biophys Acta Mol Basis Dis. 1871:1677592025. View Article : Google Scholar : PubMed/NCBI

15 

Galvão-Lima LJ, Morais AHF, Valentim RAM and Barreto EJSS: miRNAs as biomarkers for early cancer detection and their application in the development of new diagnostic tools. Biomed Eng Online. 20:212021. View Article : Google Scholar : PubMed/NCBI

16 

Cuk K, Zucknick M, Heil J, Madhavan D, Schott S, Turchinovich A, Arlt D, Rath M, Sohn C, Benner A, et al: Circulating microRNAs in plasma as early detection markers for breast cancer. Int J Cancer. 132:1602–1612. 2013. View Article : Google Scholar : PubMed/NCBI

17 

Bedard PL, Hyman DM, Davids MS and Siu LL: Small molecules, big impact: 20 years of targeted therapy in oncology. Lancet. 395:1078–1088. 2020. View Article : Google Scholar : PubMed/NCBI

18 

Wang J, Wang Q, Guan Y, Sun Y, Wang X, Lively K, Wang Y, Luo M, Kim JA, Murphy EA, et al: Breast cancer cell-derived microRNA-155 suppresses tumor progression via enhancing immune cell recruitment and antitumor function. J Clin Invest. 132:e1572482022. View Article : Google Scholar : PubMed/NCBI

19 

Liu X, Chang Q, Wang H, Qian H and Jiang Y: Discovery and function exploration of microRNA-155 as a molecular biomarker for early detection of breast cancer. Breast Cancer. 28:806–821. 2021. View Article : Google Scholar : PubMed/NCBI

20 

Wu Y, Hong Q, Lu F, Zhang Z, Li J, Nie Z and He B: The diagnostic and prognostic value of miR-155 in cancers: An updated meta-analysis. Mol Diagn Ther. 27:283–301. 2023. View Article : Google Scholar : PubMed/NCBI

21 

Trivers KF, Lund MJ, Porter PL, Liff JM, Flagg EW, Coates RJ and Eley JW: The epidemiology of triple-negative breast cancer, including race. Cancer Causes Control. 20:1071–1082. 2009.PubMed/NCBI

22 

Lucena C, Paulinelli R and Pedrini JL: Oncoplastia e reconstrução mamária. (1st ed.). Vol. 1. Rio de Janeiro: MEDBOOK. 2017.3–16

23 

Radu I, Scripcariu V, Panuța A, Rusu A, Afrăsânie VA, Cojocaru E, Aniței MG, Alexa-Stratulat T, Terinte C, Șerban CF and Gafton B: Breast sarcomas-how different are they from breast carcinomas? Clinical, pathological, imaging and treatment insights. Diagnostics (Basel). 13:13702023. View Article : Google Scholar : PubMed/NCBI

24 

Orvieto E, Maiorano E, Bottiglieri L, Maisonneuve P, Rotmensz N, Galimberti V, Luini A, Brenelli F, Gatti G and Viale G: Clinicopathologic characteristics of invasive lobular carcinoma of the breast: Results of an analysis of 530 cases from a single institution. Cancer. 113:1511–1520. 2008. View Article : Google Scholar : PubMed/NCBI

25 

Elston CW and Ellis IO: pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: Experience from a large study with long-term follow-up. Histopathology. 19:403–410. 1991. View Article : Google Scholar : PubMed/NCBI

26 

Moran MS, Yang Q and Haffty BG: The yale university experience of early-stage invasive lobular carcinoma (ILC) and invasive ductal carcinoma (IDC) treated with breast conservation treatment (BCT): Analysis of clinical-pathologic features, long-term outcomes, and molecular expression of COX-2, Bcl-2, and p53 as a function of histology. Breast J. 15:571–578. 2009. View Article : Google Scholar : PubMed/NCBI

27 

Jenkins S, Kachur ME, Rechache K, Wells JM and Lipkowitz S: Rare breast cancer subtypes. Curr Oncol Rep. 23:542021. View Article : Google Scholar : PubMed/NCBI

28 

Perou CM, Sùrlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, et al: Molecular portraits of human breast tumours. Nature. 406:747–752. 2000. View Article : Google Scholar : PubMed/NCBI

29 

Waks AG and Winer EP: Breast cancer treatment: A review. JAMA. 321:288–300. 2019. View Article : Google Scholar : PubMed/NCBI

30 

Wolff AC, Hammond MEH, Hicks DG, Dowsett M, McShane LM, Allison KH, Allred DC, Bartlett JMS, Bilous M, Fitzgibbons P, et al: Recommendations for human epidermal growth factor receptor 2 testing in breast. J Clin Oncol. 31:118–145. 2013. View Article : Google Scholar

31 

Parise CA, Bauer KR, Brown MM and Caggiano V: Breast cancer subtypes as defined by the estrogen receptor (ER), progesterone receptor (PR), and the human epidermal growth factor receptor 2 (HER2) among women with invasive breast cancer in California, 1999–2004. Breast J. 15:593–602. 2009. View Article : Google Scholar : PubMed/NCBI

32 

Huang P, Chandra V and Rastinejad F: Structural overview of the nuclear receptor superfamily: Insights into physiology and therapeutics. Annu Rev Physiol. 72:247–272. 2009. View Article : Google Scholar : PubMed/NCBI

33 

Kim MC, Park MH, Choi JE, Kang SH and Bae YK: Characteristics and prognosis of estrogen receptor low-positive breast cancer. J Breast Cancer. 25:318–326. 2022. View Article : Google Scholar : PubMed/NCBI

34 

Allison KH, Hammond MEH, Dowsett M, Mckernin SE, Carey LA, Fitzgibbons PL, Hayes DF, Lakhani SR, Chavez-MacGregor M, Perlmutter J, et al: Estrogen and progesterone receptor testing in breast cancer: ASCO/CAP guideline update. J Clin Oncol. 38:1346–1366. 2020. View Article : Google Scholar : PubMed/NCBI

35 

Giatromanolaki A, Koukourakis MI, Simopoulos C, Polychronidis A, Gatter KC, Harris AL and Sivridis E: c-erbB-2 related aggressiveness in breast cancer is hypoxia inducible factor-1 dependent. Clin Cancer Res. 10:7972–7977. 2004. View Article : Google Scholar : PubMed/NCBI

36 

Wolff AC, Hammond ME, Allison KH, Harvey BE, Mangu PB, Bartlett JMS, Bilous M, Ellis IO, Fitzgibbons P, Hanna W, et al: Human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline focused update. J Clin Oncol. 36:2105–2122. 2018. View Article : Google Scholar : PubMed/NCBI

37 

Hammond MEH, Hayes DF, Dowsett M, Allred DC, Hagerty KL, Badve S, Fitzgibbons PL, Francis G, Goldstein NS, Hayes M, et al: American society of clinical oncology/college of american pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J Clin Oncol. 28:2784–2795. 2010. View Article : Google Scholar : PubMed/NCBI

38 

Akshata Desai KA: Triple Negative Breast Cancer-An Overview. Hereditary Genetics. 2012. View Article : Google Scholar

39 

Millikan RC, Newman B, Tse CK, Moorman PG, Conway K, Dressler LG, Smith LV, Labbok MH, Geradts J, Bensen JT, et al: Epidemiology of basal-like breast cancer. Breast Cancer Res Treat. 109:123–139. 2008. View Article : Google Scholar : PubMed/NCBI

40 

Gonzalez-Angulo AM, Timms KM, Liu S, Chen H, Litton JK, Potter J, Lanchbury JS, Stemke-Hale K, Hennessy BT, Arun BK, et al: Incidence and outcome of BRCA mutations in unselected patients with triple receptor-negative breast cancer. Clin Cancer Res. 17:1082–1089. 2011. View Article : Google Scholar : PubMed/NCBI

41 

Zhou Y, Tao L, Qiu J, Xu J, Yang X, Zhang Y, Tian X, Guan X, Cen X and Zhao Y: Tumor biomarkers for diagnosis, prognosis and targeted therapy. Signal Transduct Target Ther. 9:1322024. View Article : Google Scholar : PubMed/NCBI

42 

da Silva JL, Nunes NC, Izetti P, de Mesquita GG and de Melo AC: Triple negative breast cancer: A thorough review of biomarkers. Crit Rev Oncol Hematol. 145:1028552020. View Article : Google Scholar : PubMed/NCBI

43 

Yadav BS, Chanana P and Jhamb S: Biomarkers in triple negative breast cancer: A review. World J Clin Oncol. 6:252–263. 2015. View Article : Google Scholar : PubMed/NCBI

44 

Bai X, Ni J, Beretov J, Graham P and Li Y: Immunotherapy for triple-negative breast cancer: A molecular insight into the microenvironment, treatment, and resistance. J Natl Cancer Cent. 1:75–87. 2021.PubMed/NCBI

45 

Anayyat U, Ahad F, Muluh TA, Zaidi SAA, Usmani F, Yang H, Li M, Hassan HA and Wang X: Immunotherapy: Constructive approach for breast cancer treatment. Breast Cancer (Dove Med Press). 15:925–951. 2023.PubMed/NCBI

46 

Dvir K, Giordano S and Leone JP: Immunotherapy in breast cancer. Int J Mol Sci. 25:75172024. View Article : Google Scholar : PubMed/NCBI

47 

da Cunha BR, Domingos C, Stefanini AC, Henrique T, Polachini GM, Castelo-Branco P and Tajara EH: Cellular interactions in the tumor microenvironment: The role of secretome. J Cancer. 10:4574–4587. 2019. View Article : Google Scholar : PubMed/NCBI

48 

O'Sullivan T, Saddawi-Konefka R, Vermi W, Koebel WV, Arthur C, White JM, Uppaluri R, Andrews DM, Ngiow SF, Teng MW, et al: Cancer immunoediting by the innate immune system in the absence of adaptive immunity. J Exp Med. 209:1869–1882. 2012. View Article : Google Scholar : PubMed/NCBI

49 

Chiu PPL, Ivakine E, Mortin-Toth S and Danska JS: Susceptibility to lymphoid neoplasia in immunodeficient strains of nonobese diabetic mice. Cancer Res. 62:5828–5834. 2002.PubMed/NCBI

50 

Dunn GP, Old LJ and Schreiber RD: The immunobiology of cancer immunosurveillance and immunoediting. Immunity. 21:137–148. 2004. View Article : Google Scholar : PubMed/NCBI

51 

Muenst S, Läubli H, Soysal SD, Zippelius A, Tzankov A and Hoeller S: The immune system and cancer evasion strategies: Therapeutic concepts. J Intern Med. 279:541–562. 2016. View Article : Google Scholar : PubMed/NCBI

52 

Mittal D, Gubin MM, Schreiber RD and Smyth MJ: New insights into cancer immunoediting and its three component phases-elimination, equilibrium and escape. Curr Opin Immunol. 27:16–25. 2014. View Article : Google Scholar : PubMed/NCBI

53 

Palucka K and Banchereau J: Cancer immunotherapy via dendritic cells. Nat Rev Cancer. 12:265–277. 2012. View Article : Google Scholar : PubMed/NCBI

54 

Janssen EM, Lemmens EE, Wolfe T, Christen U, von Herrath MG and Schoenberger SP: CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature. 421:852–856. 2003. View Article : Google Scholar : PubMed/NCBI

55 

Catalán E, Charni S, Jaime P, Aguiló JI, Enríquez JA, Naval J, Pardo J, Villalba M and Anel A: MHC-I modulation due to changes in tumor cell metabolism regulates tumor sensitivity to CTL and NK cells. Oncoimmunology. 4:e9859242015. View Article : Google Scholar : PubMed/NCBI

56 

Hori S, Nomura T and Sakaguchi S: Control of regulatory T cell development by the transcription factor Foxp3. Science. 299:1057–1061. 2003. View Article : Google Scholar : PubMed/NCBI

57 

Sakaguchi S, Miyara M, Costantino CM and Hafler DA: FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol. 10:490–500. 2010. View Article : Google Scholar : PubMed/NCBI

58 

Mc Neil V and Lee SW: Advancing cancer treatment: A review of immune checkpoint inhibitors and combination strategies. Cancers (Basel). 17:14082025. View Article : Google Scholar : PubMed/NCBI

59 

Cortes J, Cescon DW, Rugo HS, Nowecki Z, Im SA, Yusof MM, Gallardo C, Lipatov O, Barrios CH, Holgado E, et al: Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer (KEYNOTE-355): A randomised, placebo-controlled, double-blind, phase 3 clinical trial. Lancet. 396:1817–1828. 2020. View Article : Google Scholar : PubMed/NCBI

60 

Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, et al: Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 363:711–723. 2010. View Article : Google Scholar : PubMed/NCBI

61 

Zhang Z, Huang Q, Yu L, Zhu D, Li Y, Xue Z, Hua Z, Luo X, Song Z, Lu C, et al: The role of miRNA in tumor immune escape and mirna-based therapeutic strategies. Front Immunol. 12:8078952022. View Article : Google Scholar : PubMed/NCBI

62 

Tang WW, Battistone B, Bauer KM, Weis AM, Barba C, Fadlullah MZH, Ghazaryan A, Tran VB, Lee SH, Agir ZB, et al: A microRNA-regulated transcriptional state defines intratumoral CD8+ T cells that respond to immunotherapy. Cell Rep. 44:1153012025. View Article : Google Scholar : PubMed/NCBI

63 

Sharma S, Opyrchal M and Lu X: Harnessing tumorous flaws for immune supremacy: Is miRNA-155 the weak link in breast cancer progression? J Clin Invest. 132:e1630102022. View Article : Google Scholar : PubMed/NCBI

64 

Wang M, Yin B, Wang HY and Wang RF: Current advances in T-cell-based cancer immunotherapy. Immunotherapy. 6:1265–1278. 2014. View Article : Google Scholar : PubMed/NCBI

65 

Chen L and Flies DB: Molecular mechanisms of T cell co-stimulation and co-inhibition. Na Rev Immunol. 13:227–242. 2013. View Article : Google Scholar : PubMed/NCBI

66 

Naidoo J, Page DB, Li BT, Connell LC, Schindler K, Lacouture ME, Postow MA and Wolchok JD: Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann Oncol. 26:2375–2391. 2015. View Article : Google Scholar : PubMed/NCBI

67 

Brahmer JR, Tykodi SS, Chow LQM, Hwu WJ, Topalian SL, Hwu P, Drake CG, Camacho LH, Kauh J, Odunsi K, et al: Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 366:2455–2465. 2012. View Article : Google Scholar : PubMed/NCBI

68 

Shevach EM: Application of IL-2 therapy to target T regulatory cell function. Trends Immunol. 33:626–632. 2012. View Article : Google Scholar : PubMed/NCBI

69 

Wang HY and Wang RF: Regulatory T cells and cancer. Curr Opin Immunol. 19:217–223. 2007. View Article : Google Scholar : PubMed/NCBI

70 

Salgado R, Denkert C, Demaria S, Sirtaine N, Klauschen F, Pruneri G, Wienert S, Van den Eynden G, Baehner FL, Penault-Llorca F, et al: The evaluation of tumor-infiltrating lymphocytes (TILS) in breast cancer: Recommendations by an international TILS working group 2014. Ann Oncol. 26:259–271. 2015. View Article : Google Scholar : PubMed/NCBI

71 

Mao Y, Qu Q, Chen X, Huang O, Wu J and Shen K: The prognostic value of tumor-infiltrating lymphocytes in breast cancer: A systematic review and meta-analysis. PLoS One. 11:e01525002016. View Article : Google Scholar : PubMed/NCBI

72 

van den Ende NS, Nguyen AH, Jager A, Kok M, Debets R and van Deurzen CHM: Triple-Negative breast cancer and predictive markers of response to neoadjuvant chemotherapy: A systematic review. Int J Mol Sci. 24:29692023. View Article : Google Scholar : PubMed/NCBI

73 

Leon-Ferre RA, Polley MY, Liu H, Gilbert JA, Cafourek V, Hillman DW, Elkhanany A, Akinhanmi M, Lilyquist J, Thomas A, et al: Impact of histopathology, tumor-infiltrating lymphocytes, and adjuvant chemotherapy on prognosis of triple-negative breast cancer. Breast Cancer Res Treat. 167:89–99. 2018. View Article : Google Scholar : PubMed/NCBI

74 

Denkert C, von Minckwitz G, Darb-Esfahani S, Lederer B, Heppner BI, Weber KE, Budczies J, Huober J, Klauschen F, Furlanetto J, et al: Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: A pooled analysis of 3,771 patients treated with neoadjuvant therapy. Lancet Oncol. 19:40–50. 2018. View Article : Google Scholar : PubMed/NCBI

75 

Leon-Ferre RA, Jonas SF, Salgado R, Loi S, de Jong V, Carter JM, Nielsen TO, Leung S, Riaz N, Chia S, et al: Tumor-Infiltrating lymphocytes in triple-negative breast cancer. JAMA. 331:1135–1144. 2024. View Article : Google Scholar : PubMed/NCBI

76 

Tan Q, Yin S, Zhou D, Chi Y, Man X and Li H: Potential predictive and prognostic value of biomarkers related to immune checkpoint inhibitor therapy of triple-negative breast cancer. Front Oncol. 12:7797862022. View Article : Google Scholar : PubMed/NCBI

77 

O'Loughlin M, Andreu X, Bianchi S, Chemielik E, Cordoba A, Cserni G, Figueiredo P, Floris G, Foschini MP, Heikkilä P, et al: Reproducibility and predictive value of scoring stromal tumour infiltrating lymphocytes in triple-negative breast cancer: A multi-institutional study. Breast Cancer Res Treat. 171:1–9. 2018. View Article : Google Scholar : PubMed/NCBI

78 

Stanton SE and Disis ML: Clinical significance of tumor-infiltrating lymphocytes in breast cancer. J Immunother Cancer. 4:592016. View Article : Google Scholar : PubMed/NCBI

79 

Li S, Zhang Y, Zhang P, Xue S, Chen Y, Sun L and Yang R: Predictive and prognostic values of tumor infiltrating lymphocytes in breast cancers treated with neoadjuvant chemotherapy: A meta-analysis. Breast. 66:97–109. 2022. View Article : Google Scholar : PubMed/NCBI

80 

Gao G, Wang Z, Qu X and Zhang Z: Prognostic value of tumor-infiltrating lymphocytes in patients with triple-negative breast cancer: A systematic review and meta-analysis. BMC Cancer. 20:1792020. View Article : Google Scholar : PubMed/NCBI

81 

Valenza C, Salimbeni BT, Santoro C, Trapani D, Antonarelli G and Curigliano G: Tumor infiltrating lymphocytes across breast cancer subtypes: Current issues for biomarker assessment. Cancers (Basel). 15:7672023. View Article : Google Scholar : PubMed/NCBI

82 

Ochi T, Bianchini G, Ando M, Nozaki F, Kobayashi D, Criscitiello C, Curigliano G, Iwamoto T, Niikura N, Takei H, et al: Predictive and prognostic value of stromal tumour-infiltrating lymphocytes before and after neoadjuvant therapy in triple negative and HER2-positive breast cancer. Eur J Cancer. 118:41–48. 2019. View Article : Google Scholar : PubMed/NCBI

83 

Loi S, Michiels S, Salgado R, Sirtaine N, Jose V, Fumagalli D, Kellokumpu-Lehtinen PL, Bono P, Kataja V, Desmedt C, et al: Tumor infiltrating lymphocytes are prognostic in triple negative breast cancer and predictive for trastuzumab benefit in early breast cancer: Results from the FinHER trial. Ann Oncol. 25:1544–1550. 2014. View Article : Google Scholar : PubMed/NCBI

84 

Stanton SE, Adams S and Disis ML: Variation in the incidence and magnitude of tumor-infiltrating lymphocytes in breast cancer subtypes: A systematic review. JAMA Oncol. 2:1354–1360. 2016. View Article : Google Scholar : PubMed/NCBI

85 

Russo L, Maltese A, Betancourt L, Romero G, Cialoni D, De la Fuente L, Gutierrez M, Ruiz A, Agüero E and Hernández S: Locally advanced breast cancer: Tumor-infiltrating lymphocytes as a predictive factor of response to neoadjuvant chemotherapy. Eur J Surg Oncol. 45:963–968. 2019. View Article : Google Scholar : PubMed/NCBI

86 

Liu S, Duan X, Xu L, Xin L, Cheng Y, Liu Q, Ye J, Zhang S, Zhang H, Zhu S, et al: Optimal threshold for stromal tumor-infiltrating lymphocytes: Its predictive and prognostic value in HER2-positive breast cancer treated with trastuzumab-based neoadjuvant chemotherapy. Breast Cancer Res Treat. 154:239–249. 2015. View Article : Google Scholar : PubMed/NCBI

87 

Denkert C, Loibl S, Noske A, Roller M, Müller BM, Komor M, Budczies J, Darb-Esfahani S, Kronenwett R, Hanusch C, et al: Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. J Clin Oncol. 28:105–113. 2010. View Article : Google Scholar : PubMed/NCBI

88 

Dieci MV, Criscitiello C, Goubar A, Viale G, Conte P, Guarneri V, Ficarra G, Mathieu MC, Delaloge S, Curigliano G and Andre F: Prognostic value of tumor-infiltrating lymphocytes on residual disease after primary chemotherapy for triple-negative breast cancer: A retrospective multicenter study. Ann Oncol. 25:611–618. 2014. View Article : Google Scholar : PubMed/NCBI

89 

Yuan Y, Lee JS, Yost SE, Li SM, Frankel PH, Ruel C, Schmolze D, Robinson K, Tang A, Martinez N, et al: Phase II trial of neoadjuvant carboplatin and nab-paclitaxel in patients with triple-negative breast cancer. Oncologist. 26:e382–e393. 2021. View Article : Google Scholar : PubMed/NCBI

90 

Schmidt M, Weyer-Elberich V, Hengstler JG, Heimes AS, Almstedt K, Gerhold-Ay A, Lebrecht A, Battista MJ, Hasenburg A, Sahin U, et al: Prognostic impact of CD4-positive T cell subsets in early breast cancer: A study based on the FinHer trial patient population. Breast Cancer Res. 20:152018. View Article : Google Scholar : PubMed/NCBI

91 

Cerbelli B, Pernazza A, Botticelli A, Fortunato L, Monti M, Sciattella P, Campagna D, Mazzuca F, Mauri M, Naso G, et al: PD-L1 expression in TNBC: A predictive biomarker of response to neoadjuvant chemotherapy? Biomed Res Int. 2017:17509252017. View Article : Google Scholar : PubMed/NCBI

92 

Van Bockstal MR, Noel F, Guiot Y, Duhoux FP, Mazzeo F, Van Marcke C, Fellah L, Ledoux B, Berlière M and Galant C: Predictive markers for pathological complete response after neo-adjuvant chemotherapy in triple-negative breast cancer. Ann Diagn Pathol. 49:1516342020. View Article : Google Scholar : PubMed/NCBI

93 

Floris G, Richard F, Hamy AS, Jongen L, Wildiers H, Ardui J, Punie K, Smeets A, Berteloot P, Vergote I, et al: Body mass index and tumor-infiltrating lymphocytes in triple-negative breast cancer. J Natl Cancer Inst. 113:146–153. 2021. View Article : Google Scholar : PubMed/NCBI

94 

Dieci MV, Tsvetkova V, Griguolo G, Miglietta F, Tasca G, Giorgi CA, Cumerlato E, Massa D, Lo Mele M, Orvieto E, et al: Integration of tumour infiltrating lymphocytes, programmed cell-death ligand-1, CD8 and FOXP3 in prognostic models for triple-negative breast cancer: Analysis of 244 stage I–III patients treated with standard therapy. Eur J Cancer. 136:7–15. 2020. View Article : Google Scholar : PubMed/NCBI

95 

Loi S, Drubay D, Adams S, Pruneri G, Francis PA, Lacroix-Triki M, Joensuu H, Dieci MV, Badve S, Demaria S, et al: Tumor-infiltrating lymphocytes and prognosis: A pooled individual patient analysis of early-stage triple-negative breast cancers. J Clin Oncol. 37:559–569. 2019. View Article : Google Scholar : PubMed/NCBI

96 

Park JH, Jonas SF, Bataillon G, Criscitiello C, Salgado R, Loi S, Viale G, Lee HJ, Dieci MV, Kim SB, et al: Prognostic value of tumor-infiltrating lymphocytes in patients with early-stage triple-negative breast cancers (TNBC) who did not receive adjuvant chemotherapy. Ann Oncol. 30:1941–1949. 2019. View Article : Google Scholar : PubMed/NCBI

97 

TILs in Breast Cancer. International Immuno-Oncology Biomarker Working Group on Breast Cancer [Internet], . [cited 2025 Jul 7]. Available from. https://www.tilsinbreastcancer.org

98 

Laenkholm AV, Callagy G, Balancin M, Bartlett JMS, Sotiriou C, Marchio C, Kok M, Dos Anjos CH and Salgado R: Incorporation of TILs in daily breast cancer care: How much evidence can we bear? Virchows Arch. 480:147–162. 2022. View Article : Google Scholar : PubMed/NCBI

99 

Loi S, Michiels S, Adams S, Loibl S, Budczies J, Denkert C and Salgado R: The journey of tumor-infiltrating lymphocytes as a biomarker in breast cancer: Clinical utility in an era of checkpoint inhibition. Ann Oncol. 32:1236–1244. 2021. View Article : Google Scholar : PubMed/NCBI

100 

Lovat F, Valeri N and Croce CM: MicroRNAs in the pathogenesis of cancer. Semin Oncol. 38:724–733. 2011. View Article : Google Scholar : PubMed/NCBI

101 

Carthew RW and Sontheimer EJ: Origins and mechanisms of miRNAs and siRNAs. Cell. 136:642–655. 2009. View Article : Google Scholar : PubMed/NCBI

102 

Ha M and Kim VN: Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 15:509–524. 2014. View Article : Google Scholar : PubMed/NCBI

103 

Titze-de-Almeida R and Titze-de-Almeida SS: miR-7 replacement therapy in Parkinson's disease. Curr Gene Ther. 18:143–153. 2018. View Article : Google Scholar : PubMed/NCBI

104 

Fareh M, Yeom KH, Haagsma AC, Chauhan S, Heo I and Joo C: TRBP ensures efficient Dicer processing of precursor microRNA in RNA-crowded environments. Nat Commun. 7:136942016. View Article : Google Scholar : PubMed/NCBI

105 

Mashima R: Physiological roles of miR-155. Immunology. 145:323–333. 2015. View Article : Google Scholar : PubMed/NCBI

106 

Bartel DP: MicroRNAs: Genomics, biogenesis, mechanism, and function review. Cell. 116:281–297. 2004. View Article : Google Scholar : PubMed/NCBI

107 

Shang R, Lee S, Senavirathne G and Lai EC: microRNAs in action: Biogenesis, function and regulation. Nat Rev Genet. 24:816–833. 2023. View Article : Google Scholar : PubMed/NCBI

108 

Rupaimoole R, Calin GA, Lopez-Berestein G and Sood AK: miRNA deregulation in cancer cells and the tumor microenvironment. Cancer Discov. 6:235–246. 2016. View Article : Google Scholar : PubMed/NCBI

109 

Roberts JT and Borchert GM: Computational prediction of microRNA target genes, target prediction databases, and web resources. Methods Mol Biol. 1617:109–122. 2017. View Article : Google Scholar : PubMed/NCBI

110 

Kariuki D, Asam K, Aouizerat BE, Lewis KA, Florez JC and Flowers E: Review of databases for experimentally validated human microRNA-mRNA interactions. Database (Oxford). 25:baad0142023. View Article : Google Scholar

111 

Griffiths-Jones S: The microRNA registry. Nucleic Acids Res. 32:D109–D111. 2004. View Article : Google Scholar : PubMed/NCBI

112 

Nair VS, Maeda LS and Ioannidis JPA: Clinical outcome prediction by MicroRNAs in human cancer: A systematic review. J Natl Cancer Inst. 104:528–540. 2012. View Article : Google Scholar : PubMed/NCBI

113 

Verret B, Bottosso M, Hervais S and Pistilli B: The molecular predictive and prognostic biomarkers in metastatic breast cancer: The contribution of molecular profiling. Cancers (Basel). 14:42032022. View Article : Google Scholar : PubMed/NCBI

114 

Koncina E, Haan S, Rauh S and Letellier E: Prognostic and predictive molecular biomarkers for colorectal cancer: Updates and challenges. Cancers (Basel). 12:3192020. View Article : Google Scholar : PubMed/NCBI

115 

Chang JTH, Wang F, Chapin W and Huang RS: Identification of MicroRNAs as breast cancer prognosis markers through the cancer genome atlas. PLoS One. 11:e01682842016. View Article : Google Scholar : PubMed/NCBI

116 

van Schooneveld E, Wouters MCA, Van der Auwera I, Peeters DJ, Wildiers H, Van Dam PA, Vergote I, Vermeulen PB, Dirix LY and Van Laere SJ: Expression profiling of cancerous and normal breast tissues identifies microRNAs that are differentially expressed in serum from patients with (metastatic) breast cancer and healthy volunteers. Breast Cancer Res. 14:R342012. View Article : Google Scholar : PubMed/NCBI

117 

Feliciano A, González L, Garcia-Mayea Y, Mir C, Artola M, Barragán N, Martín R, Altés A, Castellvi J, Benavente S, et al: Five microRNAs in serum are able to differentiate breast cancer patients from healthy individuals. Front Oncol. 10:5862682020. View Article : Google Scholar : PubMed/NCBI

118 

Mihai AM, Ianculescu LM and Suciu N: MiRNAs as potential biomarkers in early breast cancer detection: A systematic review. J Med Life. 17:549–554. 2024. View Article : Google Scholar : PubMed/NCBI

119 

Fu SW, Lee W, Coffey C, Lean A, Wu X, Tan X, Man YG and Brem RF: miRNAs as potential biomarkers in early breast cancer detection following mammography. Cell Biosci. 6:62016. View Article : Google Scholar : PubMed/NCBI

120 

Hanahan D and Weinberg RA: The hallmarks of cancer. Cell. 100:57–70. 2000. View Article : Google Scholar : PubMed/NCBI

121 

Medarova Z, Pantazopoulos P and Yoo B: Screening of potential miRNA therapeutics for the prevention of multi-drug resistance in cancer cells. Sci Rep. 10:19702020. View Article : Google Scholar : PubMed/NCBI

122 

Navarro A, Marrades RM, Viñolas N, Quera A, Agustí C, Huerta A, Ramirez J, Torres A and Monzo M: MicroRNAs expressed during lung cancer development are expressed in human pseudoglandular lung embryogenesis. Oncology. 76:162–169. 2009. View Article : Google Scholar : PubMed/NCBI

123 

Singh R, Ha SE, Yu TY and Ro S: Dual roles of miR-10a-5p and miR-10b-5p as tumor suppressors and oncogenes in diverse cancers. Int J Mol Sci. 26:4152025. View Article : Google Scholar : PubMed/NCBI

124 

Webster RJ, Giles KM, Price KJ, Zhang PM, Mattick JS and Leedman PJ: Regulation of epidermal growth factor receptor signaling in human cancer cells by MicroRNA-7. J Biol Chem. 284:5731–5741. 2009. View Article : Google Scholar : PubMed/NCBI

125 

Castañeda CA, Agullo-Ortuño MT, Vara JA, Cortes-Funes H, Gomez HL and Ciruelos E: Implication of miRNA in the diagnosis and treatment of breast cancer. Expert Rev Anticancer Ther. 11:1265–1275. 2011. View Article : Google Scholar : PubMed/NCBI

126 

Baylie T, Kasaw M, Getinet M, Getie G, Jemal M, Nigatu A, Ahmed H and Bogale M: The role of miRNAs as biomarkers in breast cancer. Front Oncol. 14:13748212024. View Article : Google Scholar : PubMed/NCBI

127 

Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, et al: MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 65:7065–7070. 2005. View Article : Google Scholar : PubMed/NCBI

128 

Yan LX, Huang XF, Shao Q, Huang MY, Deng L, Wu QL, Zeng YX and Shao JY: MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA. 14:2348–2360. 2008. View Article : Google Scholar : PubMed/NCBI

129 

Li S, Yang X, Yang J, Zhen J and Zhang D: Serum microRNA-21 as a potential diagnostic biomarker for breast cancer: A systematic review and meta-analysis. Clin Exp Med. 16:29–35.. 2016. View Article : Google Scholar : PubMed/NCBI

130 

Syed RU, Banu H, Alshammrani A, Alshammari MD, G SK, Kadimpati KK, Khalifa AAS, Aboshouk NAM, Almarir AM, Hussain A and Alahmed FK: MicroRNA-21 (miR-21) in breast cancer: From apoptosis dysregulation to therapeutic opportunities. Pathol Res Pract. 262:1555722024. View Article : Google Scholar : PubMed/NCBI

131 

Qian B, Katsaros D, Lu L, Preti M, Durando A, Arisio R, Mu L and Yu H: High miR-21 expression in breast cancer associated with poor disease-free survival in early stage disease and high TGF-β1. Breast Cancer Res Treat. 117:131–140. 2009. View Article : Google Scholar : PubMed/NCBI

132 

Wang Y, Zhang Y, Pan C, Ma F and Zhang S: Prediction of poor prognosis in breast cancer patients based on MicroRNA-21 expression: A meta-analysis. PLoS One. 10:e01186472015. View Article : Google Scholar : PubMed/NCBI

133 

Bertoli G, Cava C and Castiglioni I: Micrornas: New biomarkers for diagnosis, prognosis, therapy prediction and therapeutic tools for breast cancer. Theranostics. 5:1122–1143. 2015. View Article : Google Scholar : PubMed/NCBI

134 

Romero-Cordoba S, Rodriguez-Cuevas S, Rebollar-Vega R, Bautista-Pina V, Maffuz-Aziz A, Tagliabue E, Iorio M, D'Ippolito E, Baroni S, Plantamura I and Hidalgo-Miranda A: A microRNA signature identifies subtypes of triple-negative breast cancer and reveals miR-342-3p as regulator of a lactate metabolic pathway through silencing monocarboxylate transporter 1. Cancer Res. 76:A472016. View Article : Google Scholar

135 

Tariq M, Richard V and Kerin MJ: MicroRNAs as molecular biomarkers for the characterization of basal-like breast tumor subtype. Biomedicines. 11:30072023. View Article : Google Scholar : PubMed/NCBI

136 

Blenkiron C, Goldstein LD, Thorne NP, Spiteri I, Chin SF, Dunning MJ, Barbosa-Morais NL, Teschendorff AE, Green AR, Ellis IO, et al: MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol. 8:R2142007. View Article : Google Scholar : PubMed/NCBI

137 

Kalkusova K, Taborska P, Stakheev D and Smrz D: The role of miR-155 in antitumor immunity. Cancers (Basel). 14:54142022. View Article : Google Scholar : PubMed/NCBI

138 

Mahesh G and Biswas R: MicroRNA-155: A master regulator of inflammation. J Interferon Cytokine Res. 39:321–330. 2019. View Article : Google Scholar : PubMed/NCBI

139 

Cui B, Chen L, Zhang S, Mraz M, Fecteau JF, Yu J, Ghia EM, Zhang L, Bao L, Rassenti LZ, et al: Micro RNA-155 influences B-cell receptor signaling and associates with aggressive disease in chronic lymphocytic leukemia. Blood. 124:546–554. 2014. View Article : Google Scholar : PubMed/NCBI

140 

Rai KR, Liao Y, Cai M, Qiu H, Wen F, Peng M, Wang S, Liu S, Guo G, Chi X, et al: MIR155HG plays a bivalent role in regulating innate antiviral immunity by encoding long noncoding RNA-155 and microRNA-155-5p. mBio. 13:e02510222022. View Article : Google Scholar : PubMed/NCBI

141 

Dawson O and Piccinini AM: miR-155-3p: Processing by-product or rising star in immunity and cancer? Open Biol. 12:2200702022. View Article : Google Scholar : PubMed/NCBI

142 

Bayraktar R and Van Roosbroeck K: miR-155 in cancer drug resistance and as target for miRNA-based therapeutics. Cancer Metastasis Rev. 37:33–44. 2018. View Article : Google Scholar : PubMed/NCBI

143 

Zhou H, Huang X, Cui H, Luo X, Tang Y, Chen S, Wu L and Shen N: miR-155 and its star-form partner miR-155* cooperatively regulate type I interferon production by human plasmacytoid dendritic cells. Blood. 116:5885–5894. 2010. View Article : Google Scholar : PubMed/NCBI

144 

Pasculli B, Barbano R, Fontana A, Biagini T, Di Viesti MP, Rendina M, Valori VM, Morritti M, Bravaccini S, Ravaioli S, et al: Hsa-miR-155-5p up-regulation in breast cancer and its relevance for treatment with poly[ADP-Ribose] polymerase 1 (PARP-1) inhibitors. Front Oncol. 10:14152020. View Article : Google Scholar : PubMed/NCBI

145 

Kang Y, Cao X, Fan Y, Li Y, Xu T, Zhou Q and He B: Exosome biomarkers in breast cancer: Systematic review and meta-analysis. Clin Chim Acta. 574:1203422025. View Article : Google Scholar : PubMed/NCBI

146 

Degheidy MS, Abou-Elalla AA, Kamel MM, Abdel-Ghany S, Arneth B and Sabit H: Regulatory roles of miR-155-5p, miR-21-5p, miR-93-5p, and miR-140-5p in breast cancer progression. Curr Issues Mol Biol. 47:3772025. View Article : Google Scholar : PubMed/NCBI

147 

Grimaldi AM, Nuzzo S, Condorelli G, Salvatore M and Incoronato M: Prognostic and clinicopathological significance of MiR-155 in breast cancer: A systematic review. Int J Mol Sci. 21:58342020. View Article : Google Scholar : PubMed/NCBI

148 

Wang F, Wang J, Zhang H, Fu B, Zhang Y, Jia Q and Wang Y: Diagnostic value of circulating miR-155 for breast cancer: A meta-analysis. Front Oncol. 14:13746742024. View Article : Google Scholar : PubMed/NCBI

149 

Tili E, Croce CM and Michaille JJ: miR-155 : On the crosstalk between inflammation and cancer. Int Rev Immunol. 28:264–284. 2009. View Article : Google Scholar : PubMed/NCBI

150 

Sun R, Kong X, Qiu X, Huang C and Wong PP: the emerging roles of pericytes in modulating tumor microenvironment. Front Cell Dev Biol. 9:6763422021. View Article : Google Scholar : PubMed/NCBI

151 

Anwar SL, Tanjung DS, Fitria MS, Kartika AI, Sari DNI, Rakhmina D, Wardana T, Astuti I, Haryana SM and Aryandono T: Dynamic changes of circulating Mir-155 expression and the potential application as a non-invasive biomarker in breast cancer. Asian Pac J Cancer Prev. 21:491–497. 2020. View Article : Google Scholar : PubMed/NCBI

152 

Bašová P, Pešta M, Sochor M and Stopka T: Prediction potential of serum miR-155 and miR-24 for relapsing early breast cancer. Int J Mol Sci. 18:21162017. View Article : Google Scholar : PubMed/NCBI

153 

Zhang Z, Zhang L, Yu G, Sun Z, Wang T, Tian X, Duan X and Zhang C: Exosomal miR-1246 and miR-155 as predictive and prognostic biomarkers for trastuzumab-based therapy resistance in HER2-positive breast cancer. Cancer Chemother Pharmacol. 86:761–772. 2020. View Article : Google Scholar : PubMed/NCBI

154 

Thomopoulou K, Papadaki C, Monastirioti A, Koronakis G, Mala A, Kalapanida D, Mavroudis D and Agelaki S: MicroRNAs regulating tumor immune response in the prediction of the outcome in patients with breast cancer. Front Mol Biosci. 8:6685342021. View Article : Google Scholar : PubMed/NCBI

155 

Schwarzenbach H, Hoon DSB and Pantel K: Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer. 11:426–437. 2011. View Article : Google Scholar : PubMed/NCBI

156 

kia V, Paryan M, Mortazavi Y, Biglari A and Mohammadi-Yeganeh S: Evaluation of exosomal miR-9 and miR-155 targeting PTEN and DUSP14 in highly metastatic breast cancer and their effect on low metastatic cells. J Cell Biochem. 120:5666–5676. 2019. View Article : Google Scholar : PubMed/NCBI

157 

Santos JC, da Silva Lima N, Sarian LO, Matheu A, Ribeiro ML and Derchain SFM: Exosome-mediated breast cancer chemoresistance via miR-155 transfer. Sci Rep. 8:8292018. View Article : Google Scholar : PubMed/NCBI

158 

Liu F, Kong X, Lv L and Gao J: TGF-β1 acts through miR-155 to down-regulate TP53INP1 in promoting epithelial-mesenchymal transition and cancer stem cell phenotypes. Cancer Lett. 359:288–298. 2015. View Article : Google Scholar : PubMed/NCBI

159 

Khalighfard S, Alizadeh AM, Irani S and Omranipour R: Plasma miR-21, miR-155, miR-10b, and Let-7a as the potential biomarkers for the monitoring of breast cancer patients. Sci Rep. 8:179812018. View Article : Google Scholar : PubMed/NCBI

160 

Huffaker TB, Lee SH, Tang WW, Wallace JA, Alexander M, Runtsch MC, Larsen DK, Thompson J, Ramstead AG, Voth WP, et al: Antitumor immunity is defective in T cell-specific microRNA-155- deficient mice and is rescued by immune checkpoint blockade. J Biol Chem. 292:18530–18541. 2017. View Article : Google Scholar : PubMed/NCBI

161 

Volovat SR, Volovat C, Hordila I, Hordila DA, Mirestean CC, Miron OT, Lungulescu C, Scripcariu DV, Stolniceanu CR, Konsoulova-Kirova AA, et al: MiRNA and LncRNA as potential biomarkers in triple-negative breast cancer: A review. Front Oncol. 10:5268502020. View Article : Google Scholar : PubMed/NCBI

162 

Andrade F, Nakata A, Gotoh N and Fujita A: Large miRNA survival analysis reveals a prognostic four-biomarker signature for triple negative breast cancer. Genet Mol Biol. 43:e201802692020. View Article : Google Scholar : PubMed/NCBI

163 

Santana TABDS, de Oliveira Passamai L, de Miranda FS, Borin TF, Borges GF, Luiz WB and Campos LCG: The role of miRNAs in the prognosis of triple-negative breast cancer: A systematic review and meta-analysis. Diagnostics (Basel). 13:1272023. View Article : Google Scholar

164 

Ibrahim E, Diab E, Hayek R, Hoyek K and Kourie H: Triple-negative breast cancer: Tumor immunogenicity and beyond. Int J Breast Cancer. 4:20979202024. View Article : Google Scholar : PubMed/NCBI

165 

Muljo SA, Ansel KM, Kanellopoulou C, Livingston DM, Rao A and Rajewsky K: Aberrant T cell differentiation in the absence of Dicer. J Exp Med. 202:261–269. 2005. View Article : Google Scholar : PubMed/NCBI

166 

Mi QS, Wang J, Liu Q, Wu X and Zhou L: microRNA dynamic expression regulates invariant NKT cells. Cell Mol Life Sci. 78:6003–6015. 2021. View Article : Google Scholar : PubMed/NCBI

167 

Yao R, Ma YL, Liang W, Li HH, Ma ZJ, Yu X and Liao YH: MicroRNA-155 modulates treg and Th17 cells differentiation and Th17 cell function by targeting SOCS1. PLoS One. 7:e460822012. View Article : Google Scholar : PubMed/NCBI

168 

Touchaei AZ and Vahidi S: Unraveling the interplay of CD8 + T cells and microRNA signaling in cancer: Implications for immune dysfunction and therapeutic approaches. J Transl Med. 22:11312024. View Article : Google Scholar : PubMed/NCBI

169 

Liau NPD, Laktyushin A, Lucet IS, Murphy JM, Yao S, Whitlock E, Callaghan K, Nicola NA, Kershaw NJ and Babon JJ: The molecular basis of JAK/STAT inhibition by SOCS1. Nat Commun. 9:15582018. View Article : Google Scholar : PubMed/NCBI

170 

Alexander WS, Starr R, Fenner JE, Scott CL, Handman E, Sprigg NS, Corbin JE, Cornish AL, Darwiche R, Owczarek CM, et al: SOCS1 is a critical inhibitor of interferon γ signaling and prevents the potentially fatal neonatal actions of this cytokine. Cell. 98:597–608. 1999. View Article : Google Scholar : PubMed/NCBI

171 

Davey GM, Starr R, Cornish AL, Burghardt JT, Alexander WS, Carbone FR, Surh CD and Heath WR: SOCS-1 regulates IL-15-driven homeostatic proliferation of antigen-naive CD8 T cells, limiting their autoimmune potential. J Exp Med. 202:1099–1108. 2005. View Article : Google Scholar : PubMed/NCBI

172 

Fujitake S, Hibi K, Okochi O, Kodera Y, Ito K, Akiyama S and Nakao A: Aberrant methylation of SOCS-1 was observed in younger colorectal cancer patients. J Gastroenterol. 39:120–124. 2004. View Article : Google Scholar : PubMed/NCBI

173 

Fukushima N, Sato N, Sahin F, Su GH, Hruban RH and Goggins M: Aberrant methylation of suppressor of cytokine signalling-1 (SOCS-1) gene in pancreatic ductal neoplasms. Br J Cancer. 89:338–343. 2003. View Article : Google Scholar : PubMed/NCBI

174 

Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA and Kinzler KW: Cancer genome landscapes. Science. 340:1546–1558. 2013. View Article : Google Scholar : PubMed/NCBI

175 

Zonari E, Pucci F, Saini M, Mazzieri R, Politi LS, Gentner B and Naldini L: A role for miR-155 in enabling tumor-infiltrating innate immune cells to mount effective antitumor responses in mice. Blood. 122:243–252. 2013. View Article : Google Scholar : PubMed/NCBI

176 

Yu J, Mei J, Zuo D, Zhang M, Yu S, Li F, Wang J, Bi D, Ma S, Wang J and Yin ZJ: Inflammatory factor-mediated miR-155/SOCS1 signaling axis leads to Treg impairment in systemic lupus erythematosus. Int Immunopharmacol. 141:1130132024. View Article : Google Scholar : PubMed/NCBI

177 

Marson A, Kretschmer K, Frampton GM, Jacobsen ES, Polansky JK, MacIsaac KD, Levine SS, Fraenkel E, von Boehmer H and Young RA: Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature. 445:931–935. 2007. View Article : Google Scholar : PubMed/NCBI

178 

Piña-Sánchez P, Valdez-Salazar HA and Ruiz-Tachiquín ME: Circulating microRNAs and their role in the immune response in triple-negative breast cancer. Oncol Lett. 20:2242020. View Article : Google Scholar : PubMed/NCBI

179 

Vaxevanis CK, Friedrich M, Tretbar SU, Handke D, Wang Y, Blümke J, Dummer R, Massa C and Seliger B: Identification and characterization of novel CD274 (PD-L1) regulating microRNAs and their functional relevance in melanoma. Clin Transl Med. 12:e9342022. View Article : Google Scholar : PubMed/NCBI

180 

Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJM, Robert L, Chmielowski B, Spasic M, Henry G, Ciobanu V, et al: PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 515:568–571. 2014. View Article : Google Scholar : PubMed/NCBI

181 

Eichmüller SB, Osen W, Mandelboim O and Seliger B: Immune modulatory microRNAs involved in tumor attack and tumor immune escape. J Natl Cancer Inst. 109:doi: 10.1093/jnci/djx03. 2017. View Article : Google Scholar : PubMed/NCBI

182 

Manore SG, Doheny DL, Wong GL and Lo HW: IL-6/JAK/stat3 signaling in breast cancer metastasis: Biology and treatment. Front Oncol. 12:8660142022. View Article : Google Scholar : PubMed/NCBI

183 

Gyamfi J, Lee YH, Eom M and Choi J: Interleukin-6/STAT3 signalling regulates adipocyte induced epithelial-mesenchymal transition in breast cancer cells. Sci Rep. 8:88592018. View Article : Google Scholar : PubMed/NCBI

184 

Taghikhani A, Hassan ZM, Ebrahimi M and Moazzeni SM: microRNA modified tumor-derived exosomes as novel tools for maturation of dendritic cells. J Cell Physiol. 234:9417–9427. 2019. View Article : Google Scholar : PubMed/NCBI

185 

Yang P, Cao X, Cai H, Chen X, Zhu Y, Yang Y, An W and Jie J: Upregulation of microRNA-155 enhanced migration and function of dendritic cells in three-dimensional breast cancer microenvironment. Immunol Invest. 50:1058–1071. 2021. View Article : Google Scholar : PubMed/NCBI

186 

Kordaß T, Chao TY, Osen W and Eichmüller SB: Novel microRNAs modulating ecto-5′-nucleotidase expression. Front Immunol. 14:11993742023. View Article : Google Scholar : PubMed/NCBI

187 

Hering C and Conover GM: Advancing ischemic stroke prognosis: Key role of MIR-155 non-coding RNA. Int J Mol Sci. 26:39472025. View Article : Google Scholar : PubMed/NCBI

188 

Qattan A: Genomic alterations affecting competitive endogenous RNAs (ceRNAs) and regulatory networks (ceRNETs) with clinical implications in triple-negative breast cancer (TNBC). Int J Mol Sci. 25:26242024. View Article : Google Scholar : PubMed/NCBI

189 

Wilson TR, Udyavar AR, Chang CW, Spoerke JM, Aimi J, Savage HM, Daemen A, O'Shaughnessy JA, Bourgon R and Lackner MR: Genomic alterations associated with recurrence and TNBC subtype in high-risk early breast cancers. Mol Cancer Res. 17:97–108. 2019. View Article : Google Scholar : PubMed/NCBI

190 

Skourti E, Volpe A, Lang C, Johnson P, Panagaki F and Fruhwirth GO: Spatiotemporal quantitative microRNA-155 imaging reports immune-mediated changes in a triple-negative breast cancer model. Front Immunol. 14:11802332023. View Article : Google Scholar : PubMed/NCBI

191 

Duan Q, Zhang H, Zheng J and Zhang L: Turning cold into hot: Firing up the tumor microenvironment. Trends Cancer. 6:605–618. 2020. View Article : Google Scholar : PubMed/NCBI

192 

Galon J and Bruni D: Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat Rev Drug Discov. 18:197–218. 2019. View Article : Google Scholar : PubMed/NCBI

193 

Chen Y, Gao DY and Huang L: In vivo delivery of miRNAs for cancer therapy: Challenges and strategies. Adv Drug Deliv Rev. 81:128–141. 2015. View Article : Google Scholar : PubMed/NCBI

194 

Haussecker D: Current issues of RNAi therapeutics delivery and development. J Control Release. 195:49–54. 2014. View Article : Google Scholar : PubMed/NCBI

195 

Whitehead KA, Langer R and Anderson DG: Knocking down barriers: Advances in siRNA delivery. Nat Rev Drug Discov. 8:129–138. 2009. View Article : Google Scholar : PubMed/NCBI

196 

Zhao J and Feng SS: Nanocarriers for delivery of siRNA and co-delivery of siRNA and other therapeutic agents. Nanomedicine (Lond). 10:2199–2228. 2015. View Article : Google Scholar : PubMed/NCBI

197 

Pagoni M, Cava C, Sideris DC, Avgeris M, Zoumpourlis V, Michalopoulos I and Drakoulis N: miRNA-Based technologies in cancer therapy. J Pers Med. 13:15862023. View Article : Google Scholar : PubMed/NCBI

198 

El Sayed SR, Cristante J, Guyon L, Denis J, Chabre O and Cherradi N: Microrna therapeutics in cancer: Current advances and challenges. Cancers (Basel). 29:26802021. View Article : Google Scholar

199 

Dasgupta I and Chatterjee A: Recent advances in miRNA delivery systems. Methods Protoc. 4:102021. View Article : Google Scholar : PubMed/NCBI

200 

Serpico D, Molino L and Di Cosimo S: MicroRNAs in breast cancer development and treatment. Cancer Treat Rev. 40:595–604. 2014. View Article : Google Scholar : PubMed/NCBI

201 

De Planell-Saguer M and Rodicio MC: Analytical aspects of microRNA in diagnostics: A review. Anal Chim Acta. 699:134–152. 2011. View Article : Google Scholar : PubMed/NCBI

202 

Reid G, Kirschner MB and van Zandwijk N: Circulating microRNAs: Association with disease and potential use as biomarkers. Crit Rev Oncol Hematol. 80:193–208. 2011. View Article : Google Scholar : PubMed/NCBI

203 

Zou R, Loke SY, Tang YC, Too HP, Zhou L, Lee ASG and Hartman M: Development and validation of a circulating microRNA panel for the early detection of breast cancer. Br J Cancer. 126:472–481. 2022. View Article : Google Scholar : PubMed/NCBI

204 

Ho PTB, Clark IM and Le LTT: MicroRNA-based diagnosis and therapy. Int J Mol Sci. 23:71672022. View Article : Google Scholar : PubMed/NCBI

205 

Kim T and Croce CM: MicroRNA: Trends in clinical trials of cancer diagnosis and therapy strategies. Exp Mol Med. 55:1314–132. 2023. View Article : Google Scholar : PubMed/NCBI

206 

Calin GA and Croce CM: MicroRNA signatures in human cancers. Nat Rev Cancer. 6:857–866. 2006. View Article : Google Scholar : PubMed/NCBI

207 

Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O'Briant KC, Allen A, et al: Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA. 105:10513–10518. 2008. View Article : Google Scholar : PubMed/NCBI

208 

Pruneri G, Gray KP, Vingiani A, Viale G, Curigliano G, Criscitiello C, Láng I, Ruhstaller T, Gianni L, Goldhirsch A, et al: Tumor-infiltrating lymphocytes (TILs) are a powerful prognostic marker in patients with triple-negative breast cancer enrolled in the IBCSG phase III randomized clinical trial 22–00. Breast Cancer Res Treat. 158:323–331. 2016. View Article : Google Scholar : PubMed/NCBI

209 

Hendry S, Salgado R, Gevaert T, Russell PA, John T, Thapa B, Christie M, van de Vijver K, Estrada MV, Gonzalez-Ericsson PI, et al: Assessing tumor-infiltrating lymphocytes in solid tumors: A practical review for pathologists and proposal for a standardized method from the international immunooncology biomarkers working group: Part 1: Assessing the host immune response, TILs in invasive breast carcinoma and ductal carcinoma in situ, metastatic tumor deposits and areas for further research. Adv Anat Pathol. 24:235–251. 2017. View Article : Google Scholar : PubMed/NCBI

210 

Ly A, Garcia V, Blenman KRM, Ehinger A, Elfer K, Hanna MG, Li X, Peeters DJE, Birmingham R, Dudgeon S, et al: Training pathologists to assess stromal tumour-infiltrating lymphocytes in breast cancer synergises efforts in clinical care and scientific research. Histopathology. 84:915–923. 2024. View Article : Google Scholar : PubMed/NCBI

211 

Koboldt D, Fulton RS, Mclellan MD, Schmidt H, Kalicki-Veizer J, McMichael JF, Fulton L, Dooling DJ, Ding L, Mardis E, et al: Comprehensive molecular portraits of human breast tumours. Nature. 490:61–70. 2012. View Article : Google Scholar : PubMed/NCBI

212 

Kalecky K, Modisette R, Pena S, Cho YR and Taube J: Integrative analysis of breast cancer profiles in TCGA by TNBC subgrouping reveals novel microRNA-specific clusters, including miR-17-92a, distinguishing basal-like 1 and basal-like 2 TNBC subtypes. BMC Cancer. 20:1412020. View Article : Google Scholar : PubMed/NCBI

213 

Chakraborty C, Sharma AR, Sharma G and Lee SS: The Interplay among miRNAs, major cytokines, and cancer-related inflammation. Mol Ther Nucleic Acids. 20:606–620. 2020. View Article : Google Scholar : PubMed/NCBI

214 

Hill M and Tran N: miRNA interplay: Mechanisms and consequences in cancer. Dis Model Mech. 14:dmm0476622021. View Article : Google Scholar : PubMed/NCBI

215 

Jimenez JE, Abdelhafez A, Mittendorf EA, Elshafeey N, Yung JP, Litton JK, Adrada BE, Candelaria RP, White J, Thompson AM, et al: A model combining pretreatment MRI radiomic features and tumor-infiltrating lymphocytes to predict response to neoadjuvant systemic therapy in triple-negative breast cancer. Eur J Radiol. 149:1102202022. View Article : Google Scholar : PubMed/NCBI

216 

Asano Y, Kashiwagi S, Goto W, Takada K, Takahashi K, Hatano T, Takashima T, Tomita S, Motomura H, Ohsawa M, et al: Prediction of treatment response to neoadjuvant chemotherapy in breast cancer by subtype using tumor-infiltrating lymphocytes. Anticancer Res. 38:2311–2321. 2018.PubMed/NCBI

217 

Song IH, Heo SH, Bang WS, Park HS, Park IA, Kim YA, Park SY, Roh J, Gong G and Lee HJ: Predictive value of tertiary lymphoid structures assessed by high endothelial venule counts in the neoadjuvant setting of triple-negative breast cancer. Cancer Res Treat. 49:399–407. 2017. View Article : Google Scholar : PubMed/NCBI

218 

Khoury T, Nagrale V, Opyrchal M, Peng X, Wang D and Yao S: Prognostic significance of stromal versus intratumoral infiltrating lymphocytes in different subtypes of breast cancer treated with cytotoxic neoadjuvant chemotherapy. Appl Immunohistochem Mol Morphol. 26:523–532. 2018. View Article : Google Scholar : PubMed/NCBI

219 

Ruan M, Tian T, Rao J, Xu X, Yu B, Yang W and Shui R: Predictive value of tumor-infiltrating lymphocytes to pathological complete response in neoadjuvant treated triple-negative breast cancers. Diagn Pathol. 13:662018. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Alvares‑Vilela MM, Schlemmer F, Ferrari SS, Xavier ME and Titze‑de‑Almeida R: Role of tumor‑infiltrating lymphocytes and miR‑155 in breast cancer: Insights into carcinogenesis and their potential as prognostic biomarkers (Review). Oncol Rep 55: 42, 2026.
APA
Alvares‑Vilela, M.M., Schlemmer, F., Ferrari, S.S., Xavier, M.E., & Titze‑de‑Almeida, R. (2026). Role of tumor‑infiltrating lymphocytes and miR‑155 in breast cancer: Insights into carcinogenesis and their potential as prognostic biomarkers (Review). Oncology Reports, 55, 42. https://doi.org/10.3892/or.2026.9047
MLA
Alvares‑Vilela, M. M., Schlemmer, F., Ferrari, S. S., Xavier, M. E., Titze‑de‑Almeida, R."Role of tumor‑infiltrating lymphocytes and miR‑155 in breast cancer: Insights into carcinogenesis and their potential as prognostic biomarkers (Review)". Oncology Reports 55.3 (2026): 42.
Chicago
Alvares‑Vilela, M. M., Schlemmer, F., Ferrari, S. S., Xavier, M. E., Titze‑de‑Almeida, R."Role of tumor‑infiltrating lymphocytes and miR‑155 in breast cancer: Insights into carcinogenesis and their potential as prognostic biomarkers (Review)". Oncology Reports 55, no. 3 (2026): 42. https://doi.org/10.3892/or.2026.9047
Copy and paste a formatted citation
x
Spandidos Publications style
Alvares‑Vilela MM, Schlemmer F, Ferrari SS, Xavier ME and Titze‑de‑Almeida R: Role of tumor‑infiltrating lymphocytes and miR‑155 in breast cancer: Insights into carcinogenesis and their potential as prognostic biomarkers (Review). Oncol Rep 55: 42, 2026.
APA
Alvares‑Vilela, M.M., Schlemmer, F., Ferrari, S.S., Xavier, M.E., & Titze‑de‑Almeida, R. (2026). Role of tumor‑infiltrating lymphocytes and miR‑155 in breast cancer: Insights into carcinogenesis and their potential as prognostic biomarkers (Review). Oncology Reports, 55, 42. https://doi.org/10.3892/or.2026.9047
MLA
Alvares‑Vilela, M. M., Schlemmer, F., Ferrari, S. S., Xavier, M. E., Titze‑de‑Almeida, R."Role of tumor‑infiltrating lymphocytes and miR‑155 in breast cancer: Insights into carcinogenesis and their potential as prognostic biomarkers (Review)". Oncology Reports 55.3 (2026): 42.
Chicago
Alvares‑Vilela, M. M., Schlemmer, F., Ferrari, S. S., Xavier, M. E., Titze‑de‑Almeida, R."Role of tumor‑infiltrating lymphocytes and miR‑155 in breast cancer: Insights into carcinogenesis and their potential as prognostic biomarkers (Review)". Oncology Reports 55, no. 3 (2026): 42. https://doi.org/10.3892/or.2026.9047
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team