Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
March-2026 Volume 55 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2026 Volume 55 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Immunotherapy after EGFR‑TKI treatment in advanced non‑small cell lung cancer: Current status and future perspectives (Review)

  • Authors:
    • Huiyuan Ma
    • Longhui Li
    • Conghan Jiao
    • Yanyan Cheng
    • Jiayu He
    • Chen Jiang
    • Qian Tong
    • Dan Yi
    • Ying Zhang
  • View Affiliations / Copyright

    Affiliations: Department of Hematology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, P.R. China, National Clinical Research Center for Chinese Medicine, Tianjin 300193, P.R. China
    Copyright: © Ma et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 44
    |
    Published online on: January 16, 2026
       https://doi.org/10.3892/or.2026.9049
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:


Abstract

The tumor microenvironment (TME) of epidermal growth factor receptor (EGFR)‑mutant non‑small cell lung cancer (NSCLC) exhibits notable immunosuppressive properties. EGFR tyrosine kinase inhibitors (EGFR‑TKIs) induce dynamic remodeling of the TME. By boosting the infiltration of immune cells such as T cells and dendritic cells and decreasing immunosuppressive elements such as tumor‑associated macrophages and regulatory T cells, short‑term TKI treatment can effectively enhance antitumor immunity. However, the TME changes to an immunosuppressive state marked by PD‑L1 upregulation and immune escape with continued therapy and the emergence of resistance. This creates a transient immunotherapy window period during EGFR‑TKI treatment, when immune checkpoint inhibitors may achieve optimal efficacy. It is essential to identify and take advantage of this window in order to enhance treatment results. The present review highlights the importance of understanding TME dynamics in EGFR‑mutant NSCLC to optimize combination strategies and guide future therapeutic development.

View Figures

Figure 1

The illustration outlines the key
mechanisms of resistance to EGFR-TKIs in EGFR-mutant NSCLC.
EGFR-dependent resistance arises from evolution of the target
itself (e.g., T790M/C797S mutations or gene amplification), which
restores EGFR kinase activity and re-activates the downstream
PI3K/Akt/mTOR and Ras/Raf/MEK/ERK pathways. EGFR independent
resistance occurs via bypass activation or downstream nodal
mutations, circumventing EGFR inhibition and ultimately converging
on the same core pathways. In addition, tumors may evade therapy
through histology or phenotypic transformation, such as
transformation to SCLC or EMT. EGFR, epidermal growth factor
receptor; TKIs, tyrosine kinase inhibitors; NSCLC, non-small cell
lung cancer; SCLC, small cell lung cancer; EMT,
epithelial-mesenchymal transition.

Figure 2

TME in EGFR-mutant NSCLC and its
dynamics during short-term TKI treatment and resistance. The TME of
EGFR-mutant NSCLC is immunosuppressive. Low CD8+ T-cell
infiltration and inhibition of their proliferation and activation
by the cytokine TGF-β; EGFR mutation promotes AM proliferation;
TEXs inhibit DC function and reduce IL-12p40 production; MHC-II and
co-stimulatory molecules of DCs and AMs (CD40, CD80, CD86)
expression were downregulated; CD47 was selectively overexpressed;
EGFR mutations upregulated PD-L1 via IL-6/JAK/STAT3 and
p-ERK1/2/p-c-Jun pathways; high expression of pro-inflammatory
cytokine IL-17A; increased expression of cytokines TGF-β, IL1α and
TNFα and chemokines CXCL1 and CXCL2; and CAFs release of CXCL2
induced PD-L1 expression. EGFR-TKI can directly inhibit the
activity of tumor cells. Short-term TKI treatment transformed ‘cold
tumors’ into ‘hot tumors’, with an increase in T-cell and DC
infiltration, an increase in CD8 and GB expression levels Compared
with pre-treatment and a marked decrease in TAM infiltration and
Foxp3+ Tregs; CD47 is downregulated, enhancing
DC-mediated phagocytosis; PD-L1 expression could be reduced or
upregulated, and the reduced PL-L1 was considered to be associated
with the NF-κB and AKT-STAT3 pathways; the level of type I IFNs
(IFN-α, IFN-β) was increased and the expression of IFN-γ and the
chemokines CXCL9, CXCL10, and CXCL11 was upregulated. Upon TKI
resistance, the TME was remodeled towards inflammation, with
enrichment of inflammatory and IFN-γ pathway; CD8 and GB expression
decreased and granzyme A expression increased; TAM numbers rise;
CD47 was re-upregulated; the PD-1 pathway was activated and the
expression level of PD-L1 was increased; type I IFN decreased and
the expression of IL-6 and TGF-β1 was increased; the increased
expression of IL-6 suppressed T cell and NK cell cytotoxicity and
GB marker expression. TME, tumor microenvironment; EGFR, epidermal
growth factor receptor; NSCLC, non-small cell lung cancer; TGF-β,
transforming growth factor-β; AM, alveolar macrophages; CXCL, CXC
motif chemokine ligand; TEXs, tumor-derived exosomes; p-,
phosphorylated; IL, interleukin; TNF, tumor necrosis factor; CAFs,
cancer-associated fibroblasts; GB, granzyme B; IFN, interferon;
Tregs, regulatory T cells; DC, dendritic cell; TAMs,
tumor-associated macrophages; NK, natural killer; PD-L1, programmed
death ligand 1; TKI, tyrosine kinase inhibitor.

Figure 3

A timeline schematic illustrating
dynamic changes in the TME from the EGFR-mutant baseline state
through short-term TKI exposure to the development of acquired
resistance. TME, tumor microenvironment; EGFR, epidermal growth
factor receptor; TKI, tyrosine kinase inhibitor; Treg cells,
regulatory T cells; TAMs, tumor-associated macrophages; DC,
dendritic cell; NK, natural killer; PD-L1, programmed death ligand
1; IL, interleukin; TGF-β, transforming growth factor-β; TNF, tumor
necrosis factor; CXCL, CXC motif chemokine ligand; IFN, interferon;
LAG-3, lymphocyte-activation gene 3; PD-1, programmed cell death
protein-1.
View References

1 

Osipov A, Saung MT, Zheng L and Murphy AG: Small molecule immunomodulation: The tumor microenvironment and overcoming immune escape. J Immunother Cancer. 7:2242019. View Article : Google Scholar : PubMed/NCBI

2 

Vuletic A, Mirjacic Martinovic K and Jurisic V: The role of tumor microenvironment in triple-negative breast cancer and its therapeutic targeting. Cells. 14:13532025. View Article : Google Scholar : PubMed/NCBI

3 

Kraja FP, Jurisic VB, Hromić-Jahjefendić A, Rossopoulou N, Katsila T, Mirjacic Martinovic K, De Las Rivas J, Diaconu CC and Szöőr Á: Tumor-infiltrating lymphocytes in cancer immunotherapy: From chemotactic recruitment to translational modeling. Front Immunol. 16:16017732025. View Article : Google Scholar : PubMed/NCBI

4 

Vryza P, Fischer T, Mistakidi E and Zaravinos A: Tumor mutation burden in the prognosis and response of lung cancer patients to immune-checkpoint inhibition therapies. Transl Oncol. 38:1017882023. View Article : Google Scholar : PubMed/NCBI

5 

To KKW, Fong W and Cho WCS: Immunotherapy in treating EGFR-mutant lung cancer: Current challenges and new strategies. Front Oncol. 11:6350072021. View Article : Google Scholar : PubMed/NCBI

6 

Jurisic V, Vukovic V, Obradovic J, Gulyaeva LF, Kushlinskii NE and Djordjević N: EGFR polymorphism and survival of NSCLC patients treated with TKIs: A systematic review and meta-analysis. J Oncol. 2020:19732412020. View Article : Google Scholar : PubMed/NCBI

7 

Li K, Quan L, Huang F, Li Y and Shen Z: ADAM12 promotes the resistance of lung adenocarcinoma cells to EGFR-TKI and regulates the immune microenvironment by activating PI3K/Akt/mTOR and RAS signaling pathways. Int Immunopharmacol. 122:1105802023. View Article : Google Scholar : PubMed/NCBI

8 

Jeong HO, Lee H, Kim H, Jang J, Kim S, Hwang T, Choi DW, Kim HS, Lee N, Lee YM, et al: Cellular plasticity and immune microenvironment of malignant pleural effusion are associated with EGFR-TKI resistance in non-small-cell lung carcinoma. iScience. 25:1053582022. View Article : Google Scholar : PubMed/NCBI

9 

Liu L, Wang C, Li S, Bai H and Wang J: Tumor immune microenvironment in epidermal growth factor receptor-mutated non-small cell lung cancer before and after epidermal growth factor receptor tyrosine kinase inhibitor treatment: A narrative review. Transl Lung Cancer Res. 10:3823–3839. 2021. View Article : Google Scholar : PubMed/NCBI

10 

Lu C, Gao Z, Wu D, Zheng J, Hu C, Huang D, He C, Liu Y, Lin C, Peng T, et al: Understanding the dynamics of TKI-induced changes in the tumor immune microenvironment for improved therapeutic effect. J Immunother Cancer. 12:e0091652024. View Article : Google Scholar : PubMed/NCBI

11 

Corvaja C, Passaro A, Attili I, Aliaga PT, Spitaleri G, Signore ED and De Marinis F: Advancements in fourth-generation EGFR TKIs in EGFR-mutant NSCLC: Bridging biological insights and therapeutic development. Cancer Treat Rev. 130:1028242024. View Article : Google Scholar : PubMed/NCBI

12 

Owen DH, Ismaila N, Ahluwalia A, Feldman J, Gadgeel S, Mullane M, Naidoo J, Presley CJ, Reuss JE, Singhi EK and Patel JD: Therapy for stage IV non-small cell lung cancer with driver alterations: ASCO living guideline, version 2024.3. J Clin Oncol. 43:e2–e16. 2025. View Article : Google Scholar : PubMed/NCBI

13 

Obradović J, Niševic-Lazović J, Sekeruš V, Milašin J, Perin B and Jurisic V: Investigating the frequencies of EGFR mutations and EGFR single nucleotide polymorphisms genotypes and their predictive role in NSCLC patients in Republic of Serbia. Mol Biol Rep. 52:3502025. View Article : Google Scholar : PubMed/NCBI

14 

Yamaoka T, Ohba M and Ohmori T: Molecular-targeted therapies for epidermal growth factor receptor and its resistance mechanisms. Int J Mol Sci. 18:24202017. View Article : Google Scholar : PubMed/NCBI

15 

Yu HA, Arcila ME, Rekhtman N, Sima CS, Zakowski MF, Pao W, Kris MG, Miller VA, Ladanyi M and Riely GJ: Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers. Clin Cancer Res. 19:2240–2247. 2013. View Article : Google Scholar : PubMed/NCBI

16 

Wu SG and Shih JY: Management of acquired resistance to EGFR TKI-targeted therapy in advanced non-small cell lung cancer. Mol Cancer. 17:382018. View Article : Google Scholar : PubMed/NCBI

17 

Zalaquett Z, Catherine Rita Hachem M, Kassis Y, Hachem S, Eid R, Raphael Kourie H and Planchard D: Acquired resistance mechanisms to osimertinib: The constant battle. Cancer Treat Rev. 116:1025572023. View Article : Google Scholar : PubMed/NCBI

18 

Westover D, Zugazagoitia J, Cho BC, Lovly CM and Paz-Ares L: Mechanisms of acquired resistance to first- and second-generation EGFR tyrosine kinase inhibitors. Ann Oncol. 29 (Suppl 1):i10–i19. 2018. View Article : Google Scholar : PubMed/NCBI

19 

Ko B, Paucar D and Halmos B: EGFR T790M: Revealing the secrets of a gatekeeper. Lung Cancer (Auckl). 8:147–159. 2017.PubMed/NCBI

20 

Leonetti A, Sharma S, Minari R, Perego P, Giovannetti E and Tiseo M: Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer. Br J Cancer. 121:725–737. 2019. View Article : Google Scholar : PubMed/NCBI

21 

Thress KS, Paweletz CP, Felip E, Cho BC, Stetson D, Dougherty B, Lai Z, Markovets A, Vivancos A, Kuang Y, et al: Acquired EGFR C797S mutation mediates resistance to AZD9291 in non-small cell lung cancer harboring EGFR T790M. Nat Med. 21:560–562. 2015. View Article : Google Scholar : PubMed/NCBI

22 

Niederst MJ, Hu H, Mulvey HE, Lockerman EL, Garcia AR, Piotrowska Z, Sequist LV and Engelman JA: The allelic context of the C797S mutation acquired upon treatment with third-generation EGFR inhibitors impacts sensitivity to subsequent treatment strategies. Clin Cancer Res. 21:3924–3933. 2015. View Article : Google Scholar : PubMed/NCBI

23 

Passaro A, Jänne PA, Mok T and Peters S: Overcoming therapy resistance in EGFR-mutant lung cancer. Nat Cancer. 2:377–391. 2021. View Article : Google Scholar : PubMed/NCBI

24 

Proto C, Lo Russo G, Corrao G, Ganzinelli M, Facchinetti F, Minari R, Tiseo M and Garassino MC: Treatment in EGFR-mutated non-small cell lung cancer: How to block the receptor and overcome resistance mechanisms. Tumori. 103:325–337. 2017. View Article : Google Scholar : PubMed/NCBI

25 

Du X, Yang B, An Q, Assaraf YG, Cao X and Xia J: Acquired resistance to third-generation EGFR-TKIs and emerging next-generation EGFR inhibitors. Innovation (Camb). 2:1001032021.PubMed/NCBI

26 

Roy V and Perez EA: Beyond trastuzumab: Small molecule tyrosine kinase inhibitors in HER-2-positive breast cancer. Oncologist. 14:1061–1069. 2009. View Article : Google Scholar : PubMed/NCBI

27 

Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, Lindeman N, Gale CM, Zhao X, Christensen J, et al: MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science. 316:1039–1043. 2007. View Article : Google Scholar : PubMed/NCBI

28 

Punekar SR, Velcheti V, Neel BG and Wong KK: The current state of the art and future trends in RAS-targeted cancer therapies. Nat Rev Clin Oncol. 19:637–655. 2022. View Article : Google Scholar : PubMed/NCBI

29 

Ohashi K, Sequist LV, Arcila ME, Lovly CM, Chen X, Rudin CM, Moran T, Camidge DR, Vnencak-Jones CL, Berry L, et al: Characteristics of lung cancers harboring NRAS mutations. Clin Cancer Res. 19:2584–2591. 2013. View Article : Google Scholar : PubMed/NCBI

30 

Simanshu DK, Nissley DV and McCormick F: RAS proteins and their regulators in human disease. Cell. 170:17–33. 2017. View Article : Google Scholar : PubMed/NCBI

31 

Polivka J and Janku F: Molecular targets for cancer therapy in the PI3K/AKT/mTOR pathway. Pharmacol Ther. 142:164–175. 2014. View Article : Google Scholar : PubMed/NCBI

32 

Eng J, Woo KM, Sima CS, Plodkowski A, Hellmann MD, Chaft JE, Kris MG, Arcila ME, Ladanyi M and Drilon A: Impact of concurrent PIK3CA mutations on response to EGFR tyrosine kinase inhibition in EGFR-mutant lung cancers and on prognosis in oncogene-driven lung adenocarcinomas. J Thorac Oncol. 10:1713–1719. 2015. View Article : Google Scholar : PubMed/NCBI

33 

Pollak M: Insulin and insulin-like growth factor signalling in neoplasia. Nat Rev Cancer. 8:915–928. 2008. View Article : Google Scholar : PubMed/NCBI

34 

Namba K, Shien K, Takahashi Y, Torigoe H, Sato H, Yoshioka T, Takeda T, Kurihara E, Ogoshi Y, Yamamoto H, et al: Activation of AXL as a preclinical acquired resistance mechanism against osimertinib treatment in EGFR-mutant non-small Cell Lung Cancer Cells. Mol Cancer Res. 17:499–507. 2019. View Article : Google Scholar : PubMed/NCBI

35 

Sequist LV, Waltman BA, Dias-Santagata D, Digumarthy S, Turke AB, Fidias P, Bergethon K, Shaw AT, Gettinger S, Cosper AK, et al: Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med. 3:75ra262011. View Article : Google Scholar : PubMed/NCBI

36 

Oser MG, Niederst MJ, Sequist LV and Engelman JA: Transformation from non-small-cell lung cancer to small-cell lung cancer: Molecular drivers and cells of origin. Lancet Oncol. 16:e165–e172. 2015. View Article : Google Scholar : PubMed/NCBI

37 

Yin X, Li Y, Wang H, Jia T, Wang E, Luo Y, Wei Y, Qin Z and Ma X: Small cell lung cancer transformation: From pathogenesis to treatment. Semin Cancer Biol. 86:595–606. 2022. View Article : Google Scholar : PubMed/NCBI

38 

Li Y, Xie T, Wang S, Yang L, Hao X, Wang Y, Hu X, Wang L, Li J, Ying J and Xing P: Mechanism exploration and model construction for small cell transformation in EGFR-mutant lung adenocarcinomas. Signal Transduct Target Ther. 9:2612024. View Article : Google Scholar : PubMed/NCBI

39 

Lee JK, Lee J, Kim S, Kim S, Youk J, Park S, An Y, Keam B, Kim DW, Heo DS, et al: Clonal history and genetic predictors of transformation into small-cell carcinomas from lung adenocarcinomas. J Clin Oncol. 35:3065–3074. 2017. View Article : Google Scholar : PubMed/NCBI

40 

Huang L and Fu L: Mechanisms of resistance to EGFR tyrosine kinase inhibitors. Acta Pharm Sin B. 5:390–401. 2015. View Article : Google Scholar : PubMed/NCBI

41 

Neel DS and Bivona TG: Secrets of drug resistance in NSCLC exposed by new molecular definition of EMT. Clin Cancer Res. 19:3–5. 2013. View Article : Google Scholar : PubMed/NCBI

42 

Sumimoto H, Takano A, Igarashi T, Hanaoka J, Teramoto K and Daigo Y: Oncogenic epidermal growth factor receptor signal-induced histone deacetylation suppresses chemokine gene expression in human lung adenocarcinoma. Sci Rep. 13:50872023. View Article : Google Scholar : PubMed/NCBI

43 

Yu S, Sha H, Qin X, Chen Y, Li X, Shi M and Feng J: EGFR E746-A750 deletion in lung cancer represses antitumor immunity through the exosome-mediated inhibition of dendritic cells. Oncogene. 39:2643–2657. 2020. View Article : Google Scholar : PubMed/NCBI

44 

Fang Y, Wang Y, Zeng D, Zhi S, Shu T, Huang N, Zheng S, Wu J, Liu Y, Huang G, et al: Comprehensive analyses reveal TKI-induced remodeling of the tumor immune microenvironment in EGFR/ALK-positive non-small-cell lung cancer. Oncoimmunology. 10:19510192021. View Article : Google Scholar : PubMed/NCBI

45 

Lin Z, Wang Q, Jiang T, Wang W and Zhao JJ: Targeting tumor-associated macrophages with STING agonism improves the antitumor efficacy of osimertinib in a mouse model of EGFR-mutant lung cancer. Front Immunol. 14:10772032023. View Article : Google Scholar : PubMed/NCBI

46 

Chen Q, Xia L, Wang J, Zhu S, Wang J, Li X, Yu Y, Li Z, Wang Y, Zhu G and Lu S: EGFR-mutant NSCLC may remodel TME from non-inflamed to inflamed through acquiring resistance to EGFR-TKI treatment. Lung Cancer. 192:1078152024. View Article : Google Scholar : PubMed/NCBI

47 

Jia Y, Li X, Jiang T, Zhao S, Zhao C, Zhang L, Liu X, Shi J, Qiao M, Luo J, et al: EGFR-targeted therapy alters the tumor microenvironment in EGFR-driven lung tumors: Implications for combination therapies. Int J Cancer. 145:1432–1444. 2019. View Article : Google Scholar : PubMed/NCBI

48 

Wang DH, Lee HS, Yoon D, Berry G, Wheeler TM, Sugarbaker DJ, Kheradmand F, Engleman E and Burt BM: Progression of EGFR-mutant lung adenocarcinoma is driven by alveolar macrophages. Clin Cancer Res. 23:778–788. 2017. View Article : Google Scholar : PubMed/NCBI

49 

Valenti R, Huber V, Iero M, Filipazzi P, Parmiani G and Rivoltini L: Tumor-released microvesicles as vehicles of immunosuppression. Cancer Res. 67:2912–2915. 2007. View Article : Google Scholar : PubMed/NCBI

50 

Gao L, Wang L, Dai T, Jin K, Zhang Z, Wang S, Xie F, Fang P, Yang B, Huang H, et al: Tumor-derived exosomes antagonize innate antiviral immunity. Nat Immunol. 19:233–245. 2018. View Article : Google Scholar : PubMed/NCBI

51 

Zhang H, Deng T, Liu R, Bai M, Zhou L, Wang X, Li S, Wang X, Yang H, Li J, et al: Exosome-delivered EGFR regulates liver microenvironment to promote gastric cancer liver metastasis. Nat Commun. 8:150162017. View Article : Google Scholar : PubMed/NCBI

52 

Cho JW, Park S, Kim G, Han H, Shim HS, Shin S, Bae YS, Park SY, Ha SJ, Lee I and Kim HR: Dysregulation of TFH-B-TRM lymphocyte cooperation is associated with unfavorable anti-PD-1 responses in EGFR-mutant lung cancer. Nat Commun. 12:60682021. View Article : Google Scholar : PubMed/NCBI

53 

Zhao J, Lu Y, Wang Z, Wang H, Zhang D, Cai J, Zhang B, Zhang J, Huang M, Pircher A, et al: Tumor immune microenvironment analysis of non-small cell lung cancer development through multiplex immunofluorescence. Transl Lung Cancer Res. 13:2395–2410. 2024. View Article : Google Scholar : PubMed/NCBI

54 

He S, Yin T, Li D, Gao X, Wan Y, Ma X, Ye T, Guo F, Sun J, Lin Z and Wang Y: Enhanced interaction between natural killer cells and lung cancer cells: Involvement in gefitinib-mediated immunoregulation. J Transl Med. 11:1862013. View Article : Google Scholar : PubMed/NCBI

55 

Patel SA, Nilsson MB, Yang Y, Le X, Tran HT, Elamin YY, Yu X, Zhang F, Poteete A, Ren X, et al: IL6 Mediates suppression of T- and NK-cell function in EMT-associated TKI-resistant EGFR-mutant NSCLC. Clin Cancer Res. 29:1292–1304. 2023. View Article : Google Scholar : PubMed/NCBI

56 

Yang L, He YT, Dong S, Wei XW, Chen ZH, Zhang B, Chen WD, Yang XR, Wang F, Shang XM, et al: Single-cell transcriptome analysis revealed a suppressive tumor immune microenvironment in EGFR mutant lung adenocarcinoma. J Immunother Cancer. 10:e0035342022. View Article : Google Scholar : PubMed/NCBI

57 

Chen J, Jiang CC, Jin L and Zhang XD: Regulation of PD-L1: A novel role of pro-survival signalling in cancer. Ann Oncol. 27:409–416. 2016. View Article : Google Scholar : PubMed/NCBI

58 

Zhang Y, Wang L, Li Y, Pan Y, Wang R, Hu H, Li H, Luo X, Ye T, Sun Y and Chen H: Protein expression of programmed death 1 ligand 1 and ligand 2 independently predict poor prognosis in surgically resected lung adenocarcinoma. Onco Targets Ther. 7:567–573. 2014. View Article : Google Scholar : PubMed/NCBI

59 

Azuma K, Ota K, Kawahara A, Hattori S, Iwama E, Harada T, Matsumoto K, Takayama K, Takamori S, Kage M, et al: Association of PD-L1 overexpression with activating EGFR mutations in surgically resected nonsmall-cell lung cancer. Ann Oncol. 25:1935–1940. 2014. View Article : Google Scholar : PubMed/NCBI

60 

Yang CY, Liao WY, Ho CC, Chen KY, Tsai TH, Hsu CL, Su KY, Chang YL, Wu CT, Hsu CC, et al: Association between programmed death-ligand 1 expression, immune microenvironments, and clinical outcomes in epidermal growth factor receptor mutant lung adenocarcinoma patients treated with tyrosine kinase inhibitors. Eur J Cancer. 124:110–122. 2020. View Article : Google Scholar : PubMed/NCBI

61 

Akbay EA, Koyama S, Carretero J, Altabef A, Tchaicha JH, Christensen CL, Mikse OR, Cherniack AD, Beauchamp EM, Pugh TJ, et al: Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors. Cancer Discov. 3:1355–1363. 2013. View Article : Google Scholar : PubMed/NCBI

62 

Lin K, Cheng J, Yang T, Li Y and Zhu B: EGFR-TKI down-regulates PD-L1 in EGFR mutant NSCLC through inhibiting NF-κB. Biochem Biophys Res Commun. 463:95–101. 2015. View Article : Google Scholar : PubMed/NCBI

63 

Abdelhamed S, Ogura K, Yokoyama S, Saiki I and Hayakawa Y: AKT-STAT3 pathway as a downstream target of EGFR signaling to regulate PD-L1 expression on NSCLC cells. J Cancer. 7:1579–1586. 2016. View Article : Google Scholar : PubMed/NCBI

64 

D'Incecco A, Andreozzi M, Ludovini V, Rossi E, Capodanno A, Landi L, Tibaldi C, Minuti G, Salvini J, Coppi E, et al: PD-1 and PD-L1 expression in molecularly selected non-small-cell lung cancer patients. Br J Cancer. 112:95–102. 2015. View Article : Google Scholar : PubMed/NCBI

65 

Soo RA, Lim SM, Syn NL, Teng R, Soong R, Mok TSK and Cho BC: Immune checkpoint inhibitors in epidermal growth factor receptor mutant non-small cell lung cancer: Current controversies and future directions. Lung Cancer. 115:12–20. 2018. View Article : Google Scholar : PubMed/NCBI

66 

Chen N, Fang W, Zhan J, Hong S, Tang Y, Kang S, Zhang Y, He X, Zhou T, Qin T, et al: Upregulation of PD-L1 by EGFR activation mediates the immune escape in EGFR-driven NSCLC: Implication for optional immune targeted therapy for NSCLC patients with EGFR mutation. J Thorac Oncol. 10:910–923. 2015. View Article : Google Scholar : PubMed/NCBI

67 

Zhang N, Zeng Y, Du W, Zhu J, Shen D, Liu Z and Huang JA: The EGFR pathway is involved in the regulation of PD-L1 expression via the IL-6/JAK/STAT3 signaling pathway in EGFR-mutated non-small cell lung cancer. Int J Oncol. 49:1360–1368. 2016. View Article : Google Scholar : PubMed/NCBI

68 

Gainor JF, Shaw AT, Sequist LV, Fu X, Azzoli CG, Piotrowska Z, Huynh TG, Zhao L, Fulton L, Schultz KR, et al: EGFR mutations and ALK rearrangements are associated with low response rates to PD-1 pathway blockade in non-small cell lung cancer: A retrospective analysis. Clin Cancer Res. 22:4585–4593. 2016. View Article : Google Scholar : PubMed/NCBI

69 

Li D, Zou S, Cheng S, Song S, Wang P and Zhu X: Monitoring the response of PD-L1 expression to epidermal growth factor receptor tyrosine kinase inhibitors in nonsmall-cell lung cancer xenografts by immuno-PET imaging. Mol Pharm. 16:3469–3476. 2019. View Article : Google Scholar : PubMed/NCBI

70 

He H, Qi X, Fu H, Xu J, Zheng Q, Chen L, Zhang Y, Hua H, Xu W, Xu Z, et al: Imaging diagnosis and efficacy monitoring by [89Zr]Zr-DFO-KN035 immunoPET in patients with PD-L1-positive solid malignancies. Theranostics. 14:392–405. 2024. View Article : Google Scholar : PubMed/NCBI

71 

Huang W, Zhou J, Liu Y, Yang Y, Saladin RJ, Hsu JC, Cai W and Kang L: Advances in immunoPET/SPECT imaging: The role of Fab and F(ab')2 fragments in theranostics. Acta Pharm Sin B. 15:3888–3924. 2025. View Article : Google Scholar : PubMed/NCBI

72 

Xing S, Hu K and Wang Y: Tumor immune microenvironment and immunotherapy in non-small cell lung cancer: Update and new challenges. Aging Dis. 13:1615–1632. 2022. View Article : Google Scholar : PubMed/NCBI

73 

Isomoto K, Haratani K, Hayashi H, Shimizu S, Tomida S, Niwa T, Yokoyama T, Fukuda Y, Chiba Y, Kato R, et al: Impact of EGFR-TKI treatment on the tumor immune microenvironment in EGFR mutation-positive non-small cell lung cancer. Clin Cancer Res. 26:2037–2046. 2020. View Article : Google Scholar : PubMed/NCBI

74 

Wang S, Rong R, Yang DM, Fujimoto J, Bishop JA, Yan S, Cai L, Behrens C, Berry LD, Wilhelm C, et al: Features of tumor-microenvironment images predict targeted therapy survival benefit in patients with EGFR-mutant lung cancer. J Clin Invest. 133:e1603302023. View Article : Google Scholar : PubMed/NCBI

75 

Haratani K, Hayashi H, Tanaka T, Kaneda H, Togashi Y, Sakai K, Hayashi K, Tomida S, Chiba Y, Yonesaka K, et al: Tumor immune microenvironment and nivolumab efficacy in EGFR mutation-positive non-small-cell lung cancer based on T790M status after disease progression during EGFR-TKI treatment. Ann Oncol. 28:1532–1539. 2017. View Article : Google Scholar : PubMed/NCBI

76 

Nigro A, Ricciardi L, Salvato I, Sabbatino F, Vitale M, Crescenzi MA, Montico B, Triggiani M, Pepe S, Stellato C, et al: Enhanced expression of CD47 is associated with off-target resistance to tyrosine kinase inhibitor gefitinib in NSCLC. Front Immunol. 10:31352020. View Article : Google Scholar : PubMed/NCBI

77 

Jurisic V: Multiomic analysis of cytokines in immuno-oncology. Expert Rev Proteomics. 17:663–674. 2020. View Article : Google Scholar : PubMed/NCBI

78 

Jurisić V, Bogdanovic G, Srdic T, Jakimov D, Mrdjanovic J, Baltic M and Baltic VV: Modulation of TNF-alpha activity in tumor PC cells using anti-CD45 and anti-CD95 monoclonal antibodies. Cancer Lett. 214:55–61. 2004. View Article : Google Scholar : PubMed/NCBI

79 

Jurisic V, Srdic-Rajic T, Konjevic G, Bogdanovic G and Colic M: TNF-α induced apoptosis is accompanied with rapid CD30 and slower CD45 shedding from K-562 cells. J Membr Biol. 239:115–122. 2011. View Article : Google Scholar : PubMed/NCBI

80 

Lee KL, Lai TC, Lee WJ, Chen YC, Ho KH, Hung WY, Yang YC, Chan MH, Hsieh FK, Chung CL, et al: Sustaining the activation of EGFR signal by inflammatory cytokine IL17A prompts cell proliferation and EGFR-TKI resistance in lung cancer. Cancers (Basel). 15:32882023. View Article : Google Scholar : PubMed/NCBI

81 

Huang H, Zhu X, Yu Y, Li Z, Yang Y, Xia L and Lu S: EGFR mutations induce the suppression of CD8+ T cell and anti-PD-1 resistance via ERK1/2-p90RSK-TGF-β axis in non-small cell lung cancer. J Transl Med. 22:6532024. View Article : Google Scholar : PubMed/NCBI

82 

Hong SH, Kang N, Kim O, Hong SA, Park J, Kim J, Lee MA and Kang J: EGFR-tyrosine kinase inhibitors induced activation of the autocrine CXCL10/CXCR3 pathway through crosstalk between the tumor and the microenvironment in EGFR-mutant lung cancer. Cancers (Basel). 15:1242022. View Article : Google Scholar : PubMed/NCBI

83 

Mirjačić Martinović K, Vuletić A, Tišma Miletić N, Besu Žižak I, Milovanović J, Matković S and Jurišić V: Circulating cytokine dynamics as potential biomarker of response to anti-PD-1 immunotherapy in BRAFwt MM patients. Transl Oncol. 38:1017992023. View Article : Google Scholar : PubMed/NCBI

84 

Inoue C, Miki Y, Saito R, Hata S, Abe J, Sato I, Okada Y and Sasano H: PD-L1 induction by cancer-associated fibroblast-derived factors in lung adenocarcinoma cells. Cancers (Basel). 11:12572019. View Article : Google Scholar : PubMed/NCBI

85 

Shiiya A, Noguchi T, Tomaru U, Ariga S, Takashima Y, Ohhara Y, Taguchi J, Takeuchi S, Shimizu Y, Kinoshita I, et al: EGFR inhibition in EGFR-mutant lung cancer cells perturbs innate immune signaling pathways in the tumor microenvironment. Cancer Sci. 114:1270–1283. 2023. View Article : Google Scholar : PubMed/NCBI

86 

Zhou J, Yu X, Hou L, Zhao J, Zhou F, Chu X, Wu Y, Zhou C and Su C: Epidermal growth factor receptor tyrosine kinase inhibitor remodels tumor microenvironment by upregulating LAG-3 in advanced non-small-cell lung cancer. Lung Cancer. 153:143–149. 2021. View Article : Google Scholar : PubMed/NCBI

87 

Lee CK, Man J, Lord S, Cooper W, Links M, Gebski V, Herbst RS, Gralla RJ, Mok T and Yang JC: Clinical and molecular characteristics associated with survival among patients treated with checkpoint inhibitors for advanced non-small cell lung carcinoma: A systematic review and meta-analysis. JAMA Oncol. 4:210–216. 2018. View Article : Google Scholar : PubMed/NCBI

88 

Lee CK, Man J, Lord S, Links M, Gebski V, Mok T and Yang JCH: Checkpoint inhibitors in metastatic EGFR-mutated non-small cell lung cancer-a meta-analysis. J Thorac Oncol. 12:403–407. 2017. View Article : Google Scholar : PubMed/NCBI

89 

Peters S, Gettinger S, Johnson ML, Jänne PA, Garassino MC, Christoph D, Toh CK, Rizvi NA, Chaft JE, Carcereny Costa E, et al: Phase II trial of atezolizumab as first-line or subsequent therapy for patients with programmed death-ligand 1-selected advanced non-small-cell lung cancer (BIRCH). J Clin Oncol. 35:2781–2789. 2017. View Article : Google Scholar : PubMed/NCBI

90 

Garassino MC, Cho BC, Kim JH, Mazières J, Vansteenkiste J, Lena H, Corral Jaime J, Gray JE, Powderly J, Chouaid C, et al: Durvalumab as third-line or later treatment for advanced non-small-cell lung cancer (ATLANTIC): An open-label, single-arm, phase 2 study. Lancet Oncol. 19:521–536. 2018. View Article : Google Scholar : PubMed/NCBI

91 

Gubens MA, Sequist LV, Stevenson JP, Powell SF, Villaruz LC, Gadgeel SM, Langer CJ, Patnaik A, Borghaei H, Jalal SI, et al: Pembrolizumab in combination with ipilimumab as second-line or later therapy for advanced non-small-cell lung cancer: KEYNOTE-021 cohorts D and H. Lung Cancer. 130:59–66. 2019. View Article : Google Scholar : PubMed/NCBI

92 

Yang JCH, Shepherd FA, Kim DW, Lee GW, Lee JS, Chang GC, Lee SS, Wei YF, Lee YG, Laus G, et al: Osimertinib Plus durvalumab versus osimertinib monotherapy in EGFR T790M-positive NSCLC following previous EGFR TKI therapy: CAURAL brief report. J Thorac Oncol. 14:933–939. 2019. View Article : Google Scholar : PubMed/NCBI

93 

Jiang T, Wang P, Zhang J, Zhao Y, Zhou J, Fan Y, Shu Y, Liu X, Zhang H, He J, et al: Toripalimab plus chemotherapy as second-line treatment in previously EGFR-TKI treated patients with EGFR-mutant-advanced NSCLC: A multicenter phase-II trial. Signal Transduct Target Ther. 6:3552021. View Article : Google Scholar : PubMed/NCBI

94 

Mok T, Nakagawa K, Park K, Ohe Y, Girard N, Kim HR, Wu YL, Gainor J, Lee SH, Chiu CH, et al: Nivolumab plus chemotherapy in epidermal growth factor receptor-mutated metastatic non-small-cell lung cancer after disease progression on epidermal growth factor receptor tyrosine kinase inhibitors: Final results of CheckMate 722. J Clin Oncol. 42:1252–1264. 2024. View Article : Google Scholar : PubMed/NCBI

95 

Yang JCH, Lee DH, Lee JS, Fan Y, de Marinis F, Iwama E, Inoue T, Rodríguez-Cid J, Zhang L, Yang CT, et al: Phase III KEYNOTE-789 study of pemetrexed and platinum with or without pembrolizumab for tyrosine kinase inhibitor-resistant, EGFR-mutant, metastatic nonsquamous non-small cell lung cancer. J Clin Oncol. 42:4029–4039. 2024. View Article : Google Scholar : PubMed/NCBI

96 

Socinski MA, Jotte RM, Cappuzzo F, Orlandi F, Stroyakovskiy D, Nogami N, Rodríguez-Abreu D, Moro-Sibilot D, Thomas CA, Barlesi F, et al: Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N Engl J Med. 378:2288–2301. 2018. View Article : Google Scholar : PubMed/NCBI

97 

Nogami N, Barlesi F, Socinski MA, Reck M, Thomas CA, Cappuzzo F, Mok TSK, Finley G, Aerts JG, Orlandi F, et al: IMpower150 final exploratory analyses for atezolizumab plus bevacizumab and chemotherapy in key NSCLC patient subgroups with EGFR mutations or metastases in the liver or brain. J Thorac Oncol. 17:309–323. 2022. View Article : Google Scholar : PubMed/NCBI

98 

Lu S, Wu L, Jian H, Cheng Y, Wang Q, Fang J, Wang Z, Hu Y, Han L, Sun M, et al: Sintilimab plus chemotherapy for patients with EGFR-mutated non-squamous non-small-cell lung cancer with disease progression after EGFR tyrosine-kinase inhibitor therapy (ORIENT-31): Second interim analysis from a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Respir Med. 11:624–636. 2023. View Article : Google Scholar : PubMed/NCBI

99 

Zhou C, Dong X, Chen G, Wang Z, Wu X, Yao Y, Zhang Y, Cheng Y, Pan H, Zhang X, et al: OA09.06 IMpower151: Phase III Study of Atezolizumab + bevacizumab + chemotherapy in 1L metastatic nonsquamous NSCLC. J Thorac Oncol. 18 (Suppl):S64–S65. 2023. View Article : Google Scholar

100 

Park S, Kim TM, Han JY, Lee GW, Shim BY, Lee YG, Kim SW, Kim IH, Lee S, Kim YJ, et al: Phase III, randomized study of atezolizumab plus bevacizumab and chemotherapy in patients with EGFR- or ALK-mutated non-small-cell lung cancer (ATTLAS, KCSG-LU19-04). J Clin Oncol. 42:1241–1251. 2024. View Article : Google Scholar : PubMed/NCBI

101 

HARMONi-A Study Investigators, Fang W, Zhao Y, Luo Y, Yang R, Huang Y, He Z, Zhao H, Li M, Li K, et al: Ivonescimab plus chemotherapy in non-small cell lung cancer with EGFR variant: A randomized clinical trial. JAMA. 332:561–570. 2024. View Article : Google Scholar

102 

Li Z, Fang W, Zhao Y, Luo Y, Yang R, Huang Y, He Z, Zhao H, Li M, Li K, et al: Ivonescimab combined with chemotherapy in patients with EGFR-mutant non-squamous non-small cell lung cancer who progressed on EGFR tyrosine-kinase inhibitor treatment (HARMONi-A): A randomized, double-blind, multi-center, phase 3 trial. J Clin Oncol. 42 (16 Suppl):S85082024. View Article : Google Scholar

103 

Wu YL, Wang Z, Cheng Y, Fang J, Meng X, Pan Y, Zhao H, Zhao Y, Su H, Sun M, et al: 1255MO A phase II safety and efficacy study of PM8002/BNT327 in combination with chemotherapy in patients with EGFR-mutated non-small cell lung cancer (NSCLC). Ann Oncol. 35 (Suppl 2):S8042024. View Article : Google Scholar

104 

Fang WF, Yang Y, Zhao Y, Huang Y, Zhao H, Zhou N, Zhang Y, Chen L, Zhou T, Chen G, et al: 646P Iparomlimab and tuvonralimab (QL1706) plus chemotherapy and bevacizumab for epidermal growth factor receptor inhibitor (EGFRi)-resistant, EGFR-mutant, advanced non-small cell lung cancer (NSCLC): Updated results from Cohort 5 in the DUBHE-L-201 study. Ann Oncol. 35 (Suppl 4):S16462024. View Article : Google Scholar

105 

Brown H, Vansteenkiste J, Nakagawa K, Cobo M, John T, Barker C, Kohlmann A, Todd A, Saggese M, Chmielecki J, et al: Programmed cell death ligand 1 expression in untreated EGFR mutated advanced NSCLC and response to osimertinib versus comparator in FLAURA. J Thorac Oncol. 15:138–143. 2020. View Article : Google Scholar : PubMed/NCBI

106 

Lin C, Chen X, Li M, Liu J, Qi X, Yang W, Zhang H, Cai Z, Dai Y and Ouyang X: Programmed death-ligand 1 expression predicts tyrosine kinase inhibitor response and better prognosis in a cohort of patients with epidermal growth factor receptor mutation-positive lung adenocarcinoma. Clin Lung Cancer. 16:e25–e35. 2015. View Article : Google Scholar : PubMed/NCBI

107 

Soo RA, Kim HR, Asuncion BR, Fazreen Z, Omar MFM, Herrera MC, Yun Lim JS, Sia G, Soong R and Cho BC: Significance of immune checkpoint proteins in EGFR-mutant non-small cell lung cancer. Lung Cancer. 105:17–22. 2017. View Article : Google Scholar : PubMed/NCBI

108 

Yoneshima Y, Ijichi K, Anai S, Ota K, Otsubo K, Iwama E, Tanaka K, Oda Y, Nakanishi Y and Okamoto I: PD-L1 expression in lung adenocarcinoma harboring EGFR mutations or ALK rearrangements. Lung Cancer. 118:36–40. 2018. View Article : Google Scholar : PubMed/NCBI

109 

Su S, Dong ZY, Xie Z, Yan LX, Li YF, Su J, Liu SY, Yin K, Chen RL, Huang SM, et al: Strong programmed death ligand 1 expression predicts poor response and de novo resistance to EGFR tyrosine kinase inhibitors among NSCLC patients with EGFR mutation. J Thorac Oncol. 13:1668–1675. 2018. View Article : Google Scholar : PubMed/NCBI

110 

Hsu KH, Huang YH, Tseng JS, Chen KC, Ku WH, Su KY, Chen JJW, Chen HW, Yu SL, Yang TY and Chang GC: High PD-L1 expression correlates with primary resistance to EGFR-TKIs in treatment naïve advanced EGFR-mutant lung adenocarcinoma patients. Lung Cancer. 127:37–43. 2019. View Article : Google Scholar : PubMed/NCBI

111 

Sakata Y, Sakata S, Oya Y, Tamiya M, Suzuki H, Shibaki R, Okada A, Kobe H, Matsumoto H, Yokoi T, et al: Osimertinib as first-line treatment for advanced epidermal growth factor receptor mutation-positive non-small-cell lung cancer in a real-world setting (OSI-FACT). Eur J Cancer. 159:144–153. 2021. View Article : Google Scholar : PubMed/NCBI

112 

Alves Pinto I, de Oliveira Cavagna R, Virginio da Silva AL, Dias JM, Santana IV, Souza LC, Ferreira da Silva FA, Biazotto Fernandes MF, Junqueira Pinto GD, Negreiros IS, et al: EGFR mutations and PD-L1 expression in early-stage non-small cell lung cancer: A real-world data from a single center in Brazil. Oncologist. 27:e899–e907. 2022. View Article : Google Scholar : PubMed/NCBI

113 

Papazyan T, Denis MG, Sagan C, Raimbourg J, Herbreteau G and Pons-Tostivint E: Impact of PD-L1 expression on the overall survival of caucasian patients with advanced EGFR-mutant NSCLC treated with frontline osimertinib. Target Oncol. 19:611–621. 2024. View Article : Google Scholar : PubMed/NCBI

114 

Lakkunarajah S, Truong PT, Bone JN, Hughesman C, Yip S, Alex D, Hart J, Pollock P, Egli S, Clarkson M, et al: First-line osimertinib for patients with EGFR-mutated advanced non-small cell lung cancer: efficacy and safety during the COVID-19 pandemic. Transl Lung Cancer Res. 12:1454–1465. 2023. View Article : Google Scholar : PubMed/NCBI

115 

Yoshimura A, Yamada T, Okuma Y, Fukuda A, Watanabe S, Nishioka N, Takeda T, Chihara Y, Takemoto S, Harada T, et al: Impact of tumor programmed death ligand-1 expression on osimertinib efficacy in untreated EGFR-mutated advanced non-small cell lung cancer: A prospective observational study. Transl Lung Cancer Res. 10:3582–3593. 2021. View Article : Google Scholar : PubMed/NCBI

116 

Hsu KH, Tseng JS, Yang TY, Chen KC, Su KY, Yu SL, Chen JJW, Huang YH and Chang GC: PD-L1 strong expressions affect the clinical outcomes of osimertinib in treatment naïve advanced EGFR-mutant non-small cell lung cancer patients. Sci Rep. 12:97532022. View Article : Google Scholar : PubMed/NCBI

117 

Hamakawa Y, Agemi Y, Shiba A, Ikeda T, Higashi Y, Aga M, Miyazaki K, Taniguchi Y, Misumi Y, Nakamura Y, et al: Association of PD-L1 tumor proportion score ≥20% with early resistance to osimertinib in patients with EGFR-mutated NSCLC. Cancer Med. 12:17788–17797. 2023. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Ma H, Li L, Jiao C, Cheng Y, He J, Jiang C, Tong Q, Yi D and Zhang Y: <p>Immunotherapy after EGFR‑TKI treatment in advanced non‑small cell lung cancer: Current status and future perspectives (Review)</p>. Oncol Rep 55: 44, 2026.
APA
Ma, H., Li, L., Jiao, C., Cheng, Y., He, J., Jiang, C. ... Zhang, Y. (2026). <p>Immunotherapy after EGFR‑TKI treatment in advanced non‑small cell lung cancer: Current status and future perspectives (Review)</p>. Oncology Reports, 55, 44. https://doi.org/10.3892/or.2026.9049
MLA
Ma, H., Li, L., Jiao, C., Cheng, Y., He, J., Jiang, C., Tong, Q., Yi, D., Zhang, Y."<p>Immunotherapy after EGFR‑TKI treatment in advanced non‑small cell lung cancer: Current status and future perspectives (Review)</p>". Oncology Reports 55.3 (2026): 44.
Chicago
Ma, H., Li, L., Jiao, C., Cheng, Y., He, J., Jiang, C., Tong, Q., Yi, D., Zhang, Y."<p>Immunotherapy after EGFR‑TKI treatment in advanced non‑small cell lung cancer: Current status and future perspectives (Review)</p>". Oncology Reports 55, no. 3 (2026): 44. https://doi.org/10.3892/or.2026.9049
Copy and paste a formatted citation
x
Spandidos Publications style
Ma H, Li L, Jiao C, Cheng Y, He J, Jiang C, Tong Q, Yi D and Zhang Y: <p>Immunotherapy after EGFR‑TKI treatment in advanced non‑small cell lung cancer: Current status and future perspectives (Review)</p>. Oncol Rep 55: 44, 2026.
APA
Ma, H., Li, L., Jiao, C., Cheng, Y., He, J., Jiang, C. ... Zhang, Y. (2026). <p>Immunotherapy after EGFR‑TKI treatment in advanced non‑small cell lung cancer: Current status and future perspectives (Review)</p>. Oncology Reports, 55, 44. https://doi.org/10.3892/or.2026.9049
MLA
Ma, H., Li, L., Jiao, C., Cheng, Y., He, J., Jiang, C., Tong, Q., Yi, D., Zhang, Y."<p>Immunotherapy after EGFR‑TKI treatment in advanced non‑small cell lung cancer: Current status and future perspectives (Review)</p>". Oncology Reports 55.3 (2026): 44.
Chicago
Ma, H., Li, L., Jiao, C., Cheng, Y., He, J., Jiang, C., Tong, Q., Yi, D., Zhang, Y."<p>Immunotherapy after EGFR‑TKI treatment in advanced non‑small cell lung cancer: Current status and future perspectives (Review)</p>". Oncology Reports 55, no. 3 (2026): 44. https://doi.org/10.3892/or.2026.9049
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team