You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
Tumor microenvironment in bone sarcomas: Implications for immunotherapy and emerging therapeutic vulnerabilities (Review)
Bone sarcomas remain lethal despite multimodal therapy, primarily because the mineralized, immunosuppressive tumor microenvironment (TME) promotes chemo‑ and immune‑resistance. Integrating single‑cell and spatial omics across osteosarcoma, Ewing sarcoma and chondrosarcoma delineates subtype‑specific TME archetypes dominated by M2 macrophages, exhausted T cells and a stiff extracellular matrix. Mechanistic dissection reveals tractable vulnerabilities, myeloid reprogramming, extracellular matrix modulation and metabolic and epigenetic checkpoints, that can be targeted with bone‑selective delivery systems and biomarker‑driven combination trials to convert therapeutic failure into durable remission. Therefore, the aim of the present review is to synthesize the latest single‑cell, spatial and functional data to map bone‑sarcoma TME heterogeneity, dissect resistance mechanisms and propose integrated, biomarker‑guided therapeutic strategies that can be translated into treatments.
![]() |
![]() |
|
Strauss SJ, Frezza AM, Abecassis N, Bajpai J, Bauer S, Biagini R, Bielack S, Blay JY, Bolle S, Bonvalot I, et al: Bone sarcomas: ESMO-EURACAN-GENTURIS-ERN PaedCan clinical practice guideline for diagnosis, treatment and follow-up. Ann Oncol. 32:1520–1536. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 74:229–263. 2024.PubMed/NCBI | |
|
Perry JA, Kiezun A, Tonzi P, Van Allen EM, Carter SL, Baca SC, Cowley GS, Bhatt AS, Rheinbay E, Pedamallu CS, et al: Complementary genomic approaches highlight the PI3K/mTOR pathway as a common vulnerability in osteosarcoma. Proc Natl Acad Sci USA. 111:E5564–E5573. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Behjati S, Tarpey PS, Sheldon H, Martincorena I, Van Loo P, Gundem G, Wedge DC, Ramakrishna M, Cooke SL, Pillay N, et al: Recurrent PTPRB and PLCG1 mutations in angiosarcoma. Nat Genet. 46:376–379. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Marina NM, Smeland S, Bielack SS, Bernstein M, Jovic G, Krailo MD, Hook JM, Arndt C, van den Berg H, Brennan B, et al: Comparison of MAPIE versus MAP in patients with a poor response to preoperative chemotherapy for newly diagnosed high-grade osteosarcoma (EURAMOS-1): An open-label, international, randomised controlled trial. Lancet Oncol. 17:1396–1408. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Gaspar N, Hawkins DS, Dirksen U, Lewis IJ, Ferrari S, Le Deley MC, Kovar H, Grimer R, Whelan J, Claude L, et al: Ewing sarcoma: Current management and future approaches through collaboration. J Clin Oncol. 33:3036–3046. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
van Maldegem AM, Gelderblom H, Palmerini E, Dijkstra SD, Gambarotti M, Ruggieri P, Nout RA, van de Sande MA, Ferrari C, Ferrari S, et al: Outcome of advanced, unresectable conventional central chondrosarcoma. Cancer. 120:3159–3164. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Nakano K: Challenges of systemic therapy investigations for bone sarcomas. Int J Mol Sci. 23:35402022. View Article : Google Scholar : PubMed/NCBI | |
|
Tlemsani C, Larousserie F, De Percin S, Audard V, Hadjadj D, Chen J, Biau D, Anract P, Terris B, Goldwasser F, et al: Biology and management of high-grade chondrosarcoma: An Update on targets and treatment options. Int J Mol Sci. 24:13612023. View Article : Google Scholar : PubMed/NCBI | |
|
Yuan Z, Li Y, Zhang S, Wang X, Dou H, Yu X, Zhang Z, Yang S and Xiao M: Extracellular matrix remodeling in tumor progression and immune escape: From mechanisms to treatments. Mol Cancer. 22:482023. View Article : Google Scholar : PubMed/NCBI | |
|
Naser R, Fakhoury I, El-Fouani A, Abi-Habib R and El-Sibai M: Role of the tumor microenvironment in cancer hallmarks and targeted therapy (Review). Int J Oncol. 62:232023. View Article : Google Scholar : PubMed/NCBI | |
|
Alfranca A, Martinez-Cruzado L, Tornin J, Abarrategi A, Amaral T, de Alava E, Menendez P, Garcia-Castro J and Rodriguez R: Bone microenvironment signals in osteosarcoma development. Cell Mol Life Sci. 72:3097–3113. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou Y, Yang D, Yang Q, Lv X, Huang W, Zhou Z, Wang Y, Zhang Z, Yuan T, Ding X, et al: Single-cell RNA landscape of intratumoral heterogeneity and immunosuppressive microenvironment in advanced osteosarcoma. Nat Commun. 11:63222020. View Article : Google Scholar : PubMed/NCBI | |
|
Nicolas-Boluda A, Vaquero J, Vimeux L, Guilbert T, Barrin S, Kantari-Mimoun C, Ponzo M, Renault G, Deptula P, Pogoda K, et al: Tumor stiffening reversion through collagen crosslinking inhibition improves T cell migration and anti-PD-1 treatment. Elife. 10:e586882021. View Article : Google Scholar : PubMed/NCBI | |
|
Shurin MR and Umansky V: Cross-talk between HIF and PD-1/PD-L1 pathways in carcinogenesis and therapy. J Clin Invest. 132:e1594732022. View Article : Google Scholar : PubMed/NCBI | |
|
Jinushi M, Chiba S, Yoshiyama H, Masutomi K, Kinoshita I, Dosaka-Akita H, Yagita H, Takaoka A and Tahara H: Tumor-associated macrophages regulate tumorigenicity and anticancer drug responses of cancer stem/initiating cells. Proc Natl Acad Sci USA. 108:12425–12430. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Saito M, Ichikawa J, Ando T, Schoenecker JG, Ohba T, Koyama K, Suzuki-Inoue K and Haro H: Platelet-derived TGF-β induces tissue factor expression via the smad3 pathway in osteosarcoma cells. J Bone Miner Res. 33:2048–2058. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Hiratsuka S, Watanabe A, Sakurai Y, Akashi-Takamura S, Ishibashi S, Miyake K, Shibuya M, Akira S, Aburatani H and Maru Y: The S100A8-serum amyloid A3-TLR4 paracrine cascade establishes a pre-metastatic phase. Nat Cell Biol. 10:1349–1355. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Liu X, Li J, Yang X, Li X, Kong J, Qi D, Zhang F, Sun B, Liu Y and Liu T: Carcinoma-associated fibroblast-derived lysyl oxidase-rich extracellular vesicles mediate collagen crosslinking and promote epithelial-mesenchymal transition via p-FAK/p-paxillin/YAP signaling. Int J Oral Sci. 15:322023. View Article : Google Scholar : PubMed/NCBI | |
|
Chevrier S, Crowell HL, Zanotelli VRT, Engler S, Robinson MD and Bodenmiller B: Compensation of signal spillover in suspension and imaging mass cytometry. Cell Syst. 6:612–620.e5. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Umezu T, Tadokoro H, Azuma K, Yoshizawa S, Ohyashiki K and Ohyashiki JH: Exosomal miR-135b shed from hypoxic multiple myeloma cells enhances angiogenesis by targeting factor-inhibiting HIF-1. Blood. 124:3748–3757. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Principe DR, Kamath SD, Korc M and Munshi HG: The immune modifying effects of chemotherapy and advances in chemo-immunotherapy. Pharmacol Ther. 236:1081112022. View Article : Google Scholar : PubMed/NCBI | |
|
Han C, Liu Z, Zhang Y, Shen A, Dong C, Zhang A, Moore C, Ren Z, Lu C, Cao X, et al: Tumor cells suppress radiation-induced immunity by hijacking caspase 9 signaling. Nat Immunol. 21:546–554. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Yu Y, Li K, Peng Y, Zhang Z, Pu F, Shao Z and Wu W: Tumor microenvironment in osteosarcoma: From cellular mechanism to clinical therapy. Genes Dis. 12:1015692025. View Article : Google Scholar : PubMed/NCBI | |
|
Dutour A, Pasello M, Farrow L, Amer MH, Entz-Werlé N, Nathrath M, Scotlandi K, Mittnacht S and Gomez-Mascard A: Microenvironment matters: Insights from the FOSTER consortium on microenvironment-driven approaches to osteosarcoma therapy. Cancer Metastasis Rev. 44:442025. View Article : Google Scholar : PubMed/NCBI | |
|
Azizi E, Carr AJ, Plitas G, Cornish AE, Konopacki C, Prabhakaran S, Nainys J, Wu K, Kiseliovas V and Setty M: Single-Cell map of diverse immune phenotypes in the breast tumor microenvironment. Cell. 174:1293–1308.e36. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Sun CY, Zhang Z, Tao L, Xu FF, Li HY, Zhang HY and Liu W: T cell exhaustion drives osteosarcoma pathogenesis. Ann Transl Med. 9:14472021. View Article : Google Scholar : PubMed/NCBI | |
|
Visser LL, Bleijs M, Margaritis T, van de Wetering M, Holstege FCP and Clevers H: Ewing sarcoma single-cell transcriptome analysis reveals functionally impaired antigen-presenting cells. Cancer Res Commun. 3:2158–2169. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Guimarães GR, Maklouf GR, Teixeira CE, de Oliveira Santos L, Tessarollo NG, de Toledo NE, Serain AF, de Lanna CA, Pretti MA, da Cruz JGV, et al: Single-cell resolution characterization of myeloid-derived cell states with implication in cancer outcome. Nat Commun. 15:56942024. View Article : Google Scholar : PubMed/NCBI | |
|
Kashfi K, Kannikal J and Nath N: Macrophage reprogramming and cancer therapeutics: Role of iNOS-Derived NO. Cells. 10:31942021. View Article : Google Scholar : PubMed/NCBI | |
|
Ka HI, Mun SH, Han S and Yang Y: Targeting myeloid-derived suppressor cells in the tumor microenvironment: Potential therapeutic approaches for osteosarcoma. Oncol Res. 33:519–531. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao L, Liu P, Mao M, Zhang S, Bigenwald C, Dutertre CA, Lehmann CHK, Pan H, Paulhan N, Amon L, et al: BCL2 inhibition reveals a dendritic cell-specific immune checkpoint that controls tumor immunosurveillance. Cancer Discov. 13:2448–2469. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Shaim H, Shanley M, Basar R, Daher M, Gumin J, Zamler DB, Uprety N, Wang F, Huang Y, Gabrusiewicz K, et al: Targeting the αv integrin/TGF-β axis improves natural killer cell function against glioblastoma stem cells. J Clin Invest. 131:e421162021. View Article : Google Scholar | |
|
Tran HC, Wan Z, Sheard MA, Sun J, Jackson JR, Malvar J, Xu Y, Wang L, Sposto R, Kim ES, et al: TGFβR1 blockade with galunisertib (LY2157299) enhances anti-neuroblastoma activity of the anti-GD2 antibody dinutuximab (ch14.18) with natural killer cells. Clin Cancer Res. 23:804–813. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Cao JW, Lake J, Impastato R, Chow L, Perez L, Chubb L, Kurihara J, Verneris MR and Dow S: Targeting osteosarcoma with canine B7-H3 CAR T cells and impact of CXCR2 Co-expression on functional activity. Cancer Immunol Immunother. 73:772024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Q, Zhang Z, Liu G, Li D, Gu Z, Zhang L, Pan Y, Cui X, Wang L, Liu G, et al: B7-H3 targeted CAR-T cells show highly efficient anti-tumor function against osteosarcoma both in vitro and in vivo. BMC Cancer. 22:11242022. View Article : Google Scholar : PubMed/NCBI | |
|
Fotsitzoudis C, Koulouridi A, Messaritakis I, Konstantinidis T, Gouvas N, Tsiaoussis J and Souglakos J: Cancer-associated fibroblasts: The origin, biological characteristics and role in cancer-a glance on colorectal cancer. Cancers (Basel). 14:43942022. View Article : Google Scholar : PubMed/NCBI | |
|
Cao Z, Quazi S, Arora S, Osellame LD, Burvenich IJ, Janes PW and Scott AM: Cancer-associated fibroblasts as therapeutic targets for cancer: Advances, challenges, and future prospects. J Biomed Sci. 32:72025. View Article : Google Scholar : PubMed/NCBI | |
|
Long AH, Highfill SL, Cui Y, Smith JP, Walker AJ, Ramakrishna S, El-Etriby R, Galli S, Tsokos MG, Orentas RJ and Mackall CL: Reduction of MDSCs with all-trans retinoic acid improves CAR therapy efficacy for sarcomas. Cancer Immunol Res. 4:869–880. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC, Martin RP, Schipani E, Divieti P, Bringhurst FR, et al: Osteoblastic cells regulate the haematopoietic stem cell niche. Nature. 425:841–846. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Wang S, Greenbaum J, Qiu C, Gong Y, Wang Z, Lin X, Liu Y, He P, Meng X, Zhang Q, et al: Single-cell RNA sequencing reveals in vivo osteoimmunology interactions between the immune and skeletal systems. Front Endocrinol (Lausanne). 14:11075112023. View Article : Google Scholar : PubMed/NCBI | |
|
Canon JR, Roudier M, Bryant R, Morony S, Stolina M, Kostenuik PJ and Dougall WC: Inhibition of RANKL blocks skeletal tumor progression and improves survival in a mouse model of breast cancer bone metastasis. Clin Exp Metastasis. 25:119–129. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Kiesel JR, Buchwald ZS and Aurora R: Cross-presentation by osteoclasts induces FoxP3 in CD8+ T cells. J Immunol. 182:5477–5487. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Panagi M, Mpekris F, Voutouri C, Hadjigeorgiou AG, Symeonidou C, Porfyriou E, Michael C, Stylianou A, Martin JD, Cabral H, et al: Stabilizing tumor-resident mast cells restores T-cell infiltration and sensitizes sarcomas to PD-L1 inhibition. Clin Cancer Res. 30:2582–2597. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Białas M, Dyduch G, Dudała J, Bereza-Buziak M, Hubalewska-Dydejczyk A, Budzyński A and Okoń K: Study of microvessel density and the expression of vascular endothelial growth factors in adrenal gland pheochromocytomas. Int J Endocrinol. 2014:1041292014. View Article : Google Scholar : PubMed/NCBI | |
|
Kreisl TN, Kim L, Moore K, Duic P, Royce C, Stroud I, Garren N, Mackey M, Butman JA and Camphausen K: Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J Clin Oncol. 27:740–745. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Dong X, Ren J, Amoozgar Z, Lee S, Datta M, Roberge S, Duquette M, Fukumura D and Jain RK: Anti-VEGF therapy improves EGFR-vIII-CAR-T cell delivery and efficacy in syngeneic glioblastoma models in mice. J Immunother Cancer. 11:e0055832023. View Article : Google Scholar : PubMed/NCBI | |
|
Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, Richardson AL, Polyak K, Tubo R and Weinberg RA: Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature. 449:557–563. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Trabanelli S, Lecciso M, Salvestrini V, Cavo M, Očadlíková D, Lemoli RM and Curti A: PGE2-induced IDO1 inhibits the capacity of fully mature DCs to elicit an in vitro antileukemic immune response. J Immunol Res. 2015:2531912015. View Article : Google Scholar : PubMed/NCBI | |
|
Zelenay S, van der Veen AG, Böttcher JP, Snelgrove KJ, Rogers N, Acton SE, Chakravarty P, Girotti MR, Marais R, Quezada SA, et al: Cyclooxygenase-dependent tumor growth through evasion of immunity. Cell. 162:1257–1270. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Kolb AD and Bussard KM: The bone extracellular matrix as an ideal milieu for cancer cell metastases. Cancers (Basel). 11:10202019. View Article : Google Scholar : PubMed/NCBI | |
|
Molina ER, Chim LK, Salazar MC, Mehta SM, Menegaz BA, Lamhamedi-Cherradi SE, Satish T, Mohiuddin S, McCall D, Zaske AM, et al: Mechanically tunable coaxial electrospun models of YAP/TAZ mechanoresponse and IGF-1R activation in osteosarcoma. Acta Biomater. 100:38–51. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Liu D, Peng Y, Li X, Zhu Z, Mi Z, Zhang Z and Fan H: Comprehensive landscape of TGFβ-related signature in osteosarcoma for predicting prognosis, immune characteristics, and therapeutic response. J Bone Oncol. 40:1004842023. View Article : Google Scholar : PubMed/NCBI | |
|
Highfill SL, Cui Y, Giles AJ, Smith JP, Zhang H, Morse E, Kaplan RN and Mackall CL: Disruption of CXCR2-mediated MDSC tumor trafficking enhances anti-PD1 efficacy. Sci Transl Med. 6:237ra672014. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao TT, Zhou TJ, Zhang C, Liu YX, Wang WJ, Li C, Xing L and Jiang HL: Hypoxia inhibitor combined with chemotherapeutic agents for antitumor and antimetastatic efficacy against osteosarcoma. Mol Pharm. 20:2612–2623. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Khojastehnezhad MA, Seyedi SMR, Raoufi F and Asoodeh A: Association of hypoxia-inducible factor 1 expressions with prognosis role as a survival prognostic biomarker in the patients with osteosarcoma: A meta-analysis. Expert Rev Mol Diagn. 22:1099–1106. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Shi W, Cassmann TJ, Bhagwate AV, Hitosugi T and Ip WKE: Lactic acid induces transcriptional repression of macrophage inflammatory response via histone acetylation. Cell Rep. 43:1137462024. View Article : Google Scholar : PubMed/NCBI | |
|
Hashim AI, Cornnell HH, Mde LC, Abrahams D, Cunningham J, Lloyd M, Martinez GV, Gatenby RA and Gillies RJ: Reduction of metastasis using a non-volatile buffer. Clin Exp Metastasis. 28:841–849. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Aquino A and Franzese O: Reciprocal modulation of tumour and immune cell motility: Uncovering dynamic interplays and therapeutic approaches. Cancers (Basel). 17:15472025. View Article : Google Scholar : PubMed/NCBI | |
|
Cui J, Dean D, Hornicek FJ, Chen Z and Duan Z: The role of extracelluar matrix in osteosarcoma progression and metastasis. J Exp Clin Cancer Res. 39:1782020. View Article : Google Scholar : PubMed/NCBI | |
|
Liu W, Hu H, Shao Z, Lv X, Zhang Z, Deng X, Song Q, Han Y, Guo T, Xiong L, et al: Characterizing the tumor microenvironment at the single-cell level reveals a novel immune evasion mechanism in osteosarcoma. Bone Res. 11:42023. View Article : Google Scholar : PubMed/NCBI | |
|
Gorchs L, Oosthoek M, Yucel-Lindberg T, Moro CF and Kaipe H: Chemokine receptor expression on T cells is modulated by CAFs and chemokines affect the spatial distribution of T cells in pancreatic tumors. Cancers (Basel). 14:38262022. View Article : Google Scholar : PubMed/NCBI | |
|
Park HK, Kim M, Sung M, Lee SE, Kim YJ and Choi YL: Status of programmed death-ligand 1 expression in sarcomas. J Transl Med. 16:3032018. View Article : Google Scholar : PubMed/NCBI | |
|
Yang R, Sun L, Li CF, Wang YH, Yao J, Li H, Yan M, Chang WC, Hsu JM, Cha JH, et al: Galectin-9 interacts with PD-1 and TIM-3 to regulate T cell death and is a target for cancer immunotherapy. Nat Commun. 12:8322021. View Article : Google Scholar : PubMed/NCBI | |
|
Selby MJ, Engelhardt JJ, Quigley M, Henning KA, Chen T, Srinivasan M and Korman AJ: Anti-CTLA-4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells. Cancer Immunol Res. 1:32–42. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang X, Li L, Li Y and Li Q: Molecular mechanisms and countermeasures of immunotherapy resistance in malignant tumor. J Cancer. 10:1764–1771. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Tian H, Cao J, Li B, Nice EC, Mao H, Zhang Y and Huang C: Managing the immune microenvironment of osteosarcoma: The outlook for osteosarcoma treatment. Bone Res. 11:112023. View Article : Google Scholar : PubMed/NCBI | |
|
Starska-Kowarska K: The role of different immunocompetent cell populations in the pathogenesis of head and neck cancer-regulatory mechanisms of pro- and anti-cancer activity and their impact on immunotherapy. Cancers (Basel). 15:16422023. View Article : Google Scholar : PubMed/NCBI | |
|
Li C, Jiang P, Wei S, Xu X and Wang J: Regulatory T cells in tumor microenvironment: New mechanisms, potential therapeutic strategies and future prospects. Mol Cancer. 19:1162020. View Article : Google Scholar : PubMed/NCBI | |
|
Denize T, Jegede OA, Matar S, El Ahmar N, West DJ, Walton E, Bagheri AS, Savla V, Laimon YN, Gupta S, et al: PD-1 expression on intratumoral regulatory T cells is associated with lack of benefit from Anti-PD-1 therapy in metastatic clear-cell renal cell carcinoma patients. Clin Cancer Res. 30:803–813. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Merchant MS, Melchionda F, Sinha M, Khanna C, Helman L and Mackall CL: Immune reconstitution prevents metastatic recurrence of murine osteosarcoma. Cancer Immunol Immunother. 56:1037–1046. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Han Q, Shi H and Liu F: CD163(+) M2-type tumor-associated macrophage support the suppression of tumor-infiltrating T cells in osteosarcoma. Int Immunopharmacol. 34:101–106. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Gallina G, Dolcetti L, Serafini P, De Santo C, Marigo I, Colombo MP, Basso G, Brombacher F, Borrello I, Zanovello P, et al: Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. J Clin Invest. 116:2777–2790. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Munder M: Arginase: An emerging key player in the mammalian immune system. Br J Pharmacol. 158:638–651. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Yang Y, Li C, Liu T, Dai X and Bazhin AV: Myeloid-derived suppressor cells in tumors: from mechanisms to antigen specificity and microenvironmental regulation. Front Immunol. 11:13712020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu Y, Knolhoff BL, Meyer MA, Nywening TM, West BL, Luo J, Wang-Gillam A, Goedegebuure SP, Linehan DC and DeNardo DG: CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res. 74:5057–5069. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
DeNardo DG, Brennan DJ, Rexhepaj E, Ruffell B, Shiao SL, Madden SF, Gallagher WM, Wadhwani N, Keil SD, Junaid SA, et al: Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov. 1:54–67. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Hashimoto M, Kamphorst AO, Im SJ, Kissick HT, Pillai RN, Ramalingam SS, Araki K and Ahmed R: CD8 T cell exhaustion in chronic infection and cancer: Opportunities for interventions. Annu Rev Med. 69:301–318. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Depuydt MAC, Schaftenaar FH, Prange KHM, Boltjes A, Hemme E, Delfos L, de Mol J, de Jong MJM, Kleijn MNA, Peeters JAHM, et al: Single-cell T cell receptor sequencing of paired human atherosclerotic plaques and blood reveals autoimmune-like features of expanded effector T cells. Nat Cardiovasc Res. 2:112–125. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Shin J, O'Brien TF, Grayson JM and Zhong XP: Differential regulation of primary and memory CD8 T cell immune responses by diacylglycerol kinases. J Immunol. 188:2111–2117. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Gu XY, Yang JL, Lai R, Zhou ZJ, Tang D, Hu L and Zhao LJ: Impact of lactate on immune cell function in the tumor microenvironment: Mechanisms and therapeutic perspectives. Front Immunol. 16:15633032025. View Article : Google Scholar : PubMed/NCBI | |
|
Leone RD, Sun IM, Oh MH, Sun IH, Wen J, Englert J and Powell JD: Inhibition of the adenosine A2a receptor modulates expression of T cell coinhibitory receptors and improves effector function for enhanced checkpoint blockade and ACT in murine cancer models. Cancer Immunol Immunother. 67:1271–1284. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Heger L, Hatscher L, Liang C, Lehmann CHK, Amon L, Lühr JJ, Kaszubowski T, Nzirorera R, Schaft N, Dörrie J, et al: XCR1 expression distinguishes human conventional dendritic cell type 1 with full effector functions from their immediate precursors. Proc Natl Acad Sci USA. 120:e23003431202023. View Article : Google Scholar : PubMed/NCBI | |
|
Ohno Y, Kitamura H, Takahashi N, Ohtake J, Kaneumi S, Sumida K, Homma S, Kawamura H, Minagawa N, Shibasaki S and Taketomi A: IL-6 down-regulates HLA class II expression and IL-12 production of human dendritic cells to impair activation of antigen-specific CD4(+) T cells. Cancer Immunol Immunother. 65:193–204. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Oba T, Long MD, Keler T, Marsh HC, Minderman H, Abrams SI, Liu S and Ito F: Overcoming primary and acquired resistance to anti-PD-L1 therapy by induction and activation of tumor-residing cDC1s. Nat Commun. 11:54152020. View Article : Google Scholar : PubMed/NCBI | |
|
Ying H, Li ZQ, Li MP and Liu WC: Metabolism and senescence in the immune microenvironment of osteosarcoma: Focus on new therapeutic strategies. Front Endocrinol (Lausanne). 14:12176692023. View Article : Google Scholar : PubMed/NCBI | |
|
Bogdanov A, Bogdanov A, Chubenko V, Volkov N, Moiseenko F and Moiseyenko V: Tumor acidity: From hallmark of cancer to target of treatment. Front Oncol. 12:9791542022. View Article : Google Scholar : PubMed/NCBI | |
|
Muller AJ, DuHadaway JB, Donover PS, Sutanto-Ward E and Prendergast GC: Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy. Nat Med. 11:312–319. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Bopp T, Becker C, Klein M, Klein-Hessling S, Palmetshofer A, Serfling E, Heib V, Becker M, Kubach J, Schmitt S, et al: Cyclic adenosine monophosphate is a key component of regulatory T cell-mediated suppression. J Exp Med. 204:1303–1310. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Ji Y, Xiao C, Fan T, Deng Z, Wang D, Cai W, Li J, Liao T, Li C and He J: The epigenetic hallmarks of immune cells in cancer. Mol Cancer. 24:662025. View Article : Google Scholar : PubMed/NCBI | |
|
Liu W, Long Q, Zhang W, Zeng D, Hu B, Liu S and Chen L: miRNA-221-3p derived from M2-polarized tumor-associated macrophage exosomes aggravates the growth and metastasis of osteosarcoma through SOCS3/JAK2/STAT3 axis. Aging (Albany NY). 13:19760–19775. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Hou Y, Zak J, Shi Y, Pratumchai I, Dinner B, Wang W, Qin K, Weber EW, Teijaro JR and Wu P: Transient EZH2 suppression by tazemetostat during in vitro expansion maintains T-cell stemness and improves adoptive T-cell therapy. Cancer Immunol Res. 13:47–65. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Tawbi HA, Burgess M, Bolejack V, Van Tine BA, Schuetze SM, Hu J, D'Angelo S, Attia S, Riedel RF, Priebat DA, et al: Pembrolizumab in advanced soft-tissue sarcoma and bone sarcoma (SARC028): A multicentre, two-cohort, single-arm, open-label, phase 2 trial. Lancet Oncol. 18:1493–1501. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Le Cesne A, Marec-Berard P, Blay JY, Gaspar N, Bertucci F, Penel N, Bompas E, Cousin S, Toulmonde M, Bessede A, et al: Programmed cell death 1 (PD-1) targeting in patients with advanced osteosarcomas: Results from the PEMBROSARC study. Eur J Cancer. 119:151–157. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Davis KL, Fox E, Merchant MS, Reid JM, Kudgus RA, Liu X, Minard CG, Voss S, Berg SL, Weigel BJ and Mackall CL: Nivolumab in children and young adults with relapsed or refractory solid tumours or lymphoma (ADVL1412): A multicentre, open-label, single-arm, phase 1–2 trial. Lancet Oncol. 21:541–550. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Davis KL, Fox E, Isikwei E, Reid JM, Liu X, Minard CG, Voss S, Berg SL, Weigel BJ and Mackall CL: A phase I/II trial of nivolumab plus ipilimumab in children and young adults with relapsed/refractory solid tumors: A children's oncology group study ADVL1412. Clin Cancer Res. 28:5088–5097. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Boye K, Longhi A, Guren T, Lorenz S, Næss S, Pierini M, Taksdal I, Lobmaier I, Cesari M, Paioli A, et al: Pembrolizumab in advanced osteosarcoma: Results of a single-arm, open-label, phase 2 trial. Cancer Immunol Immunother. 70:2617–2624. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Palmerini E, Pousa AL, Grignani G, Redondo A, Hindi N, Provenzano S, Sebio A, Martin JA, Valverde C, Trufero JM, et al: Nivolumab and sunitinib in patients with advanced bone sarcomas: A multicenter, single-arm, phase 2 trial. Cancer. 131:e356282025. View Article : Google Scholar : PubMed/NCBI | |
|
Yang C, Lai Y, Wang J, Chen Q, Pan Q, Xu C, Mo P, Guo G, Chen R, Liu N and Wu Y: Spatial heterogeneity of PD-1/PD-L1 defined osteosarcoma microenvironments at single-cell spatial resolution. Lab Invest. 104:1021432024. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang K, Li J, Zhang J, Wang L, Zhang Q, Ge J, Guo Y, Wang B, Huang Y, Yang T, et al: SDF-1/CXCR4 axis facilitates myeloid-derived suppressor cells accumulation in osteosarcoma microenvironment and blunts the response to anti-PD-1 therapy. Int Immunopharmacol. 75:1058182019. View Article : Google Scholar : PubMed/NCBI | |
|
Toda Y, Kohashi K, Yamada Y, Yoshimoto M, Ishihara S, Ito Y, Iwasaki T, Yamamoto H, Matsumoto Y and Nakashima Y: PD-L1 and IDO1 expression and tumor-infiltrating lymphocytes in osteosarcoma patients: Comparative study of primary and metastatic lesions. J Cancer Res Clin Oncol. 146:2607–2620. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Ribatti D: Mast cells and resistance to immunotherapy in cancer. Arch Immunol Ther Exp (Warsz). 71:112023. View Article : Google Scholar : PubMed/NCBI | |
|
Lee AQ, Hao C, Pan M, Ganjoo KN and Bui NQ: Histologic and immunologic factors associated with response to immune checkpoint inhibitors in advanced sarcoma. Clin Cancer Res. 31:678–684. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Huang X, Park H, Greene J, Pao J, Mulvey E, Zhou SX, Albert CM, Moy F, Sachdev D, Yee D, et al: IGF1R- and ROR1-Specific CAR T cells as a potential therapy for high risk sarcomas. PLoS One. 10:e01331522015. View Article : Google Scholar : PubMed/NCBI | |
|
Majzner RG, Theruvath JL, Nellan A, Heitzeneder S, Cui Y, Mount CW, Rietberg SP, Linde MH, Xu P, Rota C, et al: CAR T cells targeting B7-H3, a pan-cancer antigen, demonstrate potent preclinical activity against pediatric solid tumors and brain tumors. Clin Cancer Res. 25:2560–2574. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Talbot LJ, Chabot A, Funk A, Nguyen P, Wagner J, Ross A, Tillman H, Davidoff A, Gottschalk S and DeRenzo C: A novel orthotopic implantation technique for osteosarcoma produces spontaneous metastases and illustrates dose-dependent efficacy of B7-H3-CAR T cells. Front Immunol. 12:6917412021. View Article : Google Scholar : PubMed/NCBI | |
|
Lake JA, Woods E, Hoffmeyer E, Schaller KL, Cruz-Cruz J, Fernandez J, Tufa D, Kooiman B, Hall SC, Jones D, et al: Directing B7-H3 chimeric antigen receptor T cell homing through IL-8 induces potent antitumor activity against pediatric sarcoma. J Immunother Cancer. 12:e0092212024. View Article : Google Scholar : PubMed/NCBI | |
|
Talbot LJ, Chabot A, Ross AB, Beckett A, Nguyen P, Fleming A, Chockley PJ, Shepphard H, Wang J, Gottschalk S and DeRenzo C: Redirecting B7-H3.CAR T cells to chemokines expressed in osteosarcoma enhances homing and antitumor activity in preclinical models. Clin Cancer Res. 30:4434–4449. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Yu W, Zhu J, Wang J, Xia K, Liang C and Tao H: Anti-CD166/4-1BB chimeric antigen receptor T cell therapy for the treatment of osteosarcoma. J Exp Clin Cancer Res. 38:1682019. View Article : Google Scholar : PubMed/NCBI | |
|
Charan M, Dravid P, Cam M, Audino A, Gross AC, Arnold MA, Roberts RD, Cripe TP, Pertsemlidis A, Houghton PJ and Cam H: GD2-directed CAR-T cells in combination with HGF-targeted neutralizing antibody (AMG102) prevent primary tumor growth and metastasis in Ewing sarcoma. Int J Cancer. 146:3184–3195. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Englisch A, Altvater B, Kailayangiri S, Hartmann W and Rossig C: VEGFR2 as a target for CAR T cell therapy of Ewing sarcoma. Pediatr Blood Cancer. 67:e283132020. View Article : Google Scholar : PubMed/NCBI | |
|
Hsu K, Middlemiss S, Saletta F, Gottschalk S, McCowage GB and Kramer B: Chimeric antigen receptor-modified T cells targeting EphA2 for the immunotherapy of paediatric bone tumours. Cancer Gene Ther. 28:321–334. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Lu YJ, Chu H, Wheeler LW, Nelson M, Westrick E, Matthaei JF, Cardle II, Johnson A, Gustafson J, Parker N, et al: Preclinical evaluation of bispecific adaptor molecule controlled folate receptor CAR-T cell therapy with special focus on pediatric malignancies. Front Oncol. 9:1512019. View Article : Google Scholar : PubMed/NCBI | |
|
Watanabe Y, Tsukahara T, Murata K, Hamada S, Kubo T, Kanaseki T, Hirohashi Y, Emori M, Teramoto A, Nakatsugawa M, et al: Development of CAR-T cells specifically targeting cancer stem cell antigen DNAJB8 against solid tumours. Br J Cancer. 128:886–895. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Mensali N, Köksal H, Joaquina S, Wernhoff P, Casey NP, Romecin P, Panisello C, Rodriguez R, Vimeux L, Juzeniene A, et al: ALPL-1 is a target for chimeric antigen receptor therapy in osteosarcoma. Nat Commun. 14:33752023. View Article : Google Scholar : PubMed/NCBI | |
|
Wickman E, Lange S, Wagner J, Ibanez J, Tian L, Lu M, Sheppard H, Chiang J, Koo SC, Vogel P, et al: IL-18R supported CAR T cells targeting oncofetal tenascin C for the immunotherapy of pediatric sarcoma and brain tumors. J Immunother Cancer. 12:e0097432024. View Article : Google Scholar : PubMed/NCBI | |
|
Hu J, Yang Q, Zhang W, Du H, Chen Y, Zhao Q, Dao L, Xia X, Wall FN, Zhang Z, et al: Cell membrane-anchored and tumor-targeted IL-12 (attIL12)-T cell therapy for eliminating large and heterogeneous solid tumors. J Immunother Cancer. 10:e0036332022. View Article : Google Scholar : PubMed/NCBI | |
|
Yang Q, Hu J, Jia Z, Wang Q, Wang J, Dao LH, Zhang W, Zhang S, Xia X, Gorlick R and Li S: Membrane-anchored and tumor-targeted IL12 (attIL12)-PBMC therapy for osteosarcoma. Clin Cancer Res. 28:3862–3873. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Hui X, Farooq MA, Chen Y, Ajmal I, Ren Y, Xue M, Ji Y, Du B, Wu S and Jiang W: A novel strategy of co-expressing CXCR5 and IL-7 enhances CAR-T cell effectiveness in osteosarcoma. Front Immunol. 15:14620762024. View Article : Google Scholar : PubMed/NCBI | |
|
Adeshakin AO, Shi H, Perry SS, Sheppard H, Nguyen P, Sun X, Zhou P, Métais JY, Cunningham T, Anil KC, et al: Targeting Regnase-1 unleashes CAR T cell antitumor activity for osteosarcoma and creates a proinflammatory tumor microenvironment. bioRxiv. 23:2025.05.20.650777. 2025. | |
|
Hidalgo L, Somovilla-Crespo B, Garcia-Rodriguez P, Morales-Molina A, Rodriguez-Milla MA and Garcia-Castro J: Switchable CAR T cell strategy against osteosarcoma. Cancer Immunol Immunother. 72:2623–2633. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Z, Yan N, Sheng H, Xiao Y, Sun J and Cao C: Single-cell transcriptomic analysis reveals an immunosuppressive network between POSTN CAFs and ACKR1 ECs in TKI-resistant lung cancer. Cancer Genomics Proteomics. 21:65–78. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Altvater B, Kailayangiri S, Lanuza LF, Urban K, Greune L, Flügge M, Meltzer J, Farwick N, König S, Görlich D, et al: HLA-G and HLA-E immune checkpoints are widely expressed in ewing sarcoma but have limited functional impact on the effector functions of antigen-specific CAR T cells. Cancers (Basel). 13:28572021. View Article : Google Scholar : PubMed/NCBI | |
|
Pezzella M, Quintarelli C, Quadraccia MC, Sarcinelli A, Manni S, Iaffaldano L, Ottaviani A, Ciccone R, Camera A, D'Amore ML, et al: Tumor-derived G-CSF induces an immunosuppressive microenvironment in an osteosarcoma model, reducing response to CAR.GD2 T-cells. J Hematol Oncol. 17:1272024. View Article : Google Scholar : PubMed/NCBI | |
|
Kaczanowska S, Murty T, Alimadadi A, Contreras CF, Duault C, Subrahmanyam PB, Reynolds W, Gutierrez NA, Baskar R, Wu CJ, et al: Immune determinants of CAR-T cell expansion in solid tumor patients receiving GD2 CAR-T cell therapy. Cancer Cell. 42:35–51.e8. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Arnett AB and Heczey A: GD2-CAR CAR T cells in patients with osteosarcoma and neuroblastoma-it's not only the T cells that matter. Cancer Cell. 42:8–10. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Lu YC, Parker LL, Lu T, Zheng Z, Toomey MA, White DE, Yao X, Li YF, Robbins PF, Feldman SA, et al: Treatment of patients with metastatic cancer using a major histocompatibility complex class II-restricted T-cell receptor targeting the cancer germline antigen MAGE-A3. J Clin Oncol. 35:3322–3329. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Hamada S, Tsukahara T, Watanabe Y, Murata K, Mizue Y, Kubo T, Kanaseki T, Hirohashi Y, Emori M, Nakatsugawa M, et al: Development of T cell receptor-engineered T cells targeting the sarcoma-associated antigen papillomavirus binding factor. Cancer Sci. 115:24–35. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Ketola A, Hinkkanen A, Yongabi F, Furu P, Määttä AM, Liimatainen T, Pirinen R, Björn M, Hakkarainen T, Mäkinen K, et al: Oncolytic Semliki forest virus vector as a novel candidate against unresectable osteosarcoma. Cancer Res. 68:8342–8350. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Hingorani P, Zhang W, Lin J, Liu L, Guha C and Kolb EA: Systemic administration of reovirus (Reolysin) inhibits growth of human sarcoma xenografts. Cancer. 117:1764–1774. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Christie JD, Appel N, Zhang L, Lowe K, Kilbourne J, Daggett-Vondras J, Elliott N, Lucas AR, Blattman JN, Rahman MM and McFadden G: Systemic delivery of mLIGHT-armed myxoma virus is therapeutic for later-stage syngeneic murine lung metastatic osteosarcoma. Cancers (Basel). 14:3372022. View Article : Google Scholar : PubMed/NCBI | |
|
Laborda E, Puig-Saus C, Rodriguez-García A, Moreno R, Cascalló M, Pastor J and Alemany R: A pRb-responsive, RGD-modified, and hyaluronidase-armed canine oncolytic adenovirus for application in veterinary oncology. Mol Ther. 22:986–998. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Musser ML, Berger EP, Tripp CD, Clifford CA, Bergman PJ and Johannes CM: Safety evaluation of the canine osteosarcoma vaccine, live Listeria vector. Vet Comp Oncol. 19:92–98. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Chen A, Qiu Y, Yen YT, Wang C, Wang X, Li C, Wei Z, Li L, Yu L, Liu F and Li R: Expression of cancer-testis antigens MAGE-A1, MAGE-A4, NY-ESO-1 and PRAME in bone and soft tissue sarcomas: The experience from a single center in China. Cancer Med. 14:e707502025. View Article : Google Scholar : PubMed/NCBI | |
|
Gu J, Ji Z, Li D and Dong Q: Proliferation inhibition and apoptosis promotion by dual silencing of VEGF and Survivin in human osteosarcoma. Acta Biochim Biophys Sin (Shanghai). 51:59–67. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Cheng H, Li W, Wu H and Yang Y: Highly-expressed P2X7 receptor promotes growth and metastasis of human HOS/MNNG osteosarcoma cells via PI3K/Akt/GSK3β/β-catenin and mTOR/HIF1α/VEGF signaling. Int J Cancer. 145:1068–1082. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Dong J, Chai X, Xue Y, Shen S, Chen Z, Wang Z, Yinwang E, Wang S, Chen L, Wu F, et al: ZIF-8-encapsulated pexidartinib delivery via targeted peptide-modified M1 macrophages attenuates MDSC-mediated immunosuppression in osteosarcoma. Small. 20:e23090382024. View Article : Google Scholar : PubMed/NCBI | |
|
Gutiérrez LM, Alvarez MV, Yang Y, Spinelli F, Cantero MJ, Alaniz L, García MG, Kleinerman ES, Correa A and Bolontrade MF: Up-regulation of pro-angiogenic molecules and events does not relate with an angiogenic switch in metastatic osteosarcoma cells but to cell survival features. Apoptosis. 26:447–459. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
LShijie L, Zhen P, Kang Q, Hua G, Qingcheng Y and Dongdong C: Deregulation of CLTC interacts with TFG, facilitating osteosarcoma via the TGF-beta and AKT/mTOR signaling pathways. Clin Transl Med. 11:e3772021. View Article : Google Scholar : PubMed/NCBI | |
|
Xie L, Liang X, Xu J, Sun X, Liu K, Sun K, Li Y, Tang X, Li X, Zhan X, et al: Exploratory study of an anti-PD-L1/TGF-β antibody, TQB2858, in patients with refractory or recurrent osteosarcoma and alveolar soft part sarcoma: A report from Chinese sarcoma study group (TQB2858-Ib-02). BMC Cancer. 23:8682023. View Article : Google Scholar : PubMed/NCBI | |
|
Hu J, Lazar AJ, Ingram D, Wang WL, Zhang W, Jia Z, Ragoonanan D, Wang J, Xia X, Mahadeo K, et al: Cell membrane-anchored and tumor-targeted IL-12 T-cell therapy destroys cancer-associated fibroblasts and disrupts extracellular matrix in heterogenous osteosarcoma xenograft models. J Immunother Cancer. 12:e0069912024. View Article : Google Scholar : PubMed/NCBI | |
|
Kong D, Ying B, Zhang J and Ying H: The anti-osteosarcoma property of ailanthone through regulation of miR-126/VEGF-A axis. Artif Cells Nanomed Biotechnol. 47:3913–3919. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Li B, Dang X, Duan J, Zhang G, Zhang J and Song Q: SIX4 upregulates IDH1 and metabolic reprogramming to promote osteosarcoma progression. J Cell Mol Med. 27:259–265. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Shan J, Lin Z, Rashid H, Huang P, Qiang L, Liu Y, Shen G, Li Y, Cui J, Su Z, et al: A novel therapeutic strategy for osteosarcoma using anti-GD2 ADC and EZH2 inhibitor. Biomark Res. 13:872025. View Article : Google Scholar : PubMed/NCBI | |
|
Taylor AM, Sheng J, Ng PKS, Harder JM, Kumar P, Ahn JY, Cao Y, Dzis AM, Jillette NL, Goodspeed A, et al: Immunosuppressive tumor microenvironment of osteosarcoma. Cancers (Basel). 17:21172025. View Article : Google Scholar : PubMed/NCBI | |
|
Gassmann H, Schneider K, Evdokimova V, Ruzanov P, Schober SJ, Xue B, von Heyking K, Thiede M, Richter GHS, Pfaffl MW, et al: Ewing sarcoma-derived extracellular vesicles impair dendritic cell maturation and function. Cells. 10:20812021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang L, Dou X, Xie L, Zhou X, Liu Y, Liu J and Liu X: Metabolic landscape of osteosarcoma: Reprogramming of lactic acid metabolism and metabolic communication. Front Biosci (Landmark Ed). 29:832024. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Wang X, Liu Y, Xu J, Zhu J, Zheng Y and Qi Q: A novel hypoxia- and lactate metabolism-related prognostic signature to characterize the immune landscape and predict immunotherapy response in osteosarcoma. Front Immunol. 15:14670522024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu J, Simayi N, Wan R and Huang W: CAR T targets and microenvironmental barriers of osteosarcoma. Cytotherapy. 24:567–576. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Nguyen DT, Ogando-Rivas E, Liu R, Wang T, Rubin J, Jin L, Tao H, Sawyer WW, Mendez-Gomez HR, Cascio M, et al: CAR T cell locomotion in solid tumor microenvironment. Cells. 11:19742022. View Article : Google Scholar : PubMed/NCBI | |
|
Chim LK, Williams IL, Bashor CJ and Mikos AG: Tumor-associated macrophages induce inflammation and drug resistance in a mechanically tunable engineered model of osteosarcoma. Biomaterials. 296:1220762023. View Article : Google Scholar : PubMed/NCBI | |
|
Cheng JN, Jin Z, Su C, Jiang T, Zheng X, Guo J, Li X, Chu H, Jia J, Zhou Q, et al: Bone metastases diminish extraosseous response to checkpoint blockade immunotherapy through osteopontin-producing osteoclasts. Cancer Cell. 43:1093–1107.e9. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Martinov T, McKenna KM, Tan WH, Collins EJ, Kehret AR, Linton JD, Olsen TM, Shobaki N and Rongvaux A: Building the next generation of humanized hemato-lymphoid system mice. Front Immunol. 12:6438522021. View Article : Google Scholar : PubMed/NCBI | |
|
Yin L and Wang XJ, Chen DX, Liu XN and Wang XJ: Humanized mouse model: A review on preclinical applications for cancer immunotherapy. Am J Cancer Res. 10:4568–4584. 2020.PubMed/NCBI | |
|
Bacac M, Klein C and Umana P: CEA TCB: A novel head-to-tail 2:1 T cell bispecific antibody for treatment of CEA-positive solid tumors. Oncoimmunology. 5:e12034982016. View Article : Google Scholar : PubMed/NCBI | |
|
Lehmann S, Perera R, Grimm HP, Sam J, Colombetti S, Fauti T, Fahrni L, Schaller T, Freimoser-Grundschober A, Zielonka J, et al: In vivo fluorescence imaging of the activity of CEA TCB, a novel T-Cell bispecific antibody, reveals highly specific tumor targeting and fast induction of T-Cell-mediated tumor killing. Clin Cancer Res. 22:4417–4427. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Sun Z, Gu M, Yang Z, Shi L, Zhao L, Zheng M, Wang Y, Zhang W, Han K and Tang N: Application of humanized mice in the safety experiments of antibody drugs. Animal Model Exp Med. 8:1023–1032. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Gail LM, Schell KJ, Łacina P, Strobl J, Bolton SJ, Ulriksen ES, Bogunia-Kubik K, Greinix H, Crossland RE, Inngjerdingen M and Stary G: Complex interactions of cellular players in chronic Graft-versus-Host Disease. Front Immunol. 14:11994222023. View Article : Google Scholar : PubMed/NCBI | |
|
Jackett KN, DaPonte DL, Soman P and Horton JA: Modeling the effects of radiation on the bone tumor microenvironment: Opportunities for exploring combination therapies in microphysiologic systems. Cell Mol Biol Lett. 30:972025. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng BW, Zheng BY, Niu HQ, Yang YF, Zhu GQ, Li J, Zhang TL and Zou MX: Tumor growth rate in spinal giant cell tumors of bone and association with the immune microenvironment and denosumab treatment responsiveness: A multicenter study. Neurosurgery. 92:524–537. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Cheng X, Peng T, Chu T, Yang Y, Liu J, Gao Q, Cao C and Wei J: Application of single-cell and spatial omics in deciphering cellular hallmarks of cancer drug response and resistance. J Hematol Oncol. 18:702025. View Article : Google Scholar : PubMed/NCBI | |
|
Chen J, Chen F, Zhang H, Hu Y, Zhou X, Weng X, Bao G and Ding X: Multi-omics-based construction of a palmitoylation-driven prognostic model reveals tumor immune phenotypes in osteosarcoma. Discov Oncol. 16:15442025. View Article : Google Scholar : PubMed/NCBI | |
|
Yu B, Pacureanu A, Olivier C, Cloetens P and Peyrin F: Assessment of the human bone lacuno-canalicular network at the nanoscale and impact of spatial resolution. Sci Rep. 10:45672020. View Article : Google Scholar : PubMed/NCBI | |
|
Lu T, Park S, Zhu J, Wang Y, Zhan X, Wang X, Wang L, Zhu H and Wang T: Overcoming Expressional drop-outs in lineage reconstruction from single-cell RNA-sequencing data. Cell Rep. 34:1085892021. View Article : Google Scholar : PubMed/NCBI | |
|
Leipold MD, Obermoser G, Fenwick C, Kleinstuber K, Rashidi N, McNevin JP, Nau AN, Wagar LE, Rozot V, Davis MM, et al: Comparison of CyTOF assays across sites: Results of a six-center pilot study. J Immunol Methods. 453:37–43. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Lacinski RA, Dziadowicz SA, Roth CA, Ma L, Melemai VK, Fitzpatrick B, Chaharbakhshi E, Heim T, Lohse I, Schoedel KE, et al: Spatial multiplexed immunofluorescence analysis reveals coordinated cellular networks associated with overall survival in metastatic osteosarcoma. Bone Res. 12:552024. View Article : Google Scholar : PubMed/NCBI | |
|
Krieg C, Nowicka M, Guglietta S, Schindler S, Hartmann FJ, Weber LM, Dummer R, Robinson MD, Levesque MP, Becher B, et al: High-dimensional single-cell analysis predicts response to anti-PD-1 immunotherapy. Nat Med. 24:144–153. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang Y, Wang J, Sun M, Zuo D, Wang H, Shen J, Jiang W, Mu H, Ma X, Yin F, et al: Multi-omics analysis identifies osteosarcoma subtypes with distinct prognosis indicating stratified treatment. Nat Commun. 13:72072022. View Article : Google Scholar : PubMed/NCBI | |
|
Keung EZ, Burgess M, Salazar R, Parra ER, Rodrigues-Canales J, Bolejack V, Van Tine BA, Schuetze SM, Attia S, Riedel RF, et al: Correlative analyses of the SARC028 trial reveal an association between sarcoma-associated immune infiltrate and response to pembrolizumab. Clin Cancer Res. 26:1258–1266. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Gu L, Peng C, Liang Q, Huang Q, Lv D, Zhao H, Zhang Q, Zhang Y, Zhang P, Li S, et al: Neoadjuvant toripalimab plus axitinib for clear cell renal cell carcinoma with inferior vena cava tumor thrombus: NEOTAX, a phase 2 study. Signal Transduct Target Ther. 9:2642024. View Article : Google Scholar : PubMed/NCBI | |
|
Brekken C, Bruland ØS and de Lange Davies C: Interstitial fluid pressure in human osteosarcoma xenografts: Significance of implantation site and the response to intratumoral injection of hyaluronidase. Anticancer Res. 20:3503–3512. 2000.PubMed/NCBI | |
|
Wu H, Luo Y, Xu D, Ke X and Ci T: Low molecular weight heparin modified bone targeting liposomes for orthotopic osteosarcoma and breast cancer bone metastatic tumors. Int J Biol Macromol. 164:2583–2597. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Meng H, Mai WX, Zhang H, Xue M, Xia T, Lin S, Wang X, Zhao Y, Ji Z, Zink JI and Nel AE: Codelivery of an optimal drug/siRNA combination using mesoporous silica nanoparticles to overcome drug resistance in breast cancer in vitro and in vivo. ACS Nano. 7:994–1005. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Kontulainen SA, Macdonald HM and McKay HA: Change in cortical bone density and its distribution differs between boys and girls during puberty. J Clin Endocrinol Metab. 91:2555–2561. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Dai XM, Ryan GR, Hapel AJ, Dominguez MG, Russell RG, Kapp S, Sylvestre V and Stanley ER: Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood. 99:111–120. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Joseph GJ, Vecchi Iii LA, Uppuganti S, Kane JF, Durdan M, Hill P, McAdoo AG, Tanaka H, Kell D, Searcy MB, et al: Programmed cell death protein 1 (PD-1) blockade regulates skeletal remodeling in a sex- and age-dependent manner. J Bone Miner Res. 40:950–964. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
DeSelm C, Palomba ML, Yahalom J, Hamieh M, Eyquem J, Rajasekhar VK and Sadelain M: Low-dose radiation conditioning enables CAR T cells to mitigate antigen escape. Mol Ther. 26:2542–2552. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Yu D, Kahen E, Cubitt CL, McGuire J, Kreahling J, Lee J, Altiok S, Lynch CC, Sullivan DM and Reed DR: Identification of synergistic, clinically achievable, combination therapies for osteosarcoma. Sci Rep. 5:169912015. View Article : Google Scholar : PubMed/NCBI | |
|
Gargett T, Ebert LM, Truong NTH, Kollis PM, Sedivakova K, Yu W, Yeo ECF, Wittwer NL, Gliddon BL, Tea MN, et al: GD2-targeting CAR-T cells enhanced by transgenic IL-15 expression are an effective and clinically feasible therapy for glioblastoma. J Immunother Cancer. 10:e0051872022. View Article : Google Scholar : PubMed/NCBI | |
|
Rahouma M, Karim NA, Baudo M, Yahia M, Kamel M, Eldessouki I, Abouarab A, Saad I, Elmously A, Gray KD, et al: Cardiotoxicity with immune system targeting drugs: A meta-analysis of anti-PD/PD-L1 immunotherapy randomized clinical trials. Immunotherapy. 11:725–735. 2019. View Article : Google Scholar : PubMed/NCBI |