|
1
|
El-Kenawi A, Hänggi K and Ruffell B: The
immune microenvironment and cancer metastasis. Cold Spring Harb
Perspect Med. 10:a0374242020. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Seyfried TN and Huysentruyt LC: On the
origin of cancer metastasis. Crit Rev Oncog. 18:43–73. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Peitzsch C, Tyutyunnykova A, Pantel K and
Dubrovska A: Cancer stem cells: The root of tumor recurrence and
metastases. Semin Cancer Biol. 44:10–24. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Sulekha Suresh D and Guruvayoorappan C:
Molecular principles of tissue invasion and metastasis. Am J
Physiol Cell Physiol. 324:C971–C991. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Jin K, Li T, van Dam H, Zhou F and Zhang
L: Molecular insights into tumour metastasis: Tracing the dominant
events. J Pathol. 241:567–577. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Kalita B and Coumar MS: Deciphering
molecular mechanisms of metastasis: Novel insights into targets and
therapeutics. Cell Oncol (Dordr). 44:751–775. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Smolarz B, Łukasiewicz H, Samulak D,
Piekarska E, Kołaciński R and Romanowicz H: Lung
cancer-epidemiology, pathogenesis, treatment and molecular aspect
(review of literature). Int J Mol Sci. 26:20492025. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Orooji N, Babaei S, Fadaee M,
Abbasi-Kenarsari H, Eslami M, Kazemi T and Yousefi B: Novel
therapeutic approaches for non-small cell lung cancer: An updated
view. J Drug Target. 33:1306–1321. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Zhang Q, Abdo R, Iosef C, Kaneko T,
Cecchini M, Han VK and Li SS: The spatial transcriptomic landscape
of non-small cell lung cancer brain metastasis. Nat Commun.
13:59832022. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Xie S, Wu Z, Qi Y, Wu B and Zhu X: The
metastasizing mechanisms of lung cancer: Recent advances and
therapeutic challenges. Biomed Pharmacother. 138:1114502021.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Kim SY, Park HS and Chiang AC: Small cell
lung cancer: A review. JAMA. 333:1906–1917. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Malapelle U, Ricciuti B, Baglivo S, Pepe
F, Pisapia P, Anastasi P, Tazza M, Sidoni A, Liberati AM, Bellezza
G, et al: Osimertinib. Recent Results Cancer Res. 211:257–276.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Yang JC, Ahn MJ, Kim DW, Ramalingam SS,
Sequist LV, Su WC, Kim SW, Kim JH, Planchard D, Felip E, et al:
Osimertinib in pretreated T790M-positive advanced non-small-cell
lung cancer: AURA study phase II extension component. J Clin Oncol.
35:1288–1296. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Patil BR, Bhadane KV, Ahmad I, Agrawal YJ,
Shimpi AA, Dhangar MS and Patel HM: Exploring the structural
activity relationship of the Osimertinib: A covalent inhibitor of
double mutant EGFRL858R/T790M tyrosine kinase for the
treatment of non-small cell lung cancer (NSCLC). Bioorg Med Chem.
109:1177962024. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Zhan Z, Chen B, Xu S, Lin R, Chen H, Ma X,
Lin X, Huang W, Zhuo C, Chen Y and Guo Z: Neoadjuvant chemotherapy
combined with antiangiogenic therapy and immune checkpoint
inhibitors for the treatment of locally advanced gastric cancer: A
real-world retrospective cohort study. Front Immunol.
16:15182172025. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Chen Y, Chen Z, Chen R, Fang C, Zhang C,
Ji M and Yang X: Immunotherapy-based combination strategies for
treatment of EGFR-TKI-resistant non-small-cell lung cancer. Future
Oncol. 18:1757–1775. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Li J, Yao X, Qiu L, Zhang R and Wang G:
Research progress in immune checkpoint inhibitors combination
therapy applied to non-small cell lung cancer after EGFR
mutation-targeted therapy resistance. Zhongguo Fei Ai Za Zhi.
26:392–399. 2023.(In Chinese). PubMed/NCBI
|
|
18
|
Gotwals P, Cameron S, Cipolletta D,
Cremasco V, Crystal A, Hewes B, Mueller B, Quaratino S,
Sabatos-Peyton C, Petruzzelli L, et al: Prospects for combining
targeted and conventional cancer therapy with immunotherapy. Nat
Rev Cancer. 17:286–301. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Rizzo A, Ricci AD and Brandi G: PD-L1,
TMB, MSI, and other predictors of response to immune checkpoint
inhibitors in biliary tract cancer. Cancers (Basel). 13:5582021.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Hektoen HH, Tsuruda KM, Fjellbirkeland L,
Nilssen Y, Brustugun OT and Andreassen BK: Real-world evidence for
pembrolizumab in non-small cell lung cancer: A nationwide cohort
study. Br J Cancer. 132:93–102. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Griffiths AD, Young RO, Yuan Y, Chaudhary
MA, Lee A, Gordon J and McEwan P: Cost-effectiveness of nivolumab
plus ipilimumab versus chemotherapy for previously untreated
metastatic NSCLC using mixture-cure survival analysis based on
CheckMate 227 5-year data. Pharmacoecon Open. 9:247–257. 2025.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Du Z, Ge X, Li Y, Qin Y, Fan H, Lv Y, Du X
and Liu Z: Clinical characteristics and survival outcomes of
long-term responders for advanced nonsmall cell lung cancer
patients with first-line PD-1/PD-L1 inhibitors: A multicenter
retrospective study. Postgrad Med J. 101:1072–1080. 2025.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Ul Bassar W, Ogedegbe OJ, Qammar A, Sumia
F, Ul Islam M, Chaudhari SS, Ntukidem OL and Khan A: Efficacy of
tislelizumab in lung cancer treatment: A systematic review and
meta-analysis of randomized controlled trials. Cureus.
17:e806092025.PubMed/NCBI
|
|
24
|
Prasad CP, Tripathi SC, Kumar M and
Mohapatra P: Passage number of cancer cell lines: Importance,
intricacies, and way-forward. Biotechnol Bioeng. 120:2049–2055.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Mestas J and Hughes CCW: Of mice and not
men: Differences between mouse and human immunology. J Immunol.
172:2731–2738. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Guan X, Wu D, Zhu H, Zhu B, Wang Z, Xing
H, Zhang X, Yan J, Guo Y and Lu Y: 3D pancreatic ductal
adenocarcinoma desmoplastic model: Glycolysis facilitating stemness
via ITGAV-PI3K-AKT-YAP1. Biomater Adv. 170:2142152025. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Smabers LP, Wensink E, Verissimo CS,
Koedoot E, Pitsa KC, Huismans MA, Higuera Barón C, Doorn M,
Valkenburg-van Iersel LB, Cirkel GA, et al: Organoids as a
biomarker for personalized treatment in metastatic colorectal
cancer: Drug screen optimization and correlation with patient
response. J Exp Clin Cancer Res. 43:612024. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Zhao KY, Du YX, Cao HM, Su LY, Su XL and
Li X: The biological macromolecules constructed Matrigel for
cultured organoids in biomedical and tissue engineering. Colloids
Surf B Biointerfaces. 247:1144352025. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Fu S, Zhu X, Huang F and Chen X: Anti-PEG
antibodies and their biological impact on PEGylated drugs:
Challenges and strategies for optimization. Pharmaceutics.
17:10742025. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Zhu L, Yuhan J, Yu H, Zhang B, Huang K and
Zhu L: Decellularized extracellular matrix for remodeling
bioengineering organoid's microenvironment. Small. 19:e22077522023.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
He S, Nakada D and Morrison SJ: Mechanisms
of stem cell self-renewal. Annu Rev Cell Dev Biol. 25:377–406.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Dalton S: Linking the cell cycle to cell
fate decisions. Trends Cell Biol. 25:592–600. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Corrò C, Novellasdemunt L and Li VSW: A
brief history of organoids. Am J Physiol Cell Physiol.
319:C151–C165. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Sato T, Vries RG, Snippert HJ, van de
Wetering M, Barker N, Stange DE, van Es JH, Abo A, Kujala P, Peters
PJ and Clevers H: Single Lgr5 stem cells build crypt-villus
structures in vitro without a mesenchymal niche. Nature.
459:262–265. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Zhou Y, Song H and Ming GL: Genetics of
human brain development. Nat Rev Genet. 25:26–45. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Li Y, Zeng PM, Wu J and Luo ZG: Advances
and applications of brain organoids. Neurosci Bull. 39:1703–1716.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Kanupriya K, Pal Verma S, Sharma V, Mishra
I and Mishra R: Advances in human brain organoids: Methodological
innovations and future directions for drug discovery. Curr Drug Res
Rev. 17:360–374. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Xu H, Jiao D, Liu A and Wu K: Tumor
organoids: Applications in cancer modeling and potentials in
precision medicine. J Hematol Oncol. 15:582022. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Li Z, Yu L, Chen D, Meng Z, Chen W and
Huang W: Protocol for generation of lung adenocarcinoma organoids
from clinical samples. STAR Protoc. 2:1002392020. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Phifer CJ, Bergdorf KN, Bechard ME,
Vilgelm A, Baregamian N, McDonald OG, Lee E and Weiss VL: Obtaining
patient-derived cancer organoid cultures via fine-needle
aspiration. STAR Protoc. 2:1002202020. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Kim SY, Kim SM, Lim S, Lee JY, Choi SJ,
Yang SD, Yun MR, Kim CG, Gu SR, Park C, et al: Modeling clinical
responses to targeted therapies by patient-derived organoids of
advanced lung adenocarcinoma. Clin Cancer Res. 27:4397–4409. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Mazzocchi A, Devarasetty M, Herberg S,
Petty WJ, Marini F, Miller L, Kucera G, Dukes DK, Ruiz J, Skardal A
and Soker S: Pleural effusion aspirate for use in 3D lung cancer
modeling and chemotherapy screening. ACS Biomater Sci Eng.
5:1937–1943. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Mazzocchi A, Dominijanni A and Soker S:
Pleural effusion aspirate for use in 3D lung cancer modeling and
chemotherapy screening. Methods Mol Biol. 2394:471–483. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Wang L, Yu Y, Fang Y, Li Y, Yu W, Wang Z,
Lv J, Wang R and Liang S: Malignant pleural effusion facilitates
the establishment and maintenance of tumor organoid biobank with
multiple patient-derived lung tumor cell sources. Exp Hematol
Oncol. 13:1152024. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Driehuis E, Kretzschmar K and Clevers H:
Establishment of patient-derived cancer organoids for
drug-screening applications. Nat Protoc. 15:3380–3409. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Taverna JA, Hung CN, Williams M, Williams
R, Chen M, Kamali S, Sambandam V, Hsiang-Ling Chiu C, Osmulski PA,
Gaczynska ME, et al: Ex vivo drug testing of patient-derived lung
organoids to predict treatment responses for personalized medicine.
Lung Cancer. 190:1075332024. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Xie C, Gu A, Khan M, Yao X, Chen L, He J,
Yuan F, Wang P, Yang Y, Wei Y, et al: Opportunities and challenges
of hepatocellular carcinoma organoids for targeted drugs
sensitivity screening. Front Oncol. 12:11054542023. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Demyan L, Habowski AN, Plenker D, King DA,
Standring OJ, Tsang C, St Surin L, Rishi A, Crawford JM, Boyd J, et
al: Pancreatic cancer patient-derived organoids can predict
response to neoadjuvant chemotherapy. Ann Surg. 276:450–462. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Merrill NM, Kaffenberger SD, Bao L,
Vandecan N, Goo L, Apfel A, Cheng X, Qin Z, Liu CJ, Bankhead A, et
al: Integrative drug screening and multiomic characterization of
patient-derived bladder cancer organoids reveal novel molecular
correlates of gemcitabine response. Eur Urol. 86:434–444. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Hughes CS, Postovit LM and Lajoie GA:
Matrigel: A complex protein mixture required for optimal growth of
cell culture. Proteomics. 10:1886–1890. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Seiji Y, Ito T, Nakamura Y,
Nakaishi-Fukuchi Y, Matsuo A, Sato N and Nogawa H: Alveolus-like
organoid from isolated tip epithelium of embryonic mouse lung. Hum
Cell. 32:103–113. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Bhattacharya S, Calar K and de la Puente
P: Mimicking tumor hypoxia and tumor-immune interactions employing
three-dimensional in vitro models. J Exp Clin Cancer Res.
39:752020. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Poggio F, Brofiga M, Callegari F, Tedesco
M and Massobrio P: Developmental conditions and culture medium
influence the neuromodulated response of in vitro cortical
networks. Annu Int Conf IEEE Eng Med Biol Soc. 2023:1–4.
2023.PubMed/NCBI
|
|
54
|
Valian N, Heravi M, Ahmadiani A and
Dargahi L: Comparison of rat primary midbrain neurons cultured in
DMEM/F12 and neurobasal mediums. Basic Clin Neurosci. 12:205–212.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Ziółkowska-Suchanek I: Mimicking tumor
hypoxia in non-small cell lung cancer employing three-dimensional
in vitro models. Cells. 10:1412021. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Li Y, Zou J, Fang Y, Zuo J, Wang R and
Liang S: Lung tumor organoids migrate as cell clusters containing
cancer stem cells under hypoxic condition. Biol Cell.
117:e24000812025. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Liu C, Pei M, Li Q and Zhang Y:
Decellularized extracellular matrix mediates tissue construction
and regeneration. Front Med. 16:56–82. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Pasupuleti V, Vora L, Prasad R, Nandakumar
DN and Khatri DK: Glioblastoma preclinical models: Strengths and
weaknesses. Biochim Biophys Acta Rev Cancer. 1879:1890592024.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Cui X, Liu H, Liu Y, Yu Z, Wang D, Wei W
and Wang S: Tissue-specific decellularized extracellular matrix
rich in collagen, glycoproteins, and proteoglycans and its
applications in advanced organoid engineering: A review. Int J Biol
Macromol. 315:1444692025. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Low RRJ, Fung KY, Gao H, Preaudet A,
Dagley LF, Yousef J, Lee B, Emery-Corbin SJ, Nguyen PM, Larsen RH,
et al: S100 family proteins are linked to organoid morphology and
EMT in pancreatic cancer. Cell Death Differ. 30:1155–1165. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Jeong SR and Kang M: Exploring
tumor-immune interactions in co-culture models of T cells and tumor
organoids derived from patients. Int J Mol Sci. 24:146092023.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Yuan J, Li X and Yu S: Cancer organoid
co-culture model system: Novel approach to guide precision
medicine. Front Immunol. 13:10613882023. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Liu Y, Chudgar N, Mastrogiacomo B, He D,
Lankadasari MB, Bapat S, Jones GD, Sanchez-Vega F, Tan KS, Schultz
N, et al: A germline SNP in BRMS1 predisposes patients with lung
adenocarcinoma to metastasis and can be ameliorated by targeting
c-fos. Sci Transl Med. 14:eabo10502022. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Naranjo S, Cabana CM, LaFave LM, Romero R,
Shanahan SL, Bhutkar A, Westcott PMK, Schenkel JM, Ghosh A, Liao
LZ, et al: Modeling diverse genetic subtypes of lung adenocarcinoma
with a next-generation alveolar type 2 organoid platform. Genes
Dev. 36:936–949. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Kawai S, Nakano K, Tamai K, Fujii E,
Yamada M, Komoda H, Sakumoto H, Natori O and Suzuki M: Generation
of a lung squamous cell carcinoma three-dimensional culture model
with keratinizing structures. Sci Rep. 11:243052021. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Qu F, Brough SC, Michno W, Madubata CJ,
Hartmann GG, Puno A, Drainas AP, Bhattacharya D, Tomasich E, Lee
MC, et al: Crosstalk between small-cell lung cancer cells and
astrocytes mimics brain development to promote brain metastasis.
Nat Cell Biol. 25:1506–1519. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Quaranta V and Linkous A: Organoids as a
systems platform for SCLC brain metastasis. Front Oncol.
12:8819892022. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Meng Y, Shu X, Yang J, Liang Y, Zhu M,
Wang X, Li Y and Kong F: Lung cancer organoids: A new strategy for
precision medicine research. Transl Lung Cancer Res. 14:575–590.
2025. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Butterfield GL, Reisman SJ, Iglesias N and
Gersbach CA: Gene regulation technologies for gene and cell
therapy. Mol Ther. 33:2104–2122. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Li L, Feng J, Zhao S, Rong Z and Lin Y:
SOX9 inactivation affects the proliferation and differentiation of
human lung organoids. Stem Cell Res Ther. 12:3432021. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Gmeiner WH, Miller LD, Chou JW,
Dominijanni A, Mutkus L, Marini F, Ruiz J, Dotson T, Thomas KW,
Parks G and Bellinger CR: Dysregulated pyrimidine biosynthesis
contributes to 5-FU resistance in SCLC patient-derived organoids
but response to a novel polymeric fluoropyrimidine, CF10. Cancers
(Basel). 12:7882020. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Zhang Q and Zhang M: Recent advances in
lung cancer organoid (tumoroid) research (review). Exp Ther Med.
28:3832024. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Curvello R and Garnier G: Cationic
cross-linked nanocellulose-based matrices for the growth and
recovery of intestinal organoids. Biomacromolecules. 22:701–709.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Feng Y, He D and An X: Hydrogel
innovations for 3D organoid culture. Biomed Mater. 20:2025.
View Article : Google Scholar
|
|
75
|
Luo L, Liu L, Ding Y, Dong Y and Ma M:
Advances in biomimetic hydrogels for organoid culture. Chem Commun
(Camb). 59:9675–9686. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Li C, An N, Song Q, Hu Y, Yin W, Wang Q,
Le Y, Pan W, Yan X, Wang Y and Liu J: Enhancing organoid culture:
Harnessing the potential of decellularized extracellular matrix
hydrogels for mimicking microenvironments. J Biomed Sci. 31:962024.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Ishigamori R, Naruse M, Hirata A, Maru Y,
Hippo Y and Imai T: The potential of organoids in toxicologic
pathology: Histopathological and immunohistochemical evaluation of
a mouse normal tissue-derived organoid-based carcinogenesis model.
J Toxicol Pathol. 35:211–223. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Yoshida GJ: Applications of
patient-derived tumor xenograft models and tumor organoids. J
Hematol Oncol. 13:42020. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Kabraji S, Ni J, Sammons S, Li T, Van
Swearingen AED, Wang Y, Pereslete A, Hsu L, DiPiro PJ, Lascola C,
et al: Preclinical and clinical efficacy of trastuzumab deruxtecan
in breast cancer brain metastases. Clin Cancer Res. 29:174–182.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Sereti E, Karagianellou T, Kotsoni I,
Magouliotis D, Kamposioras K, Ulukaya E, Sakellaridis N,
Zacharoulis D and Dimas K: Patient Derived Xenografts (PDX) for
personalized treatment of pancreatic cancer: Emerging allies in the
war on a devastating cancer? J Proteomics. 188:107–118. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Jeong H, Moon HE, Yun S, Cho SW, Park HR,
Park SH, Myung K, Kwon T and Paek SH: Enrichment of deleterious
mutated genes involved in ciliary function and histone modification
in brain cancer patient-derived xenograft models. Biomedicines.
11:29342023. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Liu W, Cui Y, Zheng X, Yu K and Sun G:
Application status and future prospects of the PDX model in lung
cancer. Front Oncol. 13:10985812023. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Wang E, Xiang K, Zhang Y and Wang XF:
Patient-derived organoids (PDOs) and PDO-derived xenografts
(PDOXs): New opportunities in establishing faithful pre-clinical
cancer models. J Natl Cancer Cent. 2:263–276. 2022.PubMed/NCBI
|
|
84
|
Gao J, Lan J, Liao H, Yang F, Qiu P, Jin
F, Wang S, Shen L, Chao T, Zhang C and Zhu Y: Promising preclinical
patient-derived organoid (PDO) and xenograft (PDX) models in upper
gastrointestinal cancers: Progress and challenges. BMC Cancer.
23:12052023. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Zhuang P, Chiang YH, Fernanda MS and He M:
Using spheroids as building blocks towards 3D bioprinting of tumor
microenvironment. Int J Bioprint. 7:4442021. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Senrung A, Lalwani S, Janjua D, Tripathi
T, Kaur J, Ghuratia N, Aggarwal N, Chhokar A, Yadav J, Chaudhary A,
et al: 3D tumor spheroids: Morphological alterations a yardstick to
anti-cancer drug response. In Vitro Model. 2:219–248. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Mandrycky CJ, Howard CC, Rayner SG, Shin
YJ and Zheng Y: Organ-on-a-chip systems for vascular biology. J Mol
Cell Cardiol. 159:1–13. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Politi K and Pao W: How genetically
engineered mouse tumor models provide insights into human cancers.
J Clin Oncol. 29:2273–2281. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Fan TWM, Higashi RM and Lane AN: Metabolic
reprogramming in human cancer patients and patient-derived models.
Cold Spring Harb Perspect Med. 15:a0415522025. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Huang K, Han Y, Chen Y, Shen H, Zeng S and
Cai C: Tumor metabolic regulators: Key drivers of metabolic
reprogramming and the promising targets in cancer therapy. Mol
Cancer. 24:72025. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Zhu Z, Hu E, Shen H, Tan J and Zeng S: The
functional and clinical roles of liquid biopsy in patient-derived
models. J Hematol Oncol. 16:362023. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Lawrence R, Watters M, Davies CR, Pantel K
and Lu YJ: Circulating tumour cells for early detection of
clinically relevant cancer. Nat Rev Clin Oncol. 20:487–500. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Gao D, Vela I, Sboner A, Iaquinta PJ,
Karthaus WR, Gopalan A, Dowling C, Wanjala JN, Undvall EA, Arora
VK, et al: Organoid cultures derived from patients with advanced
prostate cancer. Cell. 159:176–187. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Pan C, Wang X, Yang C, Fu K, Wang F and Fu
L: The culture and application of circulating tumor cell-derived
organoids. Trends Cell Biol. 35:364–380. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Huang L, Xu Y, Wang N, Yi K, Xi X, Si H,
Zhang Q, Xiang M, Rong Y, Yuan Y and Wang F: Next-generation
preclinical functional testing models in cancer precision medicine:
CTC-derived organoids. Small Methods. 8:e23010092024. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Pérez-Cabello JA, Artero-Castro A and
Molina-Pinelo S: Small cell lung cancer unveiled: Exploring the
untapped resource of circulating tumor cells-derived organoids.
Crit Rev Oncol Hematol. 207:1046222025. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Na F, Pan X, Chen J, Chen X, Wang M, Chi
P, You L, Zhang L, Zhong A, Zhao L, et al: KMT2C deficiency
promotes small cell lung cancer metastasis through DNMT3A-mediated
epigenetic reprogramming. Nat Cancer. 3:753–767. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Balážová K, Clevers H and Dost AFM: The
role of macrophages in non-small cell lung cancer and advancements
in 3D co-cultures. Elife. 12:e829982023. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Lee D, Kim Y and Chung C: Scientific
validation and clinical application of lung cancer organoids.
Cells. 10:30122021. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Kim M, Mun H, Sung CO, Cho EJ, Jeon HJ,
Chun SM, Jung DJ, Shin TH, Jeong GS, Kim DK, et al: Patient-derived
lung cancer organoids as in vitro cancer models for therapeutic
screening. Nat Commun. 10:39912019. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Zheng M, Qu J, Xiang D and Xing L:
Organoids in lung cancer brain metastasis: Foundational research,
clinical translation, and prospective outlooks. Biochim Biophys
Acta Rev Cancer. 1880:1892352025. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Wu F, Fan J, He Y, Xiong A, Yu J, Li Y,
Zhang Y, Zhao W, Zhou F, Li W, et al: Single-cell profiling of
tumor heterogeneity and the microenvironment in advanced non-small
cell lung cancer. Nat Commun. 12:25402021. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
de Sousa VML and Carvalho L: Heterogeneity
in lung cancer. Pathobiology. 85:96–107. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Goveia J, Rohlenova K, Taverna F, Treps L,
Conradi LC, Pircher A, Geldhof V, de Rooij LPMH, Kalucka J, Sokol
L, et al: An integrated gene expression landscape profiling
approach to identify lung tumor endothelial cell hetero-geneity and
angiogenic candidates. Cancer Cell. 37:21–36.e13. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Dijkstra KK, Cattaneo CM, Weeber F,
Chalabi M, van de Haar J, Fanchi LF, Slagter M, van der Velden DL,
Kaing S, Kelderman S, et al: Generation of tumor-reactive T cells
by co-culture of peripheral blood lymphocytes and tumor organoids.
Cell. 174:1586–1598.e12. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Ren YF, Ma Q, Zeng X, Huang CX, Ren JL, Li
F, Tong JJ, He JW, Zhong Y, Tan SY, et al: Single-cell RNA
sequencing reveals immune microenvironment niche transitions during
the invasive and metastatic processes of ground-glass nodules and
part-solid nodules in lung adenocarcinoma. Mol Cancer. 23:2632024.
View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Raghavan S, Winter PS, Navia AW, Williams
HL, DenAdel A, Lowder KE, Galvez-Reyes J, Kalekar RL, Mulugeta N,
Kapner KS, et al: Microenvironment drives cell state, plasticity,
and drug response in pancreatic cancer. Cell. 184:6119–6137.e26.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Liu C, Li K, Sui X, Zhao T, Zhang T, Chen
Z, Wu H, Li C, Li H, Yang F, et al: Patient-derived tumor organoids
combined with function-associated ScRNA-Seq for dissecting the
local immune response of lung cancer. Adv Sci (Weinh).
11:e24001852024. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Wu X, Li B, Wang Y, Xue J, Zhao H, Huang
Z, Zheng Z, Liang N and Wei Z: Microfluidic chip-based automatic
system for sequencing patient-derived organoids at the single-cell
level. Anal Chem. 96:17027–17036. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Landon-Brace N, Li NT and McGuigan AP:
Exploring new dimensions of tumor heterogeneity: The application of
single cell analysis to organoid-based 3D in vitro models. Adv
Healthc Mater. 12:e23009032023. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
R N, Aggarwal A, Sravani AB, Mallya P and
Lewis S: Organ-on-a-chip: An emerging research platform.
Organogenesis. 19:22782362023. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Shakeri A, Wang Y, Zhao Y, Landau S,
Perera K, Lee J and Radisic M: Engineering Organ-on-a-Chip systems
for vascular diseases. Arterioscler Thromb Vasc Biol. 43:2241–2255.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Nolan J, Pearce OMT, Screen HRC, Knight MM
and Verbruggen SW: Organ-on-a-chip and microfluidic platforms for
oncology in the UK. Cancers (Basel). 15:6352023. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Peng T, Ma X, Hua W, Wang C, Chu Y, Sun M,
Fermi V, Hamelmann S, Lindner K, Shao C, et al: Individualized
patient tumor organoids faithfully preserve human brain tumor
ecosystems and predict patient response to therapy. Cell Stem Cell.
32:652–669.e11. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Duan H, Ren J, Wei S, Yang Z, Li C, Wang
Z, Li M, Wei Z, Liu Y, Wang X, et al: Integrated analyses of
multi-omic data derived from paired primary lung cancer and brain
metastasis reveal the metabolic vulnerability as a novel
therapeutic target. Genome Med. 16:1382024. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Kozlowski MT, Crook CJ and Ku HT: Towards
organoid culture without Matrigel. Commun Biol. 4:13872021.
View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Kim S, Min S, Choi YS, Jo SH, Jung JH, Han
K, Kim J, An S, Ji YW, Kim YG and Cho SW: Tissue extracellular
matrix hydrogels as alternatives to Matrigel for culturing
gastrointestinal organoids. Nat Commun. 13:16922022. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Jamaluddin MFB, Ghosh A, Ingle A, Mohammed
R, Ali A, Bahrami M, Kaiko G, Gibb Z, Filipe EC, Cox TR, et al:
Bovine and human endometrium-derived hydrogels support organoid
culture from healthy and cancerous tissues. Proc Natl Acad Sci USA.
119:e22080401192022. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Isik M, Okesola BO, Eylem CC, Kocak E,
Nemutlu E, D'Este M, Mata A and Derkus B: Bioactive and chemically
defined hydrogels with tunable stiffness guide cerebral organoid
formation and modulate multi-omics plasticity in cerebral
organoids. Acta Biomater. 171:223–238. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Magré L, Verstegen MMA, Buschow S, van der
Laan LJW, Peppelenbosch M and Desai J: Emerging organoid-immune
co-culture models for cancer research: From oncoimmunology to
personalized immunotherapies. J Immunother Cancer. 11:e0062902023.
View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Thakar RG and Fenton KN: Bioethical
implications of organ-on-a-chip on modernizing drug development.
Artif Organs. 47:1553–1558. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
P T, S AK, U AN, S R, P S, M S and K S:
Artificial intelligence (AI) and liquid biopsy transforming early
detection of liver metastases in gastrointestinal cancers. Curr
Cancer Drug Targets. Jan 21–2025.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Polak R, Zhang ET and Kuo CJ: Cancer
organoids 2.0: Modelling the complexity of the tumour immune
microenvironment. Nat Rev Cancer. 24:523–539. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Oh B, Kim J, Kim N and Jeong Y: Lung
cancer organoid system to evaluate the cytotoxicity of natural
killer cells. Int J Stem Cells. 18:99–106. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Vella N, Fenech AG and Petroni Magri V: 3D
cell culture models in research: Applications to lung cancer
pharmacology. Front Pharmacol. 15:14380672024. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Gao M, Ding W, Wang Y, Li B, Huang Z,
Liang N and Wei Z: Quantitatively evaluating interactions between
patient-derived organoids and autologous immune cells by
microfluidic chip. Anal Chem. 96:13061–13069. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Evans K, Dabrowska C, Ng ME, Brainson CF
and Lee JH: Isolation, culture, and phenotypic analysis of murine
lung organoids. Methods Mol Biol. 2805:3–18. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Huang Z, Li B, Wang Y, Xue J, Wei Z, Liang
N and Li S: Application and research progress of lung cancer
organoid in precision medicine for lung cancer. Zhongguo Fei Ai Za
Zhi. 27:276–282. 2024.(In Chinese). PubMed/NCBI
|
|
129
|
Broutier L, Mastrogiovanni G, Verstegen
MM, Francies HE, Gavarró LM, Bradshaw CR, Allen GE, Arnes-Benito R,
Sidorova O, Gaspersz MP, et al: Human primary liver cancer-derived
organoid cultures for disease modeling and drug screening. Nat Med.
23:1424–1435. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Kato Y, Seishima R, Hattori K, Kato H,
Ishida H, Shigeta K, Okabayashi K, Sugihara E, Takimoto T, Nakamura
K, et al: Significance of homologous recombinant deficiency as a
biomarker for drug sensitivity in colorectal cancer. Br J Cancer.
132:533–542. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Lee MR, Woo SM, Kim MK, Han SS, Park SJ,
Lee WJ, Lee DE, Choi SI, Choi W, Yoon KA, et al: Application of
plasma circulating KRAS mutations as a predictive biomarker for
targeted treatment of pancreatic cancer. Cancer Sci. 115:1283–1295.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Yang J, Fischer NG and Ye Z:
Revolutionising oral organoids with artificial intelligence.
Biomater Transl. 5:372–389. 2024.PubMed/NCBI
|
|
133
|
Kerkar N and Hartjes K: Hepatitis C
virus-pediatric and adult perspectives in the current decade.
Pathogens. 14:112024. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Li Y, Du J, Deng S, Liu B, Jing X, Yan Y,
Liu Y, Wang J, Zhou X and She Q: The molecular mechanisms of
cardiac development and related diseases. Signal Transduct Target
Ther. 9:3682024. View Article : Google Scholar : PubMed/NCBI
|