|
1
|
Ostrom QT, Price M, Neff C, Cioffi G,
Waite KA, Kruchko C and Barnholtz-Sloan JS: CBTRUS statistical
report: Primary brain and other central nervous system tumors
diagnosed in the United States in 2016–2020. Neuro Oncol. 25 (12
Suppl 2):iv1–iv99. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Fonseca A, Afzal S, Bowes L, Crooks B,
Larouche V, Jabado N, Perreault S, Johnston DL, Zelcer S, Fleming
A, et al: Pontine gliomas a 10-year population-based study: A
report from The Canadian Paediatric Brain Tumour Consortium
(CPBTC). J Neurooncol. 149:45–54. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Patil N, Kelly ME, Yeboa DN, Buerki RA,
Cioffi G, Balaji S, Ostrom QT, Kruchko C and Barnholtz-Sloan JS:
Epidemiology of brainstem high-grade gliomas in children and
adolescents in the United States, 2000–2017. Neuro Oncol.
23:990–998. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Erker C, Lane A, Chaney B, Leary S,
Minturn JE, Bartels U, Packer RJ, Dorris K, Gottardo NG, Warren KE,
et al: Characteristics of patients ≥10 years of age with diffuse
intrinsic pontine glioma: A report from the International DIPG/DMG
registry. Neuro Oncol. 24:141–152. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Hoffman LM, Veldhuijzen van Zanten SEM,
Colditz N, Baugh J, Chaney B, Hoffmann M, Lane A, Fuller C, Miles
L, Hawkins C, et al: Clinical, radiologic, pathologic, and
molecular characteristics of long-term survivors of diffuse
intrinsic pontine glioma (DIPG): A collaborative report from the
international and European society for pediatric oncology DIPG
registries. J Clin Oncol. 36:1963–1972. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Ying Y, Liu X, Li X, Mei N, Ruan Z, Lu Y
and Yin B: Distinct MRI characteristics of spinal cord diffuse
midline glioma, H3 K27-altered in comparison to spinal cord glioma
without H3 K27-alteration and demyelination disorder. Acta Radiol.
65:284–293. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Nafe R, Porto L, Samp PF, You SJ and
Hattingen E: Adult-type and Pediatric-type diffuse gliomas what the
neuroradiologist should know. Clin Neuroradiol. 33:611–624. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Coleman C, Chen K, Lu A, Seashore E,
Stoller S, Davis T, Braunstein S, Gupta N and Mueller S:
Interdisciplinary care of children with diffuse midline glioma.
Neoplasia. 35:1008512023. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Saratsis AM, Knowles T, Petrovic A and
Nazarian J: H3K27M mutant glioma: Disease definition and biological
underpinnings. Neuro Oncol. 26 (Suppl 2):S92–S100. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Tarapore RS, Arain S, Blaine E, Hsiung A,
Melemed AS and Allen JE: Immunohistochemistry detection of Histone
H3 K27M mutation in human glioma tissue. Appl Immunohistochem Mol
Morphol. 32:96–101. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Duchatel RJ, Jackson ER, Alvaro F, Nixon
B, Hondermarck H and Dun MD: Signal transduction in diffuse
intrinsic pontine glioma. Proteomics. 19:e18004792019. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Testa U, Castelli G and Pelosi E: CAR-T
cells in the treatment of nervous system tumors. Cancers (Basel).
16:29132024. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Harris W: A case of pontine glioma, with
special reference to the paths of gustatory sensation. Proc R Soc
Med. 19:1–5. 1926.PubMed/NCBI
|
|
14
|
Janssens GO, Kramm CM and von Bueren AO:
Diffuse intrinsic pontine gliomas (DIPG) at recurrence: Is there a
window to test new therapies in some patients? J Neurooncol.
139:5012018. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Ward E, DeSantis C, Robbins A, Kohler B
and Jemal A: Childhood and adolescent cancer statistics, 2014. CA
Cancer J Clin. 64:83–103. 2014.PubMed/NCBI
|
|
16
|
Gwak HS and Park HJ: Developing
chemotherapy for diffuse pontine intrinsic gliomas (DIPG). Crit Rev
Oncol Hematol. 120:111–119. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Louis DN, Perry A, Reifenberger G, von
Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD,
Kleihues P and Ellison DW: The 2016 World Health Organization
classification of tumors of the central nervous system: A summary.
Acta Neuropathol. 131:803–820. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Huang TY, Piunti A, Lulla RR, Qi J,
Horbinski CM, Tomita T, James CD, Shilatifard A and Saratsis AM:
Detection of Histone H3 mutations in cerebrospinal fluid-derived
tumor DNA from children with diffuse midline glioma. Acta
Neuropathol Commun. 5:282017. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Wang Q, Niu W and Pan H: Targeted therapy
with anlotinib for a H3K27M mutation diffuse midline glioma patient
with PDGFR-alpha mutation: A case report. Acta Neurochir (Wien).
164:2063–2066. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
McNamara C, Mankad K, Thust S, Dixon L,
Limback-Stanic C, D'Arco F, Jacques TS and Löbel U: 2021 WHO
classification of tumours of the central nervous system: A review
for the neuroradiologist. Neuroradiology. 64:1919–1950. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Cooney TM, Lubanszky E, Prasad R, Hawkins
C and Mueller S: Diffuse midline glioma: review of epigenetics. J
Neurooncol. 150:27–34. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Park YW, Vollmuth P, Foltyn-Dumitru M,
Sahm F, Ahn SS, Chang JH and Kim SH: The 2021 WHO Classification
for Gliomas and implications on imaging diagnosis: Part 2-summary
of imaging findings on pediatric-type diffuse high-grade gliomas,
pediatric-type diffuse low-grade gliomas, and circumscribed
astrocytic gliomas. J Magn Reson Imaging. 58:690–708. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Cassim A, Dun MD, Gallego-Ortega D and
Valdes-Mora F: EZHIP's role in diffuse midline glioma: echoes of
oncohistones? Trends Cancer. 10:1095–1105. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Hoffman LM, DeWire M, Ryall S, Buczkowicz
P, Leach J, Miles L, Ramani A, Brudno M, Kumar SS, Drissi R, et al:
Spatial genomic heterogeneity in diffuse intrinsic pontine and
midline high-grade glioma: Implications for diagnostic biopsy and
targeted therapeutics. Acta Neuropathol Commun. 4:12016. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Greer EL and Shi Y: Histone methylation: A
dynamic mark in health, disease and inheritance. Nat Rev Genet.
13:343–357. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Hyun K, Jeon J, Park K and Kim J: Writing,
erasing and reading histone lysine methylations. Exp Mol Med.
49:e3242017. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Shvedunova M and Akhtar A: Modulation of
cellular processes by histone and non-histone protein acetylation.
Nat Rev Mol Cell Biol. 23:329–349. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
An T, Liu Y, Gourguechon S, Wang CC and Li
Z: CDK phosphorylation of translation initiation factors couples
protein translation with cell-cycle transition. Cell Rep.
25:3204–3214.e5. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Justice JL, Reed TJ, Phelan B, Greco TM,
Hutton JE and Cristea IM: DNA-PK and ATM drive phosphorylation
signatures that antagonistically regulate cytokine responses to
herpesvirus infection or DNA damage. Cell Syst. 15:339–361.e8.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Chen Q, Bian C, Wang X, Liu X, Ahmad
Kassab M, Yu Y and Yu X: ADP-ribosylation of histone variant H2AX
promotes base excision repair. EMBO J. 40:e1045422021. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Mattiroli F and Penengo L: Histone
Ubiquitination: An integrative signaling platform in genome
stability. Trends Genet. 37:566–581. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Zhang X and Zhang Z: Oncohistone mutations
in diffuse intrinsic pontine glioma. Trends Cancer. 5:799–808.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Schwartzentruber J, Korshunov A, Liu XY,
Jones DT, Pfaff E, Jacob K, Sturm D, Fontebasso AM, Quang DA,
Tönjes M, et al: Driver mutations in histone H3.3 and chromatin
remodelling genes in paediatric glioblastoma. Nature. 482:226–231.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Qin J, Wen B, Liang Y, Yu W and Li H:
Histone modifications and their role in colorectal cancer (review).
Pathol Oncol Res. 26:2023–2033. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Caslini C, Hong S, Ban YJ, Chen XS and
Ince TA: HDAC7 regulates histone 3 lysine 27 acetylation and
transcriptional activity at super-enhancer-associated genes in
breast cancer stem cells. Oncogene. 38:6599–6614. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Deng L, Meng T, Chen L, Wei W and Wang P:
The role of ubiquitination in tumorigenesis and targeted drug
discovery. Signal Transduct Target Ther. 5:112020. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Cole AJ, Clifton-Bligh R and Marsh DJ:
Histone H2B monoubiquitination: Roles to play in human malignancy.
Endocr Relat Cancer. 22:T19–T33. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Chen X, Song N, Matsumoto K, Nanashima A,
Nagayasu T, Hayashi T, Ying M, Endo D, Wu Z and Koji T: High
expression of trimethylated histone H3 at lysine 27 predicts better
prognosis in non-small cell lung cancer. Int J Oncol. 43:1467–1480.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Stitzlein LM, Adams JT, Stitzlein EN,
Dudley RW and Chandra J: Current and future therapeutic strategies
for high-grade gliomas leveraging the interplay between epigenetic
regulators and kinase signaling networks. J Exp Clin Cancer Res.
43:122024. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Pearson AD, DuBois SG, Macy ME, de Rojas
T, Donoghue M, Weiner S, Knoderer H, Bernardi R, Buenger V, Canaud
G, et al: Paediatric strategy forum for medicinal product
development of PI3-K, mTOR, AKT and GSK3beta inhibitors in children
and adolescents with cancer. Eur J Cancer. 207:1141452024.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Yan Y and Zhang J: Mechanisms of tamoxifen
resistance: Insight from long non-coding RNAs. Front Oncol.
14:14585882024. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Zhang Y, Tapinos N, Lulla R and El-Deiry
WS: Dopamine pre-treatment impairs the anti-cancer effect of
integrated stress response- and TRAIL pathway-inducing ONC201,
ONC206 and ONC212 imipridones in pancreatic, colorectal cancer but
not DMG cells. Am J Cancer Res. 14:2453–2464. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Nandy D, Rajam SM and Dutta D: A three
layered histone epigenetics in breast cancer metastasis. Cell
Biosci. 10:522020. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Blasco-Santana L and Colmenero I:
Molecular and pathological features of paediatric high-grade
gliomas. Int J Mol Sci. 25:84982024. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Justin N, Zhang Y, Tarricone C, Martin SR,
Chen S, Underwood E, De Marco V, Haire LF, Walker PA, Reinberg D,
et al: Structural basis of oncogenic histone H3K27M inhibition of
human polycomb repressive complex 2. Nat Commun. 7:113162016.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Arakaki AKS, Szulzewsky F, Gilbert MR,
Gujral TS and Holland EC: Utilizing preclinical models to develop
targeted therapies for rare central nervous system cancers. Neuro
Oncol. 23 (23 Suppl 5):S4–S15. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Pal S, Kaplan JP, Nguyen H, Stopka SA,
Savani MR, Regan MS, Nguyen QD, Jones KL, Moreau LA, Peng J, et al:
A druggable addiction to de novo pyrimidine biosynthesis in diffuse
midline glioma. Cancer Cell. 40:957–972.e10. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Tsai JW, Cejas P, Coppola M, Wang DK,
Patel S, Wu DW, Arounleut P, Wei X, Zhou N, Syamala S, et al:
Abstract 3562: Dissecting mechanisms underlying FOXR2-mediated
gliomagenesis in diffuse midline gliomas. Cancer Res. 83:35622023.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Vanan MI, Underhill DA and Eisenstat DD:
Targeting epigenetic pathways in the treatment of pediatric diffuse
(High Grade) gliomas. Neurotherapeutics. 14:274–283. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Graham MS and Mellinghoff IK:
Histone-Mutant glioma: Molecular mechanisms, preclinical models,
and implications for therapy. Int J Mol Sci. 21:71932020.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Paine DZ: Molecular Determinants of
Diffuse Midline Glioma of the Pons Vulnerability to the Histone
Deacetylase Inhibitor, Quisinostat. Doctoral dissertation.
University of Arizona; Tucson, USA: 2023
|
|
52
|
Xu Y, Wu F, Tan L, Kong L, Xiong L, Deng
J, Barbera AJ, Zheng L, Zhang H, Huang S, et al: Genome-wide
Regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in
mouse embryonic stem cells. Mol Cell. 42:451–464. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Hashizume R: Epigenetic targeted therapy
for diffuse intrinsic pontine glioma. Neurol Med Chir (Tokyo).
57:331–342. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Markouli M, Strepkos D, Papavassiliou KA,
Papavassiliou AG and Piperi C: Crosstalk of epigenetic and
metabolic signaling underpinning glioblastoma pathogenesis. Cancers
(Basel). 14:26552022. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Ross SE, Holliday H, Tsoli M, Ziegler DS
and Dinger ME: Abstract B015: RNA N6-methyladenosine (m6A) as a
therapeutic target in Diffuse Midline Glioma (DMG). Cancer Res.
84:B015. 2024. View Article : Google Scholar
|
|
56
|
Menez V, Kergrohen T, Shasha T,
Silva-Evangelista C, Le Dret L, Auffret L, Subecz C, Lancien M,
Ajlil Y, Vilchis IS, et al: VRK3 depletion induces cell cycle
arrest and metabolic reprogramming of pontine diffuse midline
glioma-H3K27 altered cells. Front Oncol. 13:12293122023. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Williams EA, Brastianos PK, Wakimoto H,
Zolal A, Filbin MG, Cahill DP, Santagata S and Juratli TA: A
comprehensive genomic study of 390 H3F3A-mutant pediatric and adult
diffuse high-grade gliomas, CNS WHO grade 4. Acta Neuropathol.
146:515–525. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Yan Y: Abstract 1719: Targeting H3.3
serine 28 phosphorylation as a novel therapeutic strategy for
diffuse midline glioma. Cancer Res. 84:1719. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Mangoli A, Valentine V, Maingi SM, Wu SR,
Liu HQ, Aksu M, Jain V, Foreman BE, Regal JA, Weidenhammer LB, et
al: Disruption of ataxia telangiectasia-mutated kinase enhances
radiation therapy efficacy in spatially directed diffuse midline
glioma models. J Clin Invest. 135:e1793952025. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Zhang X, Duan S, Apostolou PE, Wu X,
Watanabe J, Gallitto M, Barron T, Taylor KR, Woo PJ, Hua X, et al:
CHD2 Regulates Neuron-glioma interactions in pediatric glioma.
Cancer Discov. 14:1732–1754. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Diaz AK and Baker SJ: The genetic
signatures of pediatric high-grade glioma: No longer a one-act
play. Semin Radiat Oncol. 24:240–247. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Sharma M, Barravecchia I, Magnuson B,
Ferris SF, Apfelbaum A, Mbah NE, Cruz J, Krishnamoorthy V, Teis R,
Kauss M, et al: Histone H3 K27M-mediated regulation of cancer cell
stemness and differentiation in diffuse midline glioma. Neoplasia.
44:1009312023. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Mota M, Sweha SR, Pun M, Natarajan SK,
Ding Y, Chung C, Hawes D, Yang F, Judkins AR, Samajdar S, et al:
Targeting SWI/SNF ATPases in H3.3K27M diffuse intrinsic pontine
gliomas. Proc Natl Acad Sci USA. 120:e22211751202023. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Xin DE, Liao Y, Rao R, Ogurek S, Sengupta
S, Xin M, Bayat AE, Seibel WL, Graham RT, Koschmann C and Lu QR:
Chaetocin-mediated SUV39H1 inhibition targets stemness and
oncogenic networks of diffuse midline gliomas and synergizes with
ONC201. Neuro Oncol. 26:735–748. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Fang J, Huang Y, Mao G, Yang S, Rennert G,
Gu L, Li H and Li GM: Cancer-driving H3G34V/R/D mutations block
H3K36 methylation and H3K36me3-MutSα interaction. Proc Natl Acad
Sci USA. 115:9598–9603. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Sheikh SR, Patel NJ and Recinos VMR:
Safety and technical efficacy of pediatric brainstem biopsies: An
updated meta-analysis of 1000+ children. World Neurosurg.
189:428–438.e2. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Walker DA, Liu J, Kieran M, Jabado N,
Picton S, Packer R and St Rose C; CPN Paris 2011 Conference
Consensus Group, : A multi-disciplinary consensus statement
concerning surgical approaches to Low-grade, High-grade
astrocytomas and diffuse intrinsic pontine gliomas in childhood
(CPN Paris 2011) using the Delphi method. Neuro Oncol. 15:462–468.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Ryba A, Özdemir Z, Nissimov N, Hönikl L,
Neidert N, Jakobs M, Kalasauskas D, Krigers A, Thomé C, Freyschlag
CF, et al: Insights from a multicenter study on adult H3
K27M-mutated glioma: Surgical resection's limited influence on
overall survival, ATRX as molecular prognosticator. Neuro Oncol.
26:1479–1493. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Dalmage M, LoPresti MA, Sarkar P,
Ranganathan S, Abdelmageed S, Pagadala M, Shlobin NA, Lam S and
DeCuypere M: Survival and neurological outcomes after stereotactic
biopsy of diffuse intrinsic pontine glioma: A systematic review. J
Neurosurg Pediatr. 32:665–672. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Gajjar A, Mahajan A, Abdelbaki M, Anderson
C, Antony R, Bale T, Bindra R, Bowers DC, Cohen K, Cole B, et al:
Pediatric central nervous system cancers, version 2.2023, NCCN
clinical practice guidelines in oncology. J Natl Compr Canc Netw.
20:1339–1362. 2022.PubMed/NCBI
|
|
71
|
Kim HJ and Suh CO: Radiotherapy for
diffuse intrinsic pontine glioma: Insufficient but indispensable.
Brain Tumor Res Treat. 11:79–85. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Cohen KJ, Jabado N and Grill J: Diffuse
intrinsic pontine gliomas-current management and new biologic
insights. Is there a glimmer of hope? Neuro Oncol. 19:1025–1034.
2017.PubMed/NCBI
|
|
73
|
Wawrzuta D, Chojnacka M, Drogosiewicz M,
Pedziwiatr K and Dembowska-Baginska B: Reirradiation for diffuse
intrinsic pontine glioma: Prognostic radiomic factors at
progression. Strahlenther Onkol. 200:797–804. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Esparragosa Vazquez I and Ducray F: The
role of radiotherapy, chemotherapy, and targeted therapies in adult
intramedullary spinal cord tumors. Cancers (Basel). 16:27812024.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Yang Z, Sun L, Chen H, Sun C and Xia L:
New progress in the treatment of diffuse midline glioma with H3K27M
alteration. Heliyon. 10:e248772024. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Argersinger DP, Rivas SR, Shah AH, Jackson
S and Heiss JD: New developments in the pathogenesis, therapeutic
targeting, and treatment of H3K27M-mutant diffuse midline glioma.
Cancers (Basel). 13:52802021. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Mandorino M, Maitra A, Armenise D,
Baldelli OM, Miciaccia M, Ferorelli S, Perrone MG and Scilimati A:
Pediatric diffuse midline glioma H3K27-altered: From developmental
origins to therapeutic challenges. Cancers (Basel). 16:18142024.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Watanabe J, Clutter MR, Gullette MJ,
Sasaki T, Uchida E, Kaur S, Mo Y, Abe K, Ishi Y, Takata N, et al:
BET bromodomain inhibition potentiates radiosensitivity in models
of H3K27-altered diffuse midline glioma. J Clin Invest.
134:e1747942024. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Bailey S, Howman A, Wheatley K, Wherton D,
Boota N, Pizer B, Fisher D, Kearns P, Picton S, Saran F, et al:
Diffuse intrinsic pontine glioma treated with prolonged
temozolomide and radiotherapy-results of a United Kingdom phase II
trial (CNS 2007 04). Eur J Cancer. 49:3856–3862. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Chassot A, Canale S, Varlet P, Puget S,
Roujeau T, Negretti L, Dhermain F, Rialland X, Raquin MA, Grill J,
et al: Radiotherapy with concurrent and adjuvant temozolomide in
children with newly diagnosed diffuse intrinsic pontine glioma. J
Neurooncol. 106:399–407. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Abe H, Natsumeda M, Kanemaru Y, Watanabe
J, Tsukamoto Y, Okada M, Yoshimura J, Oishi M and Fujii Y: MGMT
expression contributes to temozolomide resistance in H3K27M-mutant
diffuse midline gliomas and MGMT silencing to temozolomide
sensitivity in IDH-mutant gliomas. Neurol Med Chir (Tokyo).
58:290–295. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Brandes AA, Tosoni A, Cavallo G, Reni M,
Franceschi E, Bonaldi L, Bertorelle R, Gardiman M, Ghimenton C,
Iuzzolino P, et al: Correlations between 06-methylguanine DNA
methyltransferase promoter methylation status, 1p and 19q
deletions, and response to temozolomide in anaplastic and recurrent
oligodendroglioma: A prospective GICNO study. J Clin Oncol.
24:4746–4753. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Warren KE, Aikin AA, Libucha M, Widemann
BC, Fox E, Packer RJ and Balis FM: Phase I study of
O6-benzylguanine and temozolomide administered daily for 5 days to
pediatric patients with solid tumors. J Clin Oncol. 23:7646–7653.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Zhang Y, Dong W, Zhu J, Wang L, Wu X and
Shan H: Combination of EZH2 inhibitor and BET inhibitor for
treatment of diffuse intrinsic pontine glioma. Cell Biosci.
7:562017. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Sasaki T, Katagi H, Goldman S, Becher OJ
and Hashizume R: Convection-enhanced delivery of enhancer of zeste
homolog-2 (EZH2) inhibitor for the treatment of diffuse intrinsic
pontine glioma. Neurosurgery. 87:E680–E688. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Singleton WGB, Bienemann AS, Woolley M,
Johnson D, Lewis O, Wyatt MJ, Damment SJP, Boulter LJ, Killick-Cole
CL, Asby DJ and Gill SS: The distribution, clearance, and brainstem
toxicity of panobinostat administered by convection-enhanced
delivery. J Neurosurg Pediatr. 22:288–296. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Massimino M, Spreafico F, Biassoni V,
Simonetti F, Riva D, Trecate G, Giombini S, Poggi G, Pecori E,
Pignoli E, et al: Diffuse pontine gliomas in children: Changing
strategies, changing results? A mono-institutional 20-year
experience. J Neurooncol. 87:355–361. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Tsoli M, Ung C, Upton DH, Venkat P,
Salerno A, Pandher R, Mayoh C, Vittorio O and Ziegler DS: Dipg-35.
Overcoming the blood-brain barrier challenge in diffuse midline
glioma. Neuro Oncol. 26 (Suppl 4):02024. View Article : Google Scholar
|
|
89
|
Ono T, Kuwashige H, Adachi JI, Takahashi
M, Oda M, Kumabe T and Shimizu H: Long-term survival of a patient
with diffuse midline glioma in the pineal region: A case report and
literature review. Surg Neurol Int. 12:6122021. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Veldhuijzen van Zanten SEM, El-Khouly FE,
Jansen MHA, Bakker DP, Sanchez Aliaga E, Haasbeek CJA, Wolf NI,
Zwaan CM, Vandertop WP, van Vuurden DG and Kaspers GJL: A phase
I/II study of gemcitabine during radiotherapy in children with
newly diagnosed diffuse intrinsic pontine glioma. J Neurooncol.
135:307–315. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Kilburn LB, Kocak M, Baxter P, Poussaint
TY, Paulino AC, McIntyre C, Lemenuel-Diot A, Lopez-Diaz C, Kun L,
Chintagumpala M, et al: A pediatric brain tumor consortium phase II
trial of capecitabine rapidly disintegrating tablets with
concomitant radiation therapy in children with newly diagnosed
diffuse intrinsic pontine gliomas. Pediatr Blood Cancer.
65:10.1002/pbc.26832. 2018. View Article : Google Scholar
|
|
92
|
Zhang S, Yang X, Tan Q, Sun H, Chen D,
Chen Y, Zhang H, Yang Y, Gong Q and Yue Q: Cortical myelin and
thickness mapping provide insights into whole-brain tumor burden in
diffuse midline glioma. Cereb Cortex. 34:bhad4912024. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Krystal J, Hanson D, Donnelly D and Atlas
M: A phase 1 study of mebendazole with bevacizumab and irinotecan
in high-grade gliomas. Pediatr Blood Cancer. 71:e308742024.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Voelcker G: The mechanism of action of
cyclophosphamide and its consequences for the development of a new
generation of oxazaphosphorine cytostatics. Sci Pharm. 88:422020.
View Article : Google Scholar
|
|
95
|
Lin FY, Stuckert A, Tat C, White M,
Ruggieri L, Zhang H, Mehta B, Lapteva N, Mei Z, Major A, et al:
Phase I trial of GD2.CART cells augmented with constitutive
interleukin-7 receptor for treatment of high-grade pediatric CNS
tumors. J Clin Oncol. 42:2769–2779. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Ishizawa J, Zarabi SF, Davis RE, Halgas O,
Nii T, Jitkova Y, Zhao R, St-Germain J, Heese LE, Egan G, et al:
Mitochondrial ClpP-mediated proteolysis induces selective cancer
cell lethality. Cancer Cell. 35:721–737.e9. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Jacques S, van der Sloot AM, C Huard C,
Coulombe-Huntington J, Tsao S, Tollis S, Bertomeu T, Culp EJ,
Pallant D, Cook MA, et al: Imipridone anticancer compounds
ectopically activate the ClpP protease and represent a new scaffold
for antibiotic development. Genetics. 214:1103–1120. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Kline CL, Van den Heuvel AP, Allen JE,
Prabhu VV, Dicker DT and El-Deiry WS: ONC201 kills solid tumor
cells by triggering an integrated stress response dependent on ATF4
activation by specific eIF2alpha kinases. Sci Signal. 9:ra182016.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Prabhu VV, Morrow S, Rahman Kawakibi A,
Zhou L, Ralff M, Ray J, Jhaveri A, Ferrarini I, Lee Y, Parker C, et
al: ONC201 and imipridones: Anti-cancer compounds with clinical
efficacy. Neoplasia. 22:725–744. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Venneti S, Kawakibi AR, Ji S, Waszak SM,
Sweha SR, Mota M, Pun M, Deogharkar A, Chung C, Tarapore RS, et al:
Clinical efficacy of ONC201 in H3K27M-mutant diffuse midline
gliomas is driven by disruption of integrated metabolic and
epigenetic pathways. Cancer Discov. 13:2370–2393. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Arrillaga-Romany I, Lassman A, McGovern
SL, Mueller S, Nabors B, van den Bent M, Vogelbaum MA, Allen JE,
Melemed AS, Tarapore RS, et al: ACTION: A randomized phase 3 study
of ONC201 (dordaviprone) in patients with newly diagnosed H3
K27M-mutant diffuse glioma. Neuro Oncol. 26 (Suppl_2):S173–S181.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Jenke R, Ressing N, Hansen FK, Aigner A
and Buch T: Anticancer therapy with HDAC inhibitors:
Mechanism-based combination strategies and future perspectives.
Cancers (Basel). 13:6342021. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Eckschlager T, Plch J, Stiborova M and
Hrabeta J: Histone deacetylase inhibitors as anticancer drugs. Int
J Mol Sci. 18:14142017. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Mueller S, Kline C, Stoller S, Lundy S,
Christopher L, Reddy AT, Banerjee A, Cooney TM, Raber S, Hoffman C,
et al: PNOC015: Repeated convection-enhanced delivery of MTX110
(aqueous panobinostat) in children with newly diagnosed diffuse
intrinsic pontine glioma. Neuro Oncol. 25:2074–2086. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Su JM, Kilburn LB, Mansur DB, Krailo M,
Buxton A, Adekunle A, Gajjar A, Adamson PC, Weigel B, Fox E, et al:
Phase I/II trial of vorinostat and radiation and maintenance
vorinostat in children with diffuse intrinsic pontine glioma: A
Children's Oncology Group report. Neuro Oncol. 24:655–664. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Neth BJ, Balakrishnan SN, Carabenciov ID,
Uhm JH, Daniels DJ, Kizilbash SH and Ruff MW: Panobinostat in
adults with H3 K27M-mutant diffuse midline glioma: A single-center
experience. J Neurooncol. 157:91–100. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Ameratunga M, Kipps E, Okines AFC and
Lopez JS: To cycle or Fight-CDK4/6 inhibitors at the crossroads of
anticancer immunity. Clin Cancer Res. 25:21–28. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Zhang J, Xu D, Zhou Y, Zhu Z and Yang X:
Mechanisms and implications of CDK4/6 inhibitors for the treatment
of NSCLC. Front Oncol. 11:6760412021. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
The JLF and Aplin AE: Arrested
developments: CDK4/6 inhibitor resistance and alterations in the
tumor immune microenvironment. Clin Cancer Res. 25:921–927. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Previtali R, Prontera G, Alfei E, Nespoli
L, Masnada S, Veggiotti P and Mannarino S: Paradigm shift in the
treatment of tuberous sclerosis: Effectiveness of everolimus.
Pharmacol Res. 195:1068842023. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
DeWire M, Fuller C, Hummel TR, Chow LML,
Salloum R, de Blank P, Pater L, Lawson S, Zhu X, Dexheimer P, et
al: A phase I/II study of ribociclib following radiation therapy in
children with newly diagnosed diffuse intrinsic pontine glioma
(DIPG). J Neurooncol. 149:511–522. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
DeWire M, Lazow M, Campagne O, Leach J,
Fuller C, Senthil Kumar S, Stanek J, de Blank P, Hummel TR,
Pillay-Smiley N, et al: Phase I study of ribociclib and everolimus
in children with newly diagnosed DIPG and high-grade glioma: A
CONNECT pediatric neuro-oncology consortium report. Neurooncol Adv.
4:vdac0552022.PubMed/NCBI
|
|
113
|
Greenall SA, McKenzie M, Seminova E,
Dolezal O, Pearce L, Bentley J, Kuchibhotla M, Chen SC, McDonald
KL, Kornblum HI, et al: Most clinical anti-EGFR antibodies do not
neutralize both wtEGFR and EGFRvIII activation in glioma. Neuro
Oncol. 21:1016–1027. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Fleischhack G, Massimino M, Warmuth-Metz
M, Khuhlaeva E, Janssen G, Graf N, Rutkowski S, Beilken A, Schmid
I, Biassoni V, et al: Nimotuzumab and radiotherapy for treatment of
newly diagnosed diffuse intrinsic pontine glioma (DIPG): A phase
III clinical study. J Neurooncol. 143:107–113. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Li S, Wang C, Chen J, Lan Y, Zhang W, Kang
Z, Zheng Y, Zhang R, Yu J and Li W: Signaling pathways in brain
tumors and therapeutic interventions. Signal Transduct Target Ther.
8:82023. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Meel MH, Kaspers GJL and Hulleman E:
Preclinical therapeutic targets in diffuse midline glioma. Drug
Resist Updat. 44:15–25. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Yang K, Wu Z, Zhang H, Zhang N, Wu W, Wang
Z, Dai Z, Zhang X, Zhang L, Peng Y, et al: Glioma targeted therapy:
Insight into future of molecular approaches. Mol Cancer. 21:392022.
View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Liu Y, Liu C, Wang G, Tao R, Xu J, Shen L,
Wang H, Zhu C, Zhang H, Zeng G, et al: Nimotuzumab combined with
chemoradiation therapy in newly diagnosed pediatric diffuse
intrinsic pontine glioma. Int J Radiat Oncol Biol Phys.
123:839–847. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Pachocki CJ and Hol EM: Current
perspectives on diffuse midline glioma and a different role for the
immune microenvironment compared to glioblastoma. J
Neuroinflammation. 19:2762022. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Majzner RG, Ramakrishna S, Yeom KW, Patel
S, Chinnasamy H, Schultz LM, Richards RM, Jiang L, Barsan V,
Mancusi R, et al: GD2-CART cell therapy for H3K27M-mutated diffuse
midline gliomas. Nature. 603:934–941. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Vitanza NA, Wilson AL, Huang W, Seidel K,
Brown C, Gustafson JA, Yokoyama JK, Johnson AJ, Baxter BA, Koning
RW, et al: Intraventricular B7-H3 CAR T cells for diffuse intrinsic
pontine glioma: Preliminary First-in-Human bioactivity and safety.
Cancer Discov. 13:114–131. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Vitanza NA, Ronsley R, Choe M, Seidel K,
Huang W, Rawlings-Rhea SD, Beam M, Steinmetzer L, Wilson AL, Brown
C, et al: Intracerebroventricular B7-H3-targeting CAR T cells for
diffuse intrinsic pontine glioma: A phase 1 trial. Nat Med.
31:861–868. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Dai B, Roife D, Kang Y, Gumin J, Rios
Perez MV, Li X, Pratt M, Brekken RA, Fueyo-Margareto J, Lang FF, et
al: Preclinical evaluation of sequential combination of oncolytic
adenovirus delta-24-RGD and Phosphatidylserine-targeting antibody
in pancreatic ductal adenocarcinoma. Mol Cancer Ther. 16:662–670.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Gállego Pérez-Larraya J, Garcia-Moure M,
Labiano S, Patiño-García A, Dobbs J, Gonzalez-Huarriz M, Zalacain
M, Marrodan L, Martinez-Velez N, Puigdelloses M, et al: Oncolytic
DNX-2401 virus for pediatric diffuse intrinsic pontine glioma. N
Engl J Med. 386:2471–2481. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Grassl N, Poschke I, Lindner K, Bunse L,
Mildenberger I, Boschert T, Jähne K, Green EW, Hülsmeyer I, Jünger
S, et al: A H3K27M-targeted vaccine in adults with diffuse midline
glioma. Nat Med. 29:2586–2592. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Boschert T, Kromer K, Lerner T, Lindner K,
Haltenhof G, Tan CL, Jähne K, Poschke I, Bunse L, Eisele P, et al:
H3K27M neoepitope vaccination in diffuse midline glioma induces B
and T cell responses across diverse HLA loci of a recovered
patient. Sci Adv. 10:eadi90912024. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Vincent CA and Remeseiro S: The immune
response behind peptide vaccination in diffuse midline glioma. Mol
Oncol. 18:1849–1852. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Mueller S, Taitt JM, Villanueva-Meyer JE,
Bonner ER, Nejo T, Lulla RR, Goldman S, Banerjee A, Chi SN, Whipple
NS, et al: Mass cytometry detects H3.3K27M-specific vaccine
responses in diffuse midline glioma. J Clin Investigation.
130:6325–6337. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Grassl N, Sahm K, Süße H, Poschke I, Bunse
L, Bunse T, Boschert T, Mildenberger I, Rupp AK, Ewinger MP, et al:
INTERCEPT H3: A multicenter phase I peptide vaccine trial for the
treatment of H3-mutated diffuse midline gliomas. Neurol Res Pract.
5:552023. View Article : Google Scholar : PubMed/NCBI
|