Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
March-2026 Volume 55 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2026 Volume 55 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Key immune cells in the tumor immune microenvironment of colorectal cancer: Roles and research advances (Review)

  • Authors:
    • Ming Qiu
    • Chongyuan Lan
    • Minglin Lin
    • Hui Ma
  • View Affiliations / Copyright

    Affiliations: Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China, Department of Research, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
    Copyright: © Qiu et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY 4.0].
  • Article Number: 52
    |
    Published online on: January 21, 2026
       https://doi.org/10.3892/or.2026.9057
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:


Abstract

Colorectal cancer (CRC) is the third most common cancer globally and the second leading cause of cancer‑related mortalities. Surgery‑centered multimodal therapy remains the cornerstone of care, yet outcomes are poor in advanced or drug‑resistant disease. The tumor immune microenvironment (TIME), a network of immune cells, cytokines and stromal elements, shapes antitumor immunity and can either restrain or encourage tumor growth. Specific immune cells within the TIME influence CRC biology, while immune‑checkpoint blockade has delivered notable benefits, especially in microsatellite instability‑high tumors. The present review discusses the principal immune cell populations in the CRC TIME, outlines their mechanisms of action and discusses emerging cell‑based immunotherapies that may guide future precision treatment.

View Figures

Figure 1

Components of the Tumor
microenvironment. The cellular components within the tumor
microenvironment are mainly composed of tumor cells, dendritic
cells, monocytes, macrophages, T cells, NK cells, B cells and other
cell types, while the extracellular matrix and cytokines constitute
the extracellular components of the tumor microenvironment. NK,
natural killer cell; ECM, extracellular matrix.

Figure 2

Schematic illustration of the roles
of TAMs in tumor progression. After monocytes in the bloodstream
migrate into the tumor tissue and differentiate into macrophages,
they further polarize into M1 and M2 types of TAMs according to
their distinct functional characteristics. M1-type TAMs exert
cytotoxic effects against tumor cells, whereas M2-type TAMs display
immunosuppressive functions and promote tumor cell proliferation,
angiogenesis and metastasis formation. LPS, lipopolysaccharide;
TLR, toll-like receptors; ROS, reactive oxygen species; NO, nitric
oxide; VEGF, vascular endothelial growth factor.
View References

1 

Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics 2022: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 74:229–263. 2024.PubMed/NCBI

2 

Sargent D, Sobrero A, Grothey A, O'Connell MJ, Buyse M, Andre T, Zheng Y, Green E, Labianca R, O'Callaghan C, et al: Evidence for cure by adjuvant therapy in colon cancer: Observations based on individual patient data from 20,898 patients on 18 randomized trials. J Clin Oncol. 27:872–877. 2009. View Article : Google Scholar : PubMed/NCBI

3 

Maughan TS, Adams RA, Smith CG, Meade AM, Seymour MT, Wilson RH, Idziaszczyk S, Harris R, Fisher D, Kenny SL, et al: Addition of cetuximab to oxaliplatin-based first-line combination chemotherapy for treatment of advanced colorectal cancer: Results of the randomised phase 3 mrc coin trial. Lancet. 377:2103–2114. 2011. View Article : Google Scholar : PubMed/NCBI

4 

Bokemeyer C, Bondarenko I, Makhson A, Hartmann JT, Aparicio J, de Braud F, Donea S, Ludwig H, Schuch G, Stroh C, et al: Fluorouracil, leucovorin, and oxaliplatin with and without cetuximab in the first-line treatment of metastatic colorectal cancer. J Clin Oncol. 27:663–671. 2009. View Article : Google Scholar : PubMed/NCBI

5 

Larsen AK, Poindessous V, Ouaret D, El Ouadrani K, Megalophonos VF, Batistella A, Petitprez A, Escargueil AE, Tournigand C and De Gramont A: Feasibility of combining EGFR- and VEGF(R)-targeted agents in colorectal cancer. J Clin Oncol. 29 (4_suppl):S4432011. View Article : Google Scholar

6 

Chibaudel B, Henriques J, Rakez M, Brenner B, Kim TW, Martinez-Villacampa M, Gallego-Plazas J, Cervantes A, Shim K, Jonker D, et al: Association of bevacizumab plus oxaliplatin-based chemotherapy with disease-free survival and overall survival in patients with stage II colon cancer: A secondary analysis of the avant trial. JAMA Netw Open. 3:e20204252020. View Article : Google Scholar : PubMed/NCBI

7 

Cutroneo PM, Giardina C, Ientile V, Potenza S, Sottosanti L, Ferrajolo C, Trombetta CJ and Trifirò G: Overview of the safety of anti-VEGF drugs: Analysis of the Italian spontaneous reporting system. Drug Saf. 40:1131–1140. 2017. View Article : Google Scholar : PubMed/NCBI

8 

Passaro A, Jänne PA, Mok T and Peters S: Overcoming therapy resistance in EGFR-mutant lung cancer. Nat Cancer. 2:377–391. 2021. View Article : Google Scholar : PubMed/NCBI

9 

Oxnard GR, Yang JC, Yu H, Kim SW, Saka H, Horn L, Goto K, Ohe Y, Mann H, Thress KS, et al: TATTON: A multi-arm, phase Ib trial of osimertinib combined with selumetinib, savolitinib, or durvalumab in egfr-mutant lung cancer. Ann Oncol. 31:507–516. 2020. View Article : Google Scholar : PubMed/NCBI

10 

Ganesh K, Stadler ZK, Cercek A, Mendelsohn RB, Shia J, Segal NH and Diaz LA Jr: Immunotherapy in colorectal cancer: Rationale, challenges and potential. Nat Rev Gastroenterol Hepatol. 16:361–375. 2019. View Article : Google Scholar : PubMed/NCBI

11 

Tang T, Huang X, Zhang G, Hong Z, Bai X and Liang T: Advantages of targeting the tumor immune microenvironment over blocking immune checkpoint in cancer immunotherapy. Signal Transduct Target Ther. 6:722021. View Article : Google Scholar : PubMed/NCBI

12 

Coussens LM and Werb Z: Inflammation and cancer. Nature. 420:860–867. 2002. View Article : Google Scholar : PubMed/NCBI

13 

Sedighzadeh SS, Khoshbin AP, Razi S, Keshavarz-Fathi M and Rezaei N: A narrative review of tumor-associated macrophages in lung cancer: Regulation of macrophage polarization and therapeutic implications. Transl Lung Cancer Res. 10:1889–1916. 2021. View Article : Google Scholar : PubMed/NCBI

14 

Mantovani A, Sozzani S, Locati M, Allavena P and Sica A: Macrophage polarization: Tumor-associated macrophages as a paradigm for polarized m2 mononuclear phagocytes. Trends Immunol. 23:549–555. 2002. View Article : Google Scholar : PubMed/NCBI

15 

Müller E, Christopoulos PF, Halder S, Lunde A, Beraki K, Speth M, Øynebråten I and Corthay A: Toll-like receptor ligands and interferon-γ synergize for induction of antitumor m1 macrophages. Front Immunol. 8:13832017. View Article : Google Scholar : PubMed/NCBI

16 

Jing M, Ma M, Zhang M, Mei Y, Wang L, Jiang Y, Li J, Song R, Yang Z, Pu Y, et al: The photothermal effect induces m1 macrophage-derived tnf-α-type exosomes to inhibit bladder tumor growth. Chem Eng J. 498:1550232024. View Article : Google Scholar

17 

Aslam M, Ashfaq-Khan M, Qureshi A, Celik S, Werle J-T, Senkowski M, Kim YO, KAPS L and Schuppan D: Fri-453-rapamycin promotes tumoricidal immunity in murine HCC by inducing M1-type macrophages and dentritic cells polarization and enhancement of cytotoxic T-cells. J Hepatol. 70:e5952019. View Article : Google Scholar

18 

Han Y, Sun J, Yang Y, Liu Y, Lou J, Pan H, Yao J and Han W: TMP195 exerts antitumor effects on colorectal cancer by promoting M1 macrophages polarization. Int J Biol Sci. 18:5653–5666. 2022. View Article : Google Scholar : PubMed/NCBI

19 

Griess B, Mir S, Datta K and Teoh-Fitzgerald M: Scavenging reactive oxygen species selectively inhibits M2 macrophage polarization and their pro-tumorigenic function in part, via Stat3 suppression. Free Radic Biol Med. 147:48–60. 2020. View Article : Google Scholar : PubMed/NCBI

20 

Cassetta L and Pollard JW: Tumor-associated macrophages. Curr Biol. 30:R246–R248. 2020. View Article : Google Scholar : PubMed/NCBI

21 

Zheng Y, Ren S, Zhang Y, Liu S, Meng L, Liu F, Gu L, Ai N and Sang M: Circular RNA circWWC3 augments breast cancer progression through promoting M2 macrophage polarization and tumor immune escape via regulating the expression and secretion of IL-4. Cancer Cell Int. 22:2642022. View Article : Google Scholar : PubMed/NCBI

22 

Lee YH, Martin-Orozco N, Zheng P, Li J, Zhang P, Tan H, Park HJ, Jeong M, Chang SH, Kim BS, et al: Inhibition of the B7-H3 immune checkpoint limits tumor growth by enhancing cytotoxic lymphocyte function. Cell Res. 27:1034–1045. 2017. View Article : Google Scholar : PubMed/NCBI

23 

Kee JY, Ito A, Hojo S, Hashimoto I, Igarashi Y, Tsuneyama K, Tsukada K, Irimura T, Shibahara N, Takasaki I, et al: CXCL16 suppresses liver metastasis of colorectal cancer by promoting TNF-α-induced apoptosis by tumor-associated macrophages. BMC Cancer. 14:9492014. View Article : Google Scholar : PubMed/NCBI

24 

Brigati C, Noonan DM, Albini A and Benelli R: Tumors and inflammatory infiltrates: Friends or foes? Clin Exp Metastasis. 19:247–258. 2002. View Article : Google Scholar : PubMed/NCBI

25 

Locati M, Curtale G and Mantovani A: Diversity, mechanisms, and significance of macrophage plasticity. Annu Rev Pathol. 15:123–147. 2020. View Article : Google Scholar : PubMed/NCBI

26 

Inagaki K, Kunisho S, Takigawa H, Yuge R, Oka S, Tanaka S, Shimamoto F, Chayama K and Kitadai Y: Role of tumor-associated macrophages at the invasive front in human colorectal cancer progression. Cancer Sci. 112:2692–2704. 2021. View Article : Google Scholar : PubMed/NCBI

27 

Ma J, Liu L, Che G, Yu N, Dai F and You Z: The M1 form of tumor-associated macrophages in non-small cell lung cancer is positively associated with survival time. BMC Cancer. 10:1122010. View Article : Google Scholar : PubMed/NCBI

28 

Edin S, Wikberg ML, Dahlin AM, Rutegård J, Öberg Å, Oldenborg PA and Palmqvist R: The distribution of macrophages with a M1 or M2 phenotype in relation to prognosis and the molecular characteristics of colorectal cancer. PLoS One. 7:e470452012. View Article : Google Scholar : PubMed/NCBI

29 

Wang X, Yang K, Yang B, Wang R, Zhu Y and Pan T: ANKRD22 participates in the proinflammatory activities of macrophages in the colon cancer tumor microenvironment. Cancer Immunol Immunother. 74:862025. View Article : Google Scholar : PubMed/NCBI

30 

Nussbaum YI, Manjunath Y, Kaifi JT, Warren W and Mitchem J: Analysis of tumor-associated macrophages' heterogeneity in colorectal cancer patients using single-cell RNA-seq data. J Clin Oncol. 40 (4_suppl):S1462025. View Article : Google Scholar

31 

Liang Y, Li J, Yuan Y, Ju H, Liao H, Li M, Liu Y, Yao Y, Yang L, Li T and Lei X: Exosomal miR-106a-5p from highly metastatic colorectal cancer cells drives liver metastasis by inducing macrophage M2 polarization in the tumor microenvironment. J Exp Clin Cancer Res. 43:2812024. View Article : Google Scholar : PubMed/NCBI

32 

Liu Q, Yang C, Wang S, Shi D, Wei C, Song J, Lin X, Dou R, Bai J, Xiang Z, et al: Wnt5a-induced M2 polarization of tumor-associated macrophages via IL-10 promotes colorectal cancer progression. Cell Commun Signal. 18:512020. View Article : Google Scholar : PubMed/NCBI

33 

Zhao S, Mi Y, Guan B, Zheng B, Wei P, Gu Y, Zhang Z, Cai S, Xu Y, Li X, et al: Tumor-derived exosomal miR-934 induces macrophage M2 polarization to promote liver metastasis of colorectal cancer. J Hematol Oncol. 13:1562020. View Article : Google Scholar : PubMed/NCBI

34 

Sun Z, Xu Y, Shao B, Dang P, Hu S, Sun H, Chen C, Wang C, Liu J, Liu Y and Hu J: Exosomal circPOLQ promotes macrophage M2 polarization via activating Il-10/STAT3 axis in a colorectal cancer model. J Immunother Cancer. 12:e0084912024. View Article : Google Scholar : PubMed/NCBI

35 

Yang C, Dou R, Wei C, Liu K, Shi D, Zhang C, Liu Q, Wang S and Xiong B: Tumor-derived exosomal microRNA-106b-5p activates EMT-cancer cell and M2-subtype tam interaction to facilitate CRC metastasis. Mol Ther. 29:2088–2107. 2021. View Article : Google Scholar : PubMed/NCBI

36 

Wu Y, Xiao Y, Ding Y, Ran R, Wei K, Tao S, Mao H, Wang J, Pang S, Shi J, et al: Colorectal cancer cell-derived exosomal miRNA-372-5p induces immune escape from colorectal cancer via PTEN/AKT/NF-κB/PD-L1 pathway. Int Immunopharmacol. 143((Pt 1)): 1132612024. View Article : Google Scholar : PubMed/NCBI

37 

Zhu X, Liang R, Lan T, Ding D, Huang S, Shao J, Zheng Z, Chen T, Huang Y, Liu J, et al: Tumor-associated macrophage-specific CD155 contributes to M2-phenotype transition, immunosuppression, and tumor progression in colorectal cancer. J Immunother Cancer. 10:e0042192022. View Article : Google Scholar : PubMed/NCBI

38 

Wang D, Wang X, Si M, Yang J, Sun S, Wu H, Cui S, Qu X and Yu X: Exosome-encapsulated miRNAS contribute to CXCL12/CXCR4-induced liver metastasis of colorectal cancer by enhancing M2 polarization of macrophages. Cancer Lett. 474:36–52. 2020. View Article : Google Scholar : PubMed/NCBI

39 

Hardbower DM, Coburn LA, Asim M, Singh K, Sierra JC, Barry DP, Gobert AP, Piazuelo MB, Washington MK and Wilson KT: EGFR-mediated macrophage activation promotes colitis-associated tumorigenesis. Oncogene. 36:3807–3819. 2017. View Article : Google Scholar : PubMed/NCBI

40 

Kuang DM, Zhao Q, Peng C, Xu J, Zhang JP, Wu C and Zheng L: Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1. J Exp Med. 206:1327–1337. 2009. View Article : Google Scholar : PubMed/NCBI

41 

Yu X, Qian J, Ding L, Pan C, Liu X, Wu Q, Wang S, Liu J, Shang M, Su R, et al: Galectin-1-induced tumor associated macrophages repress antitumor immunity in hepatocellular carcinoma through recruitment of tregs. Adv Sci (Weinh). 12:e24087882025. View Article : Google Scholar : PubMed/NCBI

42 

Mantovani A and Allavena P: The interaction of anticancer therapies with tumor-associated macrophages. J Exp Med. 212:435–445. 2015. View Article : Google Scholar : PubMed/NCBI

43 

Mantovani A, Marchesi F, Malesci A, Laghi L and Allavena P: Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol. 14:399–416. 2017. View Article : Google Scholar : PubMed/NCBI

44 

De Palma M and Lewis CE: Macrophage regulation of tumor responses to anticancer therapies. Cancer Cell. 23:277–286. 2013. View Article : Google Scholar : PubMed/NCBI

45 

Klug F, Prakash H, Huber PE, Seibel T, Bender N, Halama N, Pfirschke C, Voss RH, Timke C, Umansky L, et al: Low-dose irradiation programs macrophage differentiation to an iNOS+/M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell. 24:589–602. 2013. View Article : Google Scholar : PubMed/NCBI

46 

Gordon SR, Maute RL, Dulken BW, Hutter G, George BM, McCracken MN, Gupta R, Tsai JM, Sinha R, Corey D, et al: PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature. 545:495–499. 2017. View Article : Google Scholar : PubMed/NCBI

47 

Byrne KT, Betts CB, Mick R, Sivagnanam S, Bajor DL, Laheru DA, Chiorean EG, O'Hara MH, Liudahl SM, Newcomb C, et al: Neoadjuvant selicrelumab, an agonist CD40 antibody, induces changes in the tumor microenvironment in patients with resectable pancreatic cancer. Clin Cancer Res. 27:4574–4586. 2021. View Article : Google Scholar : PubMed/NCBI

48 

Dowlati A, Harvey RD, Carvajal RD, Hamid O, Klempner SJ, Kauh JSW, Peterson DA, Yu D, Chapman SC, Szpurka AM, et al: LY3022855, an anti-colony stimulating factor-1 receptor (CSF-1R) monoclonal antibody, in patients with advanced solid tumors refractory to standard therapy: Phase 1 dose-escalation trial. Invest New Drugs. 39:1057–1071. 2021. View Article : Google Scholar : PubMed/NCBI

49 

Voissière A, Gomez-Roca C, Chabaud S, Rodriguez C, Nkodia A, Berthet J, Montane L, Bidaux AS, Treilleux I, Eberst L, et al: The CSF-1R inhibitor pexidartinib affects FLT3-dependent DC differentiation and may antagonize durvalumab effect in patients with advanced cancers. Sci Transl Med. 16:eadd18342024. View Article : Google Scholar : PubMed/NCBI

50 

Brana I, Calles A, LoRusso PM, Yee LK, Puchalski TA, Seetharam S, Zhong B, de Boer CJ, Tabernero J and Calvo E: Carlumab, an anti-C-C chemokine ligand 2 monoclonal antibody, in combination with four chemotherapy regimens for the treatment of patients with solid tumors: An open-label, multicenter phase 1b study. Target Oncol. 10:111–123. 2015. View Article : Google Scholar : PubMed/NCBI

51 

Gomez-Roca CA, Italiano A, Le Tourneau C, Cassier PA, Toulmonde M, D'Angelo SP, Campone M, Weber KL, Loirat D, Cannarile MA, et al: Phase I study of emactuzumab single agent or in combination with paclitaxel in patients with advanced/metastatic solid tumors reveals depletion of immunosuppressive M2-like macrophages. Ann Oncol. 30:1381–1392. 2019. View Article : Google Scholar : PubMed/NCBI

52 

Falchook GS, Peeters M, Rottey S, Dirix LY, Obermannova R, Cohen JE, Perets R, Frommer RS, Bauer TM, Wang JS, et al: A phase 1a/1b trial of CSF-1R inhibitor ly3022855 in combination with durvalumab or tremelimumab in patients with advanced solid tumors. Invest New Drugs. 39:1284–1297. 2021. View Article : Google Scholar : PubMed/NCBI

53 

Nywening TM, Wang-Gillam A, Sanford DE, Belt BA, Panni RZ, Cusworth BM, Toriola AT, Nieman RK, Worley LA, Yano M, et al: Targeting tumour-associated macrophages with CCR2 inhibition in combination with FOLFIRINOX in patients with borderline resectable and locally advanced pancreatic cancer: A single-centre, open-label, dose-finding, non-randomised, phase 1b trial. Lancet Oncol. 17:651–662. 2016. View Article : Google Scholar : PubMed/NCBI

54 

Cannarile MA, Weisser M, Jacob W, Jegg AM, Ries CH and Rüttinger D: Colony-stimulating factor 1 receptor (CSF1R) inhibitors in cancer therapy. J Immunother Cancer. 5:532017. View Article : Google Scholar : PubMed/NCBI

55 

Qu T, Li B and Wang Y: Targeting CD47/SIRPα as a therapeutic strategy, where we are and where we are headed. Biomark Res. 10:202022. View Article : Google Scholar : PubMed/NCBI

56 

Eng C, Lakhani NJ, Philip PA, Schneider C, Johnson B, Kardosh A, Chao MP, Patnaik A, Shihadeh F, Lee Y, et al: A phase 1b/2 study of the anti-CD47 antibody magrolimab with cetuximab in patients with colorectal cancer and other solid tumors. Target Oncol. 20:519–530. 2025. View Article : Google Scholar : PubMed/NCBI

57 

Yamada-Hunter SA, Theruvath J, McIntosh BJ, Freitas KA, Lin F, Radosevich MT, Leruste A, Dhingra S, Martinez-Velez N, Xu P, et al: Engineered CD47 protects T cells for enhanced antitumour immunity. Nature. 630:457–465. 2024. View Article : Google Scholar : PubMed/NCBI

58 

Reiss KA, Angelos MG, Dees EC, Yuan Y, Ueno NT, Pohlmann PR, Johnson ML, Chao J, Shestova O, Serody JS, et al: Car-macrophage therapy for HER2-overexpressing advanced solid tumors: A phase 1 trial. Nat Med. 31:1171–1182. 2025. View Article : Google Scholar : PubMed/NCBI

59 

Tan PB, Verschoor YL, van den Berg JG, Balduzzi S, Kok NFM, Ijsselsteijn ME, Moore K, Jurdi A, Tin A, Kaptein P, et al: Neoadjuvant immunotherapy in mismatch-repair-proficient colon cancers. Nature. 648:726–735. 2025. View Article : Google Scholar : PubMed/NCBI

60 

Wang F, Chen G, Qiu M, Ma J, Mo X, Liu H, Li Y, Ding P, Wan X, Hu Y, et al: Neoadjuvant treatment of IBI310 plus sintilimab in locally advanced MSI-H/DMMR colon cancer: A randomized phase 1b study. Cancer Cell. 43:1958–1967.e2. 2025. View Article : Google Scholar : PubMed/NCBI

61 

Zhang X, Wang J, Wang G, Zhang Y, Fan Q, Lu C, Hu C, Sun M, Wan Y, Sun S, et al: First-line sugemalimab plus chemotherapy for advanced gastric cancer: The gemstone-303 randomized clinical trial. JAMA. 333:1305–1314. 2025. View Article : Google Scholar : PubMed/NCBI

62 

Ohtani Y, Ross K, Dandekar A, Gabbasov R and Klichinsky M: 128 development of an M1-polarized, non-viral chimeric antigen receptor macrophage (car-m) platform for cancer immunotherapy. Journal for ImmunoTherapy of Cancer. 8 (Suppl 3):doi.org/10.1136/jitc-2020-SITC2020.0128. 2020.

63 

Razak AR, Cleary JM, Moreno V, Boyer M, Aller EC, Edenfield W, Tie J, Harvey RD, Rutten A, Shah MA, et al: Safety and efficacy of AMG 820, an anti-colony-stimulating factor 1 receptor antibody, in combination with pembrolizumab in adults with advanced solid tumors. J Immunother Cancer. 8:e0010062020. View Article : Google Scholar : PubMed/NCBI

64 

Spierenburg G, van der Heijden L, van Langevelde K, Szuhai K, Bovée JVGM, van de Sande MAJ and Gelderblom H: Tenosynovial giant cell tumors (TGCT): Molecular biology, drug targets and non-surgical pharmacological approaches. Expert Opin Ther Targets. 26:333–345. 2022. View Article : Google Scholar : PubMed/NCBI

65 

Golstein P and Griffiths GM: An early history of T cell-mediated cytotoxicity. Nat Rev Immunol. 18:527–535. 2018. View Article : Google Scholar : PubMed/NCBI

66 

Pei S, Pollyea DA, Gustafson A, Minhajuddin M, Stevens BM, Ye HY, Inguva A, Amaya ML, Krug A, Jones CL, et al: Developmental plasticity of acute myeloid leukemia mediates resistance to venetoclax-based therapy. Blood. 134 (Suppl_1):S1852019. View Article : Google Scholar

67 

Li X, Gruosso T, Zuo D, Omeroglu A, Meterissian S, Guiot MC, Salazar A, Park M and Levine H: Infiltration of CD8(+) T cells into tumor cell clusters in triple-negative breast cancer. Proc Natl Acad Sci USA. 116:3678–3687. 2019. View Article : Google Scholar : PubMed/NCBI

68 

Gajewski TF, Schreiber H and Fu YX: Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol. 14:1014–1022. 2013. View Article : Google Scholar : PubMed/NCBI

69 

Zhang L, Shi YC, Yang YX, Wang ZG, Wang SS and Zhang H: Association of T lymphocyte subset counts with the clinical features of colorectal cancer. J Nutr Oncol. 8:178–185. 2023. View Article : Google Scholar

70 

Doering TA, Crawford A, Angelosanto JM, Paley MA, Ziegler CG and Wherry EJ: Network analysis reveals centrally connected genes and pathways involved in CD8+ T cell exhaustion versus memory. Immunity. 37:1130–1144. 2012. View Article : Google Scholar : PubMed/NCBI

71 

Wherry EJ and Kurachi M: Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol. 15:486–499. 2015. View Article : Google Scholar : PubMed/NCBI

72 

Angelosanto JM, Blackburn SD, Crawford A and Wherry EJ: Progressive loss of memory T cell potential and commitment to exhaustion during chronic viral infection. J Virol. 86:8161–8170. 2012. View Article : Google Scholar : PubMed/NCBI

73 

Im SJ, Hashimoto M, Gerner MY, Lee J, Kissick HT, Burger MC, Shan Q, Hale JS, Lee J, Nasti TH, et al: Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature. 537:417–421. 2016. View Article : Google Scholar : PubMed/NCBI

74 

Alfei F and Zehn D: T cell exhaustion: An epigenetically imprinted phenotypic and functional makeover. Trends Mol Med. 23:769–771. 2017. View Article : Google Scholar : PubMed/NCBI

75 

Baitsch L, Baumgaertner P, Devêvre E, Raghav SK, Legat A, Barba L, Wieckowski S, Bouzourene H, Deplancke B, Romero P, et al: Exhaustion of tumor-specific CD8+ T cells in metastases from melanoma patients. J Clin Invest. 121:2350–2360. 2011. View Article : Google Scholar : PubMed/NCBI

76 

Odorizzi PM, Pauken KE, Paley MA, Sharpe A and Wherry EJ: Genetic absence of PD-1 promotes accumulation of terminally differentiated exhausted Cd8+ T cells. J Exp Med. 212:1125–1137. 2015. View Article : Google Scholar : PubMed/NCBI

77 

Chen Y, Wang D, Li Y, Qi L, Si W, Bo Y, Chen X, Ye Z, Fan H, Liu B, et al: Spatiotemporal single-cell analysis decodes cellular dynamics underlying different responses to immunotherapy in colorectal cancer. Cancer Cell. 42:1268–1285.e7. 2024. View Article : Google Scholar : PubMed/NCBI

78 

Liu Z, Zhang Y, Ma N, Yang Y, Ma Y, Wang F, Wang Y, Wei J, Chen H, Tartarone A, et al: Progenitor-like exhausted SPRY1(+)CD8(+) t cells potentiate responsiveness to neoadjuvant PD-1 blockade in esophageal squamous cell carcinoma. Cancer Cell. 41:1852–1870.e9. 2023. View Article : Google Scholar : PubMed/NCBI

79 

Liu Z, Yang Z, Wu J, Zhang W, Sun Y, Zhang C, Bai G, Yang L, Fan H, Chen Y, et al: A single-cell atlas reveals immune heterogeneity in anti-PD-1-treated non-small cell lung cancer. Cell. 188:3081–3096.e19. 2025. View Article : Google Scholar : PubMed/NCBI

80 

Kim YJ, Park SJ and Broxmeyer HE: Phagocytosis, a potential mechanism for myeloid-derived suppressor cell regulation of CD8+ T cell function mediated through programmed cell death-1 and programmed cell death-1 ligand interaction. J Immunol. 187:2291–2301. 2011. View Article : Google Scholar : PubMed/NCBI

81 

Tanaka A and Sakaguchi S: Regulatory T cells in cancer immunotherapy. Cell Res. 27:109–118. 2017. View Article : Google Scholar : PubMed/NCBI

82 

Ma S, Dahabieh MS, Mann TH, Zhao S, McDonald B, Song WS, Chung HK, Farsakoglu Y, Garcia-Rivera L, Hoffmann FA, et al: Nutrient-driven histone code determines exhausted CD8(+) T cell fates. Science. 387:eadj30202025. View Article : Google Scholar : PubMed/NCBI

83 

Li J, Wu C, Hu H, Qin G, Wu X, Bai F, Zhang J, Cai Y, Huang Y, Wang C, et al: Remodeling of the immune and stromal cell compartment by pd-1 blockade in mismatch repair-deficient colorectal cancer. Cancer Cell. 41:1152–1169.e7. 2023. View Article : Google Scholar : PubMed/NCBI

84 

Borràs DM, Verbandt S, Ausserhofer M, Sturm G, Lim J, Verge GA, Vanmeerbeek I, Laureano RS, Govaerts J, Sprooten J, et al: Single cell dynamics of tumor specificity vs bystander activity in CD8(+) T cells define the diverse immune landscapes in colorectal cancer. Cell Discov. 9:1142023. View Article : Google Scholar : PubMed/NCBI

85 

Donia M, Andersen R, Kjeldsen JW, Fagone P, Munir S, Nicoletti F, Andersen MH, Straten PT and Svane IM: Aberrant expression of MHC class II in melanoma attracts inflammatory tumor-specific CD4+ T- cells, which dampen CD8+ T-cell antitumor reactivity. Cancer Res. 75:3747–3759. 2015. View Article : Google Scholar : PubMed/NCBI

86 

Borst J, Ahrends T, Bąbała N, Melief CJM and Kastenmüller W: CD4(+) T cell help in cancer immunology and immunotherapy. Nat Rev Immunol. 18:635–647. 2018. View Article : Google Scholar : PubMed/NCBI

87 

Ahrends T, Spanjaard A, Pilzecker B, Bąbała N, Bovens A, Xiao Y, Jacobs H and Borst J: CD4(+) T cell help confers a cytotoxic T cell effector program including coinhibitory receptor downregulation and increased tissue invasiveness. Immunity. 47:848–861.e5. 2017. View Article : Google Scholar : PubMed/NCBI

88 

Shamoun L, Skarstedt M, Andersson RE, Wågsäter D and Dimberg J: Association study on IL-4, IL-4Rα and Il-13 genetic polymorphisms in swedish patients with colorectal cancer. Clin Chim Acta. 487:101–106. 2018. View Article : Google Scholar : PubMed/NCBI

89 

Li W, Chen F, Gao H, Xu Z, Zhou Y, Wang S, Lv Z, Zhang Y, Xu Z, Huo J, et al: Cytokine concentration in peripheral blood of patients with colorectal cancer. Front Immunol. 14:11755132023. View Article : Google Scholar : PubMed/NCBI

90 

Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, Cua DJ and Littman DR: The orphan nuclear receptor rorgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell. 126:1121–1133. 2006. View Article : Google Scholar : PubMed/NCBI

91 

Huber S, Gagliani N, Zenewicz LA, Huber FJ, Bosurgi L, Hu B, Hedl M, Zhang W, O'Connor W Jr, Murphy AJ, et al: IL-22BP is regulated by the inflammasome and modulates tumorigenesis in the intestine. Nature. 491:259–263. 2012. View Article : Google Scholar : PubMed/NCBI

92 

Kryczek I, Wei S, Szeliga W, Vatan L and Zou W: Endogenous IL-17 contributes to reduced tumor growth and metastasis. Blood. 114:357–359. 2009. View Article : Google Scholar : PubMed/NCBI

93 

Bai Y, Li T, Wang Q, You W, Yang H, Xu X, Li Z, Zhang Y, Yan C, Yang L, et al: Shaping immune landscape of colorectal cancer by cholesterol metabolites. EMBO Mol Med. 16:334–360. 2024. View Article : Google Scholar : PubMed/NCBI

94 

De Simone V, Pallone F, Monteleone G and Stolfi C: Role of TH17 cytokines in the control of colorectal cancer. Oncoimmunology. 2:e266172013. View Article : Google Scholar : PubMed/NCBI

95 

Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burow M, et al: Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med. 10:942–949. 2004. View Article : Google Scholar : PubMed/NCBI

96 

Sayour EJ, McLendon P, McLendon R, De Leon G, Reynolds R, Kresak J, Sampson JH and Mitchell DA: Increased proportion of FoxP3+ regulatory T cells in tumor infiltrating lymphocytes is associated with tumor recurrence and reduced survival in patients with glioblastoma. Cancer Immunol Immunother. 64:419–427. 2015. View Article : Google Scholar : PubMed/NCBI

97 

Merlo A, Casalini P, Carcangiu ML, Malventano C, Triulzi T, Mènard S, Tagliabue E and Balsari A: Foxp3 expression and overall survival in breast cancer. J Clin Oncol. 27:1746–1752. 2009. View Article : Google Scholar : PubMed/NCBI

98 

Zi R, Zhao X, Liu L, Wang Y, Zhang R, Bian Z, Jiang H, Liu T, Sun Y, Peng H, et al: Metabolic-immune suppression mediated by the SIRT1-CX3CL1 axis induces functional enhancement of regulatory T cells in colorectal carcinoma. Adv Sci (Weinh). 12:e24047342025. View Article : Google Scholar : PubMed/NCBI

99 

Gu J, Zhou J, Chen Q, Xu X, Gao J, Li X, Shao Q, Zhou B, Zhou H, Wei S, et al: Tumor metabolite lactate promotes tumorigenesis by modulating MOESIN lactylation and enhancing TGF-beta signaling in regulatory T cells. Cell Rep. 39:1109862022. View Article : Google Scholar : PubMed/NCBI

100 

Adamczyk A, Pastille E, Kehrmann J, Vu VP, Geffers R, Wasmer MH, Kasper S, Schuler M, Lange CM, Muggli B, et al: GPR15 facilitates recruitment of regulatory T cells to promote colorectal cancer. Cancer Res. 81:2970–2982. 2021. View Article : Google Scholar : PubMed/NCBI

101 

Akkaya M, Kwak K and Pierce SK: B cell memory: Building two walls of protection against pathogens. Nat Rev Immunol. 20:229–238. 2020. View Article : Google Scholar : PubMed/NCBI

102 

Choi IK, Wang Z, Ke Q, Hong M, Paul DW Jr, Fernandes SM, Hu Z, Stevens J, Guleria I, Kim HJ, et al: Mechanism of EBV inducing anti-tumour immunity and its therapeutic use. Nature. 590:157–162. 2021. View Article : Google Scholar : PubMed/NCBI

103 

Manfroi B and Fillatreau S: Regulatory B cells gain muscles with a leucine-rich diet. Immunity. 55:970–972. 2022. View Article : Google Scholar : PubMed/NCBI

104 

Murakami Y, Saito H, Shimizu S, Kono Y, Shishido Y, Miyatani K, Matsunaga T, Fukumoto Y, Ashida K, Sakabe T, et al: Increased regulatory B cells are involved in immune evasion in patients with gastric cancer. Sci Rep. 9:130832019. View Article : Google Scholar : PubMed/NCBI

105 

Griss J, Bauer W, Wagner C, Simon M, Chen M, Grabmeier-Pfistershammer K, Maurer-Granofszky M, Roka F, Penz T, Bock C, et al: B cells sustain inflammation and predict response to immune checkpoint blockade in human melanoma. Nat Commun. 10:41862019. View Article : Google Scholar : PubMed/NCBI

106 

Mao H, Pan F, Wu Z, Wang Z, Zhou Y, Zhang P, Gou M and Dai G: Colorectal tumors are enriched with regulatory plasmablasts with capacity in suppressing T cell inflammation. Int Immunopharmacol. 49:95–101. 2017. View Article : Google Scholar : PubMed/NCBI

107 

Liao Y, Zhuo X, Huang Y, Xu H, Hao Z, Huang L, Zheng H and Zhou J: A SENP7-SIRT1-IL-10 axis driven by DeSUMOylation promotes breg differentiation and immune evasion in colorectal cancer. Int J Biol Sci. 22:111–125. 2026. View Article : Google Scholar : PubMed/NCBI

108 

Hou D, Castro B, Dapash M, Rashidi A, Zhang P, Han Y, Lopez-Rosas A, Lesniak M, Miska J and Chang C: Immu-36. B cell-vaccine elicits long term immunity against glioblastoma via activation and differentiation of tumor-specific CD8+ memory T cells. Neuro Oncol. 23 (Suppl_6):vi100. 2021. View Article : Google Scholar

109 

Irimia RM, Gerke MB, Thakar M, Ren Z, Helmenstine E, Imus PH, Ghiaur G, Leone R and Gocke GB: CD38 is a key regulator of tumor growth by modulating the metabolic signature of malignant plasma cells. Blood. 138 (Suppl 1):S26522021. View Article : Google Scholar

110 

Malik H, Buelow B, Rangaswamy U, Balasubramani A, Boudreau A, Dang K, Davison L, Aldred SF, Harris KM, Iyer S, Jorgensen B, Pham D, Prabhakar K, Schellenberger U, Ugamraj H, Trinklein N and Van Schooten W: Tnb-486, a novel fully human bispecific CD19 × CD3 antibody that kills CD19-positive tumor cells with minimal cytokine secretion. Blood. 134 (Suppl_1):S4070. 2019. View Article : Google Scholar

111 

Wang W, Zhong Y, Zhuang Z, Xie J, Lu Y, Huang C, Sun Y, Wu L, Yin J, Yu H, et al: Multiregion single-cell sequencing reveals the transcriptional landscape of the immune microenvironment of colorectal cancer. Clin Transl Med. 11:e2532021. View Article : Google Scholar : PubMed/NCBI

112 

Nicolai CJ and Raulet DH: Killer cells add fire to fuel immunotherapy. Science. 368:943–944. 2020. View Article : Google Scholar : PubMed/NCBI

113 

Dixon K, Hullsiek R, Snyder K, Davis Z, Khaw M, Lee T, Chu HY, Abujarour R, Dinella J, Rogers P, et al: Engineered iPSC-derived NK cells expressing recombinant CD64 for enhanced ADCC. Blood. 136 (Suppl 1):S10–S11. 2020. View Article : Google Scholar

114 

Fauriat C, Long EO, Ljunggren HG and Bryceson YT: Regulation of human NK-cell cytokine and chemokine production by target cell recognition. Blood. 115:2167–2176. 2010. View Article : Google Scholar : PubMed/NCBI

115 

Liu YJ, Han M, Li JP, Zeng SH, Ye QW, Yin ZH, Liu SL and Zou X: An analysis regarding the association between connexins and colorectal cancer (CRC) tumor microenvironment. J Inflamm Res. 15:2461–2476. 2022. View Article : Google Scholar : PubMed/NCBI

116 

Yang L, Yi J, He W, Kong P, Xie Q, Jin Y, Xiong Z and Xia L: Death receptors 4/5 mediate tumour sensitivity to natural killer cell-mediated cytotoxicity in mismatch repair deficient colorectal cancer. Br J Cancer. 131:334–346. 2024. View Article : Google Scholar : PubMed/NCBI

117 

Otegbeye F, Ojo E, Moreton S, Mackowski N, Lee DA, de Lima M and Wald DN: Inhibiting TGF-beta signaling preserves the function of highly activated, in vitro expanded natural killer cells in AML and colon cancer models. PLoS One. 13:e01913582018. View Article : Google Scholar : PubMed/NCBI

118 

Vuletić A, Martinović KM, Miletić NT, Zoidakis J, Castellvi-Bel S and Čavić M: Cross-talk between tumor cells undergoing epithelial to mesenchymal transition and natural killer cells in tumor microenvironment in colorectal cancer. Front Cell Dev Biol. 9:7500222021. View Article : Google Scholar : PubMed/NCBI

119 

Tang S, Fu H, Xu Q and Zhou Y: Mir-20a regulates sensitivity of colorectal cancer cells to NK cells by targeting mica. Biosci Rep. 39:BSR201806952019. View Article : Google Scholar : PubMed/NCBI

120 

Lin A, Ye P, Li Z, Jiang A, Liu Z, Cheng Q, Zhang J and Luo P: Natural killer cell immune checkpoints and their therapeutic targeting in cancer treatment. Research (Wash DC). 8:07232025.PubMed/NCBI

121 

Lupo K and Matosevic S: 123 natural killer cells engineered with an inducible, responsive genetic construct targeting tigit and CD73 to relieve immunosuppression within the gbm microenvironment. Journal for ImmunoTherapy of Cancer. 8 (Suppl 3):doi.org/10.1136/jitc-2020-SITC2020.0123. 2020.PubMed/NCBI

122 

Strassheimer F, Strecker MI, Alekseeva T, Macas J, Demes MC, Mildenberger IC, Tonn T, Wild PJ, Sevenich L, Reiss Y, et al: Os12.6.A combination therapy of CAR-NK-cells and anti-pd-1 results in high efficacy against advanced-stage glioblastoma in a syngeneic mouse model and induces protective anti-tumor immunity in vivo. Neuro Oncol. 23 (Suppl_2):ii152021. View Article : Google Scholar

123 

Kong R, Liu B, Wang H, Lu T and Zhou X: CAR-NK cell therapy: Latest updates from the 2024 ASH annual meeting. J Hematol Oncol. 18:222025. View Article : Google Scholar : PubMed/NCBI

124 

Duan J, Zhao S, Duan Y, Sun D, Zhang G, Yu D, Lou Y, Liu H, Yang S, Liang X, et al: Mnox nanoenzyme armed CAR-NK cells enhance solid tumor immunotherapy by alleviating the immunosuppressive microenvironment. Adv Healthc Mater. 13:e23039632024. View Article : Google Scholar : PubMed/NCBI

125 

Wang W, Liu Y, He Z, Li L, Liu S, Jiang M, Zhao B, Deng M, Wang W, Mi X, et al: Breakthrough of solid tumor treatment: CAR-NK immunotherapy. Cell Death Discov. 10:402024. View Article : Google Scholar : PubMed/NCBI

126 

Reizis B: Plasmacytoid dendritic cells: Development, regulation, and function. Immunity. 50:37–50. 2019. View Article : Google Scholar : PubMed/NCBI

127 

Wculek SK, Cueto FJ, Mujal AM, Melero I, Krummel MF and Sancho D: Dendritic cells in cancer immunology and immunotherapy. Nat Rev Immunol. 20:7–24. 2020. View Article : Google Scholar : PubMed/NCBI

128 

Jhunjhunwala S, Hammer C and Delamarre L: Antigen presentation in cancer: Insights into tumour immunogenicity and immune evasion. Nat Rev Cancer. 21:298–312. 2021. View Article : Google Scholar : PubMed/NCBI

129 

Klempner SJ, Cecchini M, Khushman M, Kummar S, Pelster M, Rodon J, Sharma S, Yaeger R, Rojo J, Wells AL, et al: Abstract B031: A phase 1/2 trial of fog-001, a first-in-class direct β-catenin:Tcf4 inhibitor, preliminary safety and efficacy in patients with solid tumors bearing wnt pathway-activating mutations (WPAM+). Mol Cancer Ther. 24 (10_Suppl):B0312025. View Article : Google Scholar

130 

Suryawanshi A, Hussein MS, Prasad PD and Manicassamy S: Wnt signaling cascade in dendritic cells and regulation of anti-tumor immunity. Front Immunol. 11:1222020. View Article : Google Scholar : PubMed/NCBI

131 

Dhodapkar MV, Dhodapkar KM and Palucka AK: Interactions of tumor cells with dendritic cells: Balancing immunity and tolerance. Cell Death Differ. 15:39–50. 2008. View Article : Google Scholar : PubMed/NCBI

132 

Itai YS, Barboy O, Salomon R, Bercovich A, Xie K, Winter E, Shami T, Porat Z, Erez N, Tanay A, et al: Bispecific dendritic-T cell engager potentiates anti-tumor immunity. Cell. 187:375–389.e18. 2024. View Article : Google Scholar

133 

Aznar MA, Planelles L, Perez-Olivares M, Molina C, Garasa S, Etxeberría I, Perez G, Rodriguez I, Bolaños E, Lopez-Casas P, et al: Immunotherapeutic effects of intratumoral nanoplexed poly I:C. J Immunother Cancer. 7:1162019. View Article : Google Scholar : PubMed/NCBI

134 

He F, Wu Z, Liu C, Zhu Y, Zhou Y, Tian E, Rosin-Arbesfeld R, Yang D, Wang MW and Zhu D: Targeting BCL9/BCL9L enhances antigen presentation by promoting conventional type 1 dendritic cell (cDC1) activation and tumor infiltration. Signal Transduct Target Ther. 9:1392024. View Article : Google Scholar : PubMed/NCBI

135 

Singer M, Valerin J, Zhang Z, Zhang Z, Dayyani F, Yaghmai V, Choi A, Imagawa D and Abi-Jaoudeh N: Promising cellular immunotherapy for colorectal cancer using classical dendritic cells and natural killer T cells. Cells. 14:1662025. View Article : Google Scholar : PubMed/NCBI

136 

Passardi A, Sullo FG, Bittoni A, Matteucci L, De Rosa F, Bulgarelli J, Tazzari M, Petrini M, Scarpi E, Testoni S, et al: CombiCoR-Vax trial: Study protocol for a phase II, single-arm, multicenter trial of sequential pembrolizumab plus dendritic cell vaccine followed by trifluridine/tipiracil and bevacizumab in refractory microsatellite-stable metastatic colorectal cancer. BMC Cancer. 25:19212025. View Article : Google Scholar : PubMed/NCBI

137 

Guo FF and Cui JW: The role of neutrophils in cancer development. Journal of Nutritional Oncology. 4:85–90. 2019.https://journals.lww.com/jno/Fulltext/2019/05150/The_Role_of_Neutrophils_in_Cancer_Development.5.aspx View Article : Google Scholar

138 

Peng H, Shen J, Long X, Zhou X, Zhang J, Xu X, Huang T, Xu H, Sun S, Li C, et al: Local release of TGF-β inhibitor modulates tumor-associated neutrophils and enhances pancreatic cancer response to combined irreversible electroporation and immunotherapy. Adv Sci (Weinh). 9:e21052402022. View Article : Google Scholar : PubMed/NCBI

139 

Giese MA, Hind LE and Huttenlocher A: Neutrophil plasticity in the tumor microenvironment. Blood. 133:2159–2167. 2019. View Article : Google Scholar : PubMed/NCBI

140 

Yang L, Liu L, Zhang R, Hong J, Wang Y, Wang J, Zuo J, Zhang J, Chen J and Hao H: IL-8 mediates a positive loop connecting increased neutrophil extracellular traps (NETs) and colorectal cancer liver metastasis. J Cancer. 11:4384–4396. 2020. View Article : Google Scholar : PubMed/NCBI

141 

Yang L, Liu Q, Zhang X, Liu X, Zhou B, Chen J, Huang D, Li J, Li H, Chen F, et al: DNA of neutrophil extracellular traps promotes cancer metastasis via CCDC25. Nature. 583:133–138. 2020. View Article : Google Scholar : PubMed/NCBI

142 

Tohme S, Yazdani HO, Al-Khafaji AB, Chidi AP, Loughran P, Mowen K, Wang Y, Simmons RL, Huang H and Tsung A: Neutrophil extracellular traps promote the development and progression of liver metastases after surgical stress. Cancer Res. 76:1367–1380. 2016. View Article : Google Scholar : PubMed/NCBI

143 

Wang X, He S, Gong X, Lei S, Zhang Q, Xiong J and Liu Y: Neutrophils in colorectal cancer: Mechanisms, prognostic value, and therapeutic implications. Front Immunol. 16:15386352025. View Article : Google Scholar : PubMed/NCBI

144 

Yuan Y, Chen YF, Liu XM, Hu Y, Hao S and Dai XY: Analysis of risk factors and prognostic prediction in advanced colorectal cancer undergoing immunotherapy combined with targeted therapy. Front Med (Lausanne). 12:16404692025. View Article : Google Scholar : PubMed/NCBI

145 

Zhu T, Zou X, Yang C, Li L, Wang B, Li R, Li H, Xu Z, Huang D and Wu Q: Neutrophil extracellular traps promote gastric cancer metastasis by inducing epithelial-mesenchymal transition. Int J Med. 48:1272021.

146 

Cheng Y, Mo F, Li Q, Han X, Shi H, Chen S, Wei Y and Wei X: Targeting CXCR2 inhibits the progression of lung cancer and promotes therapeutic effect of cisplatin. Mol Cancer. 20:622021. View Article : Google Scholar : PubMed/NCBI

147 

Chu X, Li X, Zhang Y, Dang G, Miao Y, Xu W, Wang J, Zhang Z and Cheng S: Integrative single-cell analysis of human colorectal cancer reveals patient stratification with distinct immune evasion mechanisms. Nat Cancer. 5:1409–1426. 2024. View Article : Google Scholar : PubMed/NCBI

148 

Oliveira MF, Romero JP, Chung M, Williams SR, Gottscho AD, Gupta A, Pilipauskas SE, Mohabbat S, Raman N, Sukovich DJ, et al: High-definition spatial transcriptomic profiling of immune cell populations in colorectal cancer. Nat Genet. 57:1512–1523. 2025. View Article : Google Scholar : PubMed/NCBI

149 

Zhang L, Li Z, Skrzypczynska KM, Fang Q, Zhang W, O'Brien SA, He Y, Wang L, Zhang Q, Kim A, et al: Single-cell analyses inform mechanisms of myeloid-targeted therapies in colon cancer. Cell. 181:442–459.e29. 2020. View Article : Google Scholar : PubMed/NCBI

150 

Liu Y, Zhang Q, Xing B, Luo N, Gao R, Yu K, Hu X, Bu Z, Peng J, Ren X and Zhang Z: Immune phenotypic linkage between colorectal cancer and liver metastasis. Cancer Cell. 40:424–437.e5. 2022. View Article : Google Scholar : PubMed/NCBI

151 

Wu Y, Yang S, Ma J, Chen Z, Song G, Rao D, Cheng Y, Huang S, Liu Y, Jiang S, et al: Spatiotemporal immune landscape of colorectal cancer liver metastasis at single-cell level. Cancer Discov. 12:134–153. 2022. View Article : Google Scholar : PubMed/NCBI

152 

Zhang L, Yu X, Zheng L, Zhang Y, Li Y, Fang Q, Gao R, Kang B, Zhang Q, Huang JY, et al: Lineage tracking reveals dynamic relationships of T cells in colorectal cancer. Nature. 564:268–272. 2018. View Article : Google Scholar : PubMed/NCBI

153 

Feng Y, Ma W, Zang Y, Guo Y, Li Y, Zhang Y, Dong X, Liu Y, Zhan X, Pan Z, et al: Spatially organized tumor-stroma boundary determines the efficacy of immunotherapy in colorectal cancer patients. Nat Commun. 15:102592024. View Article : Google Scholar : PubMed/NCBI

154 

Massagué J and Sheppard D: TGF-β signaling in health and disease. Cell. 186:4007–4037. 2023. View Article : Google Scholar : PubMed/NCBI

155 

Sikic BI, Lakhani N, Patnaik A, Shah SA, Chandana SR, Rasco D, Colevas AD, O'Rourke T, Narayanan S, Papadopoulos K, et al: First-in-human, first-in-class phase I trial of the anti-CD47 antibody Hu5f9-G4 in patients with advanced cancers. J Clin Oncol. 37:946–953. 2019. View Article : Google Scholar : PubMed/NCBI

156 

Pyo DH, Hong HK, Lee WY and Cho YB: Patient-derived cancer modeling for precision medicine in colorectal cancer: Beyond the cancer cell line. Cancer Biol Ther. 21:495–502. 2020. View Article : Google Scholar : PubMed/NCBI

157 

Balaban E and Cohen M: Decoding multicellular interaction networks-a new horizon in tumor microenvironment research. Mol Oncol. 19:957–960. 2025. View Article : Google Scholar : PubMed/NCBI

158 

Quail DF and Joyce JA: Microenvironmental regulation of tumor progression and metastasis. Nat Med. 19:1423–1437. 2013. View Article : Google Scholar : PubMed/NCBI

159 

Gomez-Roca C, Cassier P, Zamarin D, Machiels JP, Gracia JL, Hodi FS, Taus A, Garcia M, Boni V, Eder JP, et al: Anti-CSF-1R emactuzumab in combination with anti-PD-L1 atezolizumab in advanced solid tumor patients naïve or experienced for immune checkpoint blockade. J Immunother Cancer. 10:e0040762022. View Article : Google Scholar : PubMed/NCBI

160 

Wagner SJ, Reisenbüchler D, West NP, Niehues JM, Zhu J, Foersch S, Veldhuizen GP, Quirke P, Grabsch HI, van den Brandt PA, et al: Transformer-based biomarker prediction from colorectal cancer histology: A large-scale multicentric study. Cancer Cell. 41:1650–1661.e4. 2023. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Qiu M, Lan C, Lin M and Ma H: <p>Key immune cells in the tumor immune microenvironment of colorectal cancer: Roles and research advances (Review)</p>. Oncol Rep 55: 52, 2026.
APA
Qiu, M., Lan, C., Lin, M., & Ma, H. (2026). <p>Key immune cells in the tumor immune microenvironment of colorectal cancer: Roles and research advances (Review)</p>. Oncology Reports, 55, 52. https://doi.org/10.3892/or.2026.9057
MLA
Qiu, M., Lan, C., Lin, M., Ma, H."<p>Key immune cells in the tumor immune microenvironment of colorectal cancer: Roles and research advances (Review)</p>". Oncology Reports 55.3 (2026): 52.
Chicago
Qiu, M., Lan, C., Lin, M., Ma, H."<p>Key immune cells in the tumor immune microenvironment of colorectal cancer: Roles and research advances (Review)</p>". Oncology Reports 55, no. 3 (2026): 52. https://doi.org/10.3892/or.2026.9057
Copy and paste a formatted citation
x
Spandidos Publications style
Qiu M, Lan C, Lin M and Ma H: <p>Key immune cells in the tumor immune microenvironment of colorectal cancer: Roles and research advances (Review)</p>. Oncol Rep 55: 52, 2026.
APA
Qiu, M., Lan, C., Lin, M., & Ma, H. (2026). <p>Key immune cells in the tumor immune microenvironment of colorectal cancer: Roles and research advances (Review)</p>. Oncology Reports, 55, 52. https://doi.org/10.3892/or.2026.9057
MLA
Qiu, M., Lan, C., Lin, M., Ma, H."<p>Key immune cells in the tumor immune microenvironment of colorectal cancer: Roles and research advances (Review)</p>". Oncology Reports 55.3 (2026): 52.
Chicago
Qiu, M., Lan, C., Lin, M., Ma, H."<p>Key immune cells in the tumor immune microenvironment of colorectal cancer: Roles and research advances (Review)</p>". Oncology Reports 55, no. 3 (2026): 52. https://doi.org/10.3892/or.2026.9057
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team