You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
Advances in isolation and detection technologies and immunotherapy applications of circulating tumor cells (Review)
Circulating tumor cells (CTCs) are shed from the primary tumor into the peripheral bloodstream, where they play crucial roles in tumor metastasis and recurrence. As a cornerstone of liquid biopsy, CTCs hold significant potential for early tumor diagnosis, therapeutic response monitoring, and prognosis. However, the rarity and heterogeneity of CTCs pose considerable challenges for their isolation and enrichment. Additionally, their predictive usefulness in tumor immunotherapy remains relatively limited. The present review summarizes recent advancements in CTC isolation and detection technologies, explores their clinical applications in immunotherapy, and discusses current challenges alongside potential strategies for improvement. The integration of these technologies into clinical practice could pave the way for more personalized and precise cancer treatment strategies in the future.
![]() |
![]() |
![]() |
![]() |
|
Feng Z, Wu J, Lu Y, Chan YT, Zhang C, Wang D, Luo D, Huang Y, Feng Y and Wang N: Circulating tumor cells in the early detection of human cancers. Int J Biol Sci. 18:3251–3265. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang W, Xu F, Yao J, Mao C, Zhu M, Qian M, Hu J, Zhong H, Zhou J, Shi X and Chen Y: Single-cell metabolic fingerprints discover a cluster of circulating tumor cells with distinct metastatic potential. Nat Commun. 14:24852023. View Article : Google Scholar : PubMed/NCBI | |
|
El-Kenawi A, Hänggi K and Ruffell B: The immune microenvironment and cancer metastasis. Cold Spring Harb Perspect Med. 10:a0374242020. View Article : Google Scholar : PubMed/NCBI | |
|
Pereira-Veiga T, Schneegans S, Pantel K and Wikman H: Circulating tumor cell-blood cell crosstalk: Biology and clinical relevance. Cell Rep. 40:1112982022. View Article : Google Scholar : PubMed/NCBI | |
|
Schmidt C: The benefits of immunotherapy combinations. Nature. 552:S67–S69. 2017. View Article : Google Scholar | |
|
Brozos-Vázquez EM, Díaz-Peña R, García-González J, León-Mateos L, Mondelo-Macía P, Peña-Chilet M and López-López R: Immunotherapy in nonsmall-cell lung cancer: current status and future prospects for liquid biopsy. Cancer Immunol Immunother. 70:1177–1188. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Xu H, Zuo Y, Gao S, Liu Y, Liu T, He S, Wang M, Hu L, Li C and Yu Y: Circulating tumor cell phenotype detection and epithelial-mesenchymal transition tracking based on dual biomarker co-recognition in an integrated PDMS chip. Small. 20:e23103602024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhong X, Zhang H, Zhu Y, Liang Y, Yuan Z, Li J, Li J, Li X, Jia Y, He T, et al: Circulating tumor cells in cancer patients: Developments and clinical applications for immunotherapy. Mol Cancer. 19:152020. View Article : Google Scholar : PubMed/NCBI | |
|
Singh B, Arora S, D'Souza A, Kale N, Aland G, Bharde A, Quadir M, Calderón M, Chaturvedi P and Khandare J: Chemo-specific designs for the enumeration of circulating tumor cells: Advances in liquid biopsy. J Mater Chem B. 9:2946–2978. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Ye Q, Ling S, Zheng S and Xu X: Liquid biopsy in hepatocellular carcinoma: Circulating tumor cells and circulating tumor DNA. Mol Cancer. 18:1142019. View Article : Google Scholar : PubMed/NCBI | |
|
Li M, Li L, Zheng J, Li Z, Li S, Wang K and Chen X: Liquid biopsy at the frontier in renal cell carcinoma: recent analysis of techniques and clinical application. Mol Cancer. 22:372023. View Article : Google Scholar : PubMed/NCBI | |
|
Shuai Y, Ma Z, Ju J, Wei T, Gao S, Kang Y, Yang Z, Wang X, Yue J and Yuan P: Liquid-based biomarkers in breast cancer: Looking beyond the blood. J Transl Med. 21:8092023. View Article : Google Scholar : PubMed/NCBI | |
|
Jou HJ, Ho HC, Huang KY, Chen CY, Chen SW, Lo PH, Huang PW, Huang CE and Chen M: Isolation of TTF-1 positive circulating tumor cells for single-cell sequencing by using an automatic platform based on microfluidic devices. Int J Mol Sci. 23:151392022. View Article : Google Scholar : PubMed/NCBI | |
|
Xu CM, Tang M, Feng J, Xia HF, Wu LL, Pang DW, Chen G and Zhang ZL: A liquid biopsy-guided drug release system for cancer theranostics: Integrating rapid circulating tumor cell detection and precision tumor therapy. Lab Chip. 20:1418–1425. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Ashworth T: A case of cancer in which cells similar to those in the tumours were seen in the blood after death. Aust Med J. 14:146–147. 1869. | |
|
Nasr MM and Lynch CC: How circulating tumor cluster biology contributes to the metastatic cascade: From invasion to dissemination and dormancy. Cancer Metastasis Rev. 42:1133–1146. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Smit DJ, Pantel K and Jücker M: Circulating tumor cells as a promising target for individualized drug susceptibility tests in cancer therapy. Biochem Pharmacol. 188:1145892021. View Article : Google Scholar : PubMed/NCBI | |
|
Peck K, Sher YP, Shih JY, Roffler SR, Wu CW and Yang PC: Detection and quantitation of circulating cancer cells in the peripheral blood of lung cancer patients. Cancer Res. 58:2761–2765. 1998.PubMed/NCBI | |
|
Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Matera J, Miller MC, Reuben JM, Doyle GV, Allard WJ, Terstappen LW and Hayes DF: Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med. 351:781–791. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Magri V, Marino L, Nicolazzo C, Gradilone A, De Renzi G, De Meo M, Gandini O, Sabatini A, Santini D, Cortesi E and Gazzaniga P: Prognostic role of circulating tumor cell trajectories in metastatic colorectal cancer. Cells. 12:11722023. View Article : Google Scholar : PubMed/NCBI | |
|
Allard WJ, Matera J, Miller MC, Repollet M, Connelly MC, Rao C, Tibbe AG, Uhr JW and Terstappen LW: Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin Cancer Res. 10:6897–6904. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimia D, Ulkus L, Smith MR, Kwak EL, Digumarthy S, Muzikansky A, et al: Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature. 450:1235–1239. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Hartmann C, Patil R, Lin CP and Niedre M: Fluorescence detection, enumeration and characterization of single circulating cells in vivo: Technology, applications and future prospects. Phys Med Biol. 63:01TR012017. View Article : Google Scholar : PubMed/NCBI | |
|
Tang M, Xia HF, Xu CM, Feng J, Ren JG, Miao F, Wu M, Wu LL, Pang DW, Chen G and Zhang ZL: Magnetic chip based extracorporeal circulation: A new tool for circulating tumor cell in vivo detection. Anal Chem. 91:15260–15266. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Hazra RS, Kale N, Boyle C, Molina KB, D'Souza A, Aland G, Jiang L, Chaturvedi P, Ghosh S, Mallik S, et al: Magnetically-activated, nanostructured cellulose for efficient capture of circulating tumor cells from the blood sample of head and neck cancer patients. Carbohydr Polym. 323:1214182024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Q, Zhang X, Xie P and Zhang W: Liquid biopsy: An arsenal for tumour screening and early diagnosis. Cancer Treat Rev. 129:1027742024. View Article : Google Scholar : PubMed/NCBI | |
|
Ghassemi P, Ren X, Foster BM, Kerr BA and Agah M: Post-enrichment circulating tumor cell detection and enumeration via deformability impedance cytometry. Biosens Bioelectron. 150:1118682020. View Article : Google Scholar : PubMed/NCBI | |
|
Nikanjam M, Kato S and Kurzrock R: Liquid biopsy: Current technology and clinical applications. J Hematol Oncol. 15:1312022. View Article : Google Scholar : PubMed/NCBI | |
|
Kowalik A, Kowalewska M and Góźdź S: Current approaches for avoiding the limitations of circulating tumor cells detection methods-implications for diagnosis and treatment of patients with solid tumors. Transl Res. 185:58–84.e15. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
You Q, Peng J, Chang Z, Ge M, Mei Q and Dong WF: Specific recognition and photothermal release of circulating tumor cells using near-infrared light-responsive 2D MXene simplenanosheets@hydrogel membranes. Talanta. 235:1227702021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang K, Wang X, Pan Q and Zhao B: Liquid biopsy techniques and pancreatic cancer: diagnosis, monitoring, and evaluation. Mol Cancer. 22:1672023. View Article : Google Scholar : PubMed/NCBI | |
|
Lin D, Shen L, Luo M, Zhang K, Li J, Yang Q, Zhu F, Zhou D, Zheng S, Chen Y and Zhou J: Circulating tumor cells: Biology and clinical significance. Signal Transduct Target Ther. 6:4042021. View Article : Google Scholar : PubMed/NCBI | |
|
Yu Y, Zhang Y, Chen Y, Wang X, Kang K, Zhu N, Wu Y and Yi Q: Floating immunomagnetic microspheres for highly efficient circulating tumor cell isolation under facile magnetic manipulation. ACS Sens. 8:1858–1866. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Yeo D, Kao S, Gupta R, Wahlroos S, Bastian A, Strauss H, Klemm V, Shrestha P, Ramirez AB, Costandy L, et al: Accurate isolation and detection of circulating tumor cells using enrichment-free multiparametric high resolution imaging. Front Oncol. 13:11412282023. View Article : Google Scholar : PubMed/NCBI | |
|
Labib M and Kelley SO: Circulating tumor cell profiling for precision oncology. Mol Oncol. 15:1622–1646. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Chen J, Li D, Zhou C, Zhu Y, Lin C, Guo L, Le W, Gu Z and Chen B: Principle superiority and clinical extensibility of 2D and 3D charged nanoprobe detection platform based on electrophysiological characteristics of circulating tumor cells. Cells. 12:3052023. View Article : Google Scholar : PubMed/NCBI | |
|
Khan T, Becker TM, Po JW, Chua W and Ma Y: Single-circulating tumor cell whole genome amplification to unravel cancer heterogeneity and actionable biomarkers. Int J Mol Sci. 23:83862022. View Article : Google Scholar : PubMed/NCBI | |
|
Dianat-Moghadam H, Azizi M, Eslami S Z, Cortés-Hernández LE, Heidarifard M, Nouri M and Alix-Panabières C: The role of circulating tumor cells in the metastatic cascade: Biology, technical challenges, and clinical relevance. Cancers (Basel). 12:8672020. View Article : Google Scholar : PubMed/NCBI | |
|
Hyun KA and Jung HI: Advances and critical concerns with the microfluidic enrichments of circulating tumor cells. Lab Chip. 14:45–56. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Shimmyo N, Furuhata M, Yamada M, Utoh R and Seki M: Process simplification and structure design of parallelized microslit isolator for physical property-based capture of tumor cells. Analyst. 147:1622–1630. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Huang Q, Wang FB, Yuan CH, He Z, Rao L, Cai B, Chen B, Jiang S, Li Z, Chen J, et al: Gelatin nanoparticle-coated silicon beads for density-selective capture and release of heterogeneous circulating tumor cells with high purity. Theranostics. 8:1624–1635. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Tamminga M, Andree KC, Hiltermann TJN, Jayat M, Schuuring E, van den Bos H, Spierings DCJ, Lansdorp PM, Timens W, Terstappen LWMM and Groen HJM: Detection of circulating tumor cells in the diagnostic leukapheresis product of non-small-cell lung cancer patients comparing cellsearch® and ISET. Cancers (Basel). 12:8962020. View Article : Google Scholar : PubMed/NCBI | |
|
Barr J, Chudasama D, Rice A, Karteris E and Anikin V: Lack of association between Screencell-detected circulating tumour cells and long-term survival of patients undergoing surgery for non-small cell lung cancer: A pilot clinical study. Mol Clin Oncol. 12:191–195. 2020.PubMed/NCBI | |
|
Ferreira MM, Ramani VC and Jeffrey SS: Circulating tumor cell technologies. Mol Oncol. 10:374–394. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Wang B, Cai J, Yang Y, Tang C, Zheng X, Li H and Xu F: Enrichment and separation technology for evaluation of circulating tumor cells. Talanta. 282:1270252025. View Article : Google Scholar : PubMed/NCBI | |
|
Harouaka RA, Zhou MD, Yeh YT, Khan WJ, Das A, Liu X, Christ CC, Dicker DT, Baney TS, Kaifi JT, et al: Flexible micro spring array device for high-throughput enrichment of viable circulating tumor cells. Clin Chem. 60:323–333. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Gkountela S, Castro-Giner F, Szczerba BM, Vetter M, Landin J, Scherrer R, Krol I, Scheidmann MC, Beisel C, Stirnimann CU, et al: Circulating tumor cell clustering shapes DNA methylation to enable metastasis seeding. Cell. 176:98–112.e14. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Kurma K, Eslami-S Z, Alix-Panabières C and Cayrefourcq L: Liquid biopsy: Paving a new avenue for cancer research. Cell Adh Migr. 18:1–26. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Jia Y, Xu H, Li Y, Wei C, Guo R, Wang F, Wu Y, Liu J, Jia J, Yan J, et al: A Modified ficoll-paque gradient method for isolating mononuclear cells from the peripheral and umbilical cord blood of humans for biobanks and clinical laboratories. Biopreserv Biobank. 16:82–91. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
He S, Wei J, Ding L, Yang X and Wu Y: State-of-the-arts techniques and current evolving approaches in the separation and detection of circulating tumor cell. Talanta. 239:1230242022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Li Y and Tan Z: A review of enrichment methods for circulating tumor cells: From single modality to hybrid modality. Analyst. 146:7048–7069. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Peeters DJ, De Laere B, Van den Eynden GG, Van Laere SJ, Rothé F, Ignatiadis M, Sieuwerts AM, Lambrechts D, Rutten A, van Dam PA, et al: Semiautomated isolation and molecular characterisation of single or highly purified tumour cells from CellSearch enriched blood samples using dielectrophoretic cell sorting. Br J Cancer. 108:1358–1367. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao K, Zhao P, Dong J, Wei Y, Chen B, Wang Y, Pan X and Wang J: Implementation of an integrated dielectrophoretic and magnetophoretic microfluidic chip for CTC isolation. Biosensors (Basel). 12:7572022. View Article : Google Scholar : PubMed/NCBI | |
|
Zeinali M, Lee M, Nadhan A, Mathur A, Hedman C, Lin E, Harouaka R, Wicha MS, Zhao L, Palanisamy N, et al: High-throughput label-free isolation of heterogeneous circulating tumor cells and CTC clusters from non-small-cell lung cancer patients. Cancers (Basel). 12:1272020. View Article : Google Scholar : PubMed/NCBI | |
|
Boya M, Ozkaya-Ahmadov T, Swain BE, Chu CH, Asmare N, Civelekoglu O, Liu R, Lee D, Tobia S, Biliya S, et al: High throughput, label-free isolation of circulating tumor cell clusters in meshed microwells. Nat Commun. 13:33852022. View Article : Google Scholar : PubMed/NCBI | |
|
Fabisiewicz A and Grzybowska E: CTC clusters in cancer progression and metastasis. Med Oncol. 34:122017. View Article : Google Scholar : PubMed/NCBI | |
|
Niu Z, Kozminsky M, Day KC, Broses LJ, Henderson ML, Patsalis C, Tagett R, Qin Z, Blumberg S, Reichert ZR, et al: Characterization of circulating tumor cells in patients with metastatic bladder cancer utilizing functionalized microfluidics. Neoplasia. 57:1010362024. View Article : Google Scholar : PubMed/NCBI | |
|
Vidlarova M, Rehulkova A, Stejskal P, Prokopova A, Slavik H, Hajduch M and Srovnal J: Recent advances in methods for circulating tumor cell detection. Int J Mol Sci. 24:39022023. View Article : Google Scholar : PubMed/NCBI | |
|
Sajay BN, Chang CP, Ahmad H, Khuntontong P, Wong CC, Wang Z, Puiu PD, Soo R and Rahman AR: Microfluidic platform for negative enrichment of circulating tumor cells. Biomed Microdevices. 16:537–548. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Ma S, Zhou M, Xu Y, Gu X, Zou M, Abudushalamu G, Yao Y, Fan X and Wu G: Clinical application and detection techniques of liquid biopsy in gastric cancer. Mol Cancer. 22:72023. View Article : Google Scholar : PubMed/NCBI | |
|
Lopes C, Piairo P, Chícharo A, Abalde-Cela S, Pires LR, Corredeira P, Alves P, Muinelo-Romay L, Costa L and Diéguez L: HER2 expression in circulating tumour cells isolated from metastatic breast cancer patients using a size-based microfluidic device. Cancers (Basel). 13:44462021. View Article : Google Scholar : PubMed/NCBI | |
|
Chowdhury T, Cressiot B, Parisi C, Smolyakov G, Thiébot B, Trichet L, Fernandes FM, Pelta J and Manivet P: Circulating tumor cells in cancer diagnostics and prognostics by single-molecule and single-cell characterization. ACS Sens. 8:406–426. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Talasaz AH, Powell AA, Huber DE, Berbee JG, Roh KH, Yu W, Xiao W, Davis MM, Pease RF, Mindrinos MN, et al: Isolating highly enriched populations of circulating epithelial cells and other rare cells from blood using a magnetic sweeper device. Proc Natl Acad Sci USA. 106:3970–3975. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Shi J, Zhao C, Shen M, Chen Z, Liu J, Zhang S and Zhang Z: Combination of microfluidic chips and biosensing for the enrichment of circulating tumor cells. Biosens Bioelectron. 202:1140252022. View Article : Google Scholar : PubMed/NCBI | |
|
Ahmed MG, Abate MF, Song Y, Zhu Z, Yan F, Xu Y, Wang X, Li Q and Yang C: Isolation, detection, and antigen-based profiling of circulating tumor cells using a size-dictated immunocapture chip. Angew Chem Int Ed Engl. 56:10681–10685. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Liu HY, Koch C, Haller A, Joosse SA, Kumar R, Vellekoop MJ, Horst LJ, Keller L, Babayan A, Failla AV, et al: Evaluation of microfluidic ceiling designs for the capture of circulating tumor cells on a microarray platform. Adv Biosyst. 4:e19001622020. View Article : Google Scholar : PubMed/NCBI | |
|
Kulus M, Farzaneh M, Bryja A, Zehtabi M, Azizidoost S, Abouali Gale Dari M, Golcar-Narenji A, Ziemak H, Chwarzyński M, Piotrowska-Kempisty H, et al: Phenotypic transitions the processes involved in regulation of growth and proangiogenic properties of stem cells, cancer stem cells and circulating tumor cells. Stem Cell Rev Rep. 20:967–979. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Gwak H, Park S, Kim J, Lee JD, Kim IS, Kim SI, Hyun KA and Jung HI: Microfluidic chip for rapid and selective isolation of tumor-derived extracellular vesicles for early diagnosis and metastatic risk evaluation of breast cancer. Biosens Bioelectron. 192:1134952021. View Article : Google Scholar : PubMed/NCBI | |
|
Cortés-Hernández LE, Eslami-S Z, Costa-Silva B and Alix-Panabières C: Current applications and discoveries related to the membrane components of circulating tumor cells and extracellular vesicles. Cells. 10:22212021. View Article : Google Scholar : PubMed/NCBI | |
|
Shahhosseini R, Pakmehr S, Elhami A, Shakir MN, Alzahrani AA, Al-Hamdani MM, Abosoda M, Alsalamy A, Mohammadi-Dehcheshmeh M, Maleki TE, et al: Current biological implications and clinical relevance of metastatic circulating tumor cells. Clin Exp Med. 25:72024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu L, Lin H, Wan S, Chen X, Wu L, Zhu Z, Song Y, Hu B and Yang C: Efficient isolation and phenotypic profiling of circulating hepatocellular carcinoma cells via a combinatorial-antibody-functionalized microfluidic synergetic-chip. Anal Chem. 92:15229–15235. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Stott SL, Hsu CH, Tsukrov DI, Yu M, Miyamoto DT, Waltman BA, Rothenberg SM, Shah AM, Smas ME, Korir GK, et al: Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc Natl Acad Sci USA. 107:18392–18397. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Yoon HJ, Kim TH, Zhang Z, Azizi E, Pham TM, Paoletti C, Lin J, Ramnath N, Wicha MS, Hayes DF, et al: Sensitive capture of circulating tumour cells by functionalized graphene oxide nanosheets. Nat Nanotechnol. 8:735–741. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Sheng W, Ogunwobi OO, Chen T, Zhang J, George TJ, Liu C and Fan ZH: Capture, release and culture of circulating tumor cells from pancreatic cancer patients using an enhanced mixing chip. Lab Chip. 14:89–98. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Rostami P, Kashaninejad N, Moshksayan K, Saidi MS, Firoozabadi B and Nguyen NT: Novel approaches in cancer management with circulating tumor cell clusters. Journal of Science: Advanced Materials and Devices. 4:1–18. 2019. | |
|
Sun N, Zhang C, Wang J, Yue X, Kim HY, Zhang RY, Liu H, Widjaja J, Tang H, Zhang TX, et al: Hierarchical integration of DNA nanostructures and NanoGold onto a microchip facilitates covalent chemistry-mediated purification of circulating tumor cells in head and neck squamous cell carcinoma. Nano Today. 49:1017862023. View Article : Google Scholar : PubMed/NCBI | |
|
Kolb HC, Finn MG and Sharpless KB: Click chemistry: Diverse chemical function from a few good reactions. Angew Chem Int Ed Engl. 40:2004–2021. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Fachin F, Spuhler P, Martel-Foley JM, Edd JF, Barber TA, Walsh J, Karabacak M, Pai V, Yu M, Smith K, et al: Monolithic chip for high-throughput blood cell depletion to sort rare circulating tumor cells. Sci Rep. 7:109362017. View Article : Google Scholar : PubMed/NCBI | |
|
Kumar T, Soares RRG, Ali Dholey L, Ramachandraiah H, Aval NA, Aljadi Z, Pettersson T and Russom A: Multi-layer assembly of cellulose nanofibrils in a microfluidic device for the selective capture and release of viable tumor cells from whole blood. Nanoscale. 12:21788–21797. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Cui H, Liu Q, Li R, Wei X, Sun Y, Wang Z, Zhang L, Zhao XZ, Hua B and Guo SS: ZnO nanowire-integrated bio-microchips for specific capture and non-destructive release of circulating tumor cells. Nanoscale. 12:1455–1463. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Dong Z, Wang Y, Xu G, Liu B, Wang Y, Reboud J, Jajesniak P, Yan S, Ma P, Liu F, et al: Genetic and phenotypic profiling of single living circulating tumor cells from patients with microfluidics. Proc Natl Acad Sci USA. 121:e23151681212024. View Article : Google Scholar : PubMed/NCBI | |
|
Chu CH, Liu R, Ozkaya-Ahmadov T, Swain BE, Boya M, El-Rayes B, Akce M, Bilen MA, Kucuk O and Sarioglu AF: Negative enrichment of circulating tumor cells from unmanipulated whole blood with a 3D printed device. Sci Rep. 11:205832021. View Article : Google Scholar : PubMed/NCBI | |
|
Ramirez AB, Bhat R, Sahay D, De Angelis C, Thangavel H, Hedayatpour S, Dobrolecki LE, Nardone A, Giuliano M, Nagi C, et al: Circulating tumor cell investigation in breast cancer patient-derived xenograft models by automated immunofluorescence staining, image acquisition, and single cell retrieval and analysis. BMC Cancer. 19:2202019. View Article : Google Scholar : PubMed/NCBI | |
|
Ren F, Fei Q, Qiu K, Zhang Y, Zhang H and Sun L: Liquid biopsy techniques and lung cancer: diagnosis, monitoring and evaluation. J Exp Clin Cancer Res. 43:962024. View Article : Google Scholar : PubMed/NCBI | |
|
Koinis F, Zafeiriou Z, Messaritakis I, Katsaounis P, Koumarianou A, Kontopodis E, Chantzara E, Aidarinis C, Lazarou A, Christodoulopoulos G, et al: Prognostic role of circulating tumor cells in patients with metastatic castration-resistant prostate cancer receiving cabazitaxel: A prospective biomarker study. Cancers (Basel). 15:45112023. View Article : Google Scholar : PubMed/NCBI | |
|
Eftekhari A, Alipour M, Chodari L, Maleki Dizaj S, Ardalan M, Samiei M, Sharifi S, Zununi Vahed S, Huseynova I, Khalilov R, et al: A comprehensive review of detection methods for SARS-CoV-2. Microorganisms. 9:2322021. View Article : Google Scholar : PubMed/NCBI | |
|
Cieślikowski WA, Budna-Tukan J, Świerczewska M, Ida A, Hrab M, Jankowiak A, Mazel M, Nowicki M, Milecki P, Pantel K, et al: Circulating tumor cells as a marker of disseminated disease in patients with newly diagnosed high-risk prostate cancer. Cancers (Basel). 12:1602020. View Article : Google Scholar : PubMed/NCBI | |
|
Yang D, Yang X, Li Y, Zhao P, Fu R, Ren T, Hu P, Wu Y, Yang H and Guo N: Clinical significance of circulating tumor cells and metabolic signatures in lung cancer after surgical removal. J Transl Med. 18:2432020. View Article : Google Scholar : PubMed/NCBI | |
|
Lei Y, Tang R, Xu J, Wang W, Zhang B, Liu J, Yu X and Shi S: Applications of single-cell sequencing in cancer research: progress and perspectives. J Hematol Oncol. 14:912021. View Article : Google Scholar : PubMed/NCBI | |
|
Kojima M, Harada T, Fukazawa T, Kurihara S, Touge R, Saeki I, Takahashi S and Hiyama E: Single-cell next-generation sequencing of circulating tumor cells in patients with neuroblastoma. Cancer Sci. 114:1616–1624. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Rzhevskiy A, Kapitannikova A, Malinina P, Volovetsky A, Aboulkheyr Es H, Kulasinghe A, Thiery JP, Maslennikova A, Zvyagin AV and Ebrahimi Warkiani M: Emerging role of circulating tumor cells in immunotherapy. Theranostics. 11:8057–8075. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y and Zheng J: Functions of immune checkpoint molecules beyond immune evasion. Adv Exp Med Biol. 1248:201–226. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Kloten V, Lampignano R, Krahn T and Schlange T: Circulating Tumor Cell PD-L1 expression as biomarker for therapeutic efficacy of immune checkpoint inhibition in NSCLC. Cells. 8:8092019. View Article : Google Scholar : PubMed/NCBI | |
|
Kennedy LC, Lu J, Kuehn S, Ramirez AB, Lo E, Sun Y, U'Ren L, Chow LQM, Chen Z, Grivas P, et al: Liquid biopsy assessment of circulating tumor Cell PD-L1 and IRF-1 expression in patients with advanced solid tumors receiving immune checkpoint inhibitor. Target Oncol. 17:329–341. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Hou W, Zhou X, Yi C and Zhu H: Immune check point inhibitors and immune-related adverse events in small cell lung cancer. Front Oncol. 11:6042272021. View Article : Google Scholar : PubMed/NCBI | |
|
Ouyang Y, Liu W, Zhang N, Yang X, Li J and Long S: Prognostic significance of programmed cell death-ligand 1 expression on circulating tumor cells in various cancers: A systematic review and meta-analysis. Cancer Med. 10:7021–7039. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Papadaki MA, Messaritakis I, Fiste O, Souglakos J, Politaki E, Kotsakis A, Georgoulias V, Mavroudis D and Agelaki S: Assessment of the efficacy and clinical utility of different circulating tumor cell (CTC) detection assays in patients with chemotherapy-naïve advanced or metastatic non-small cell lung cancer (NSCLC). Int J Mol Sci. 22:9252021. View Article : Google Scholar : PubMed/NCBI | |
|
Lin M, Liang SZ, Shi J, Niu LZ, Chen JB, Zhang MJ and Xu KC: Circulating tumor cell as a biomarker for evaluating allogenic NK cell immunotherapy on stage IV non-small cell lung cancer. Immunol Lett. 191:10–15. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Tamminga M, de Wit S, Hiltermann TJN, Timens W, Schuuring E, Terstappen LWMM and Groen HJM: Circulating tumor cells in advanced non-small cell lung cancer patients are associated with worse tumor response to checkpoint inhibitors. J Immunother Cancer. 7:1732019. View Article : Google Scholar : PubMed/NCBI | |
|
Castello A, Carbone FG, Rossi S, Monterisi S, Federico D, Toschi L and Lopci E: Circulating tumor cells and metabolic parameters in NSCLC patients treated with checkpoint inhibitors. Cancers (Basel). 12:4872020. View Article : Google Scholar : PubMed/NCBI | |
|
Banys-Paluchowski M, Fehm TN, Grimm-Glang D, Rody A and Krawczyk N: Liquid biopsy in metastatic breast cancer: Current role of circulating tumor cells and circulating tumor DNA. Oncol Res Treat. 45:4–11. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Heidrich I, Ačkar L, Mossahebi Mohammadi P and Pantel K: Liquid biopsies: Potential and challenges. Int J Cancer. 148:528–545. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Gu X, Huang X, Zhang X and Wang C: Development and validation of a DNA methylation-related classifier of circulating tumour cells to predict prognosis and to provide a therapeutic strategy in lung adenocarcinoma. Int J Biol Sci. 18:4984–5000. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Peng QH, Wang CH, Chen HM, Zhang RX, Pan ZZ, Lu ZH, Wang GY, Yue X, Huang W and Liu RY: CMTM6 and PD-L1 coexpression is associated with an active immune microenvironment and a favorable prognosis in colorectal cancer. J Immunother Cancer. 9:e0016382021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang X, Teng F, Kong L and Yu J: PD-L1 expression in human cancers and its association with clinical outcomes. Onco Targets Ther. 9:5023–5039. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Yao S, Han Y, Yang M, Jin K and Lan H: Integration of liquid biopsy and immunotherapy: Opening a new era in colorectal cancer treatment. Front Immunol. 14:12928612023. View Article : Google Scholar : PubMed/NCBI | |
|
Ju S, Chen C, Zhang J, Xu L, Zhang X, Li Z, Chen Y, Zhou J, Ji F and Wang L: Detection of circulating tumor cells: Opportunities and challenges. Biomark Res. 10:582022. View Article : Google Scholar : PubMed/NCBI | |
|
Dall'Olio FG, Gelsomino F, Conci N, Marcolin L, De Giglio A, Grilli G, Sperandi F, Fontana F, Terracciano M, Fragomeno B, et al: PD-L1 Expression in circulating tumor cells as a promising prognostic biomarker in advanced non-small-cell lung cancer treated with immune checkpoint inhibitors. Clin Lung Cancer. 22:423–431. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Chalfin HJ, Pramparo T, Mortazavi A, Niglio SA, Schonhoft JD, Jendrisak A, Chu YL, Richardson R, Krupa R, Anderson AKL, et al: Circulating tumor cell subtypes and T-cell populations as prognostic biomarkers to combination immunotherapy in patients with metastatic genitourinary cancer. Clin Cancer Res. 27:1391–1398. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Gu X, Wei S and Lv X: Circulating tumor cells: From new biological insights to clinical practice. Signal Transduct Target Ther. 9:2262024. View Article : Google Scholar : PubMed/NCBI | |
|
Pantel K and Alix-Panabières C: Crucial roles of circulating tumor cells in the metastatic cascade and tumor immune escape: Biology and clinical translation. J Immunother Cancer. 10:e0056152022. View Article : Google Scholar : PubMed/NCBI | |
|
Jaiswal S, Jamieson CH, Pang WW, Park CY, Chao MP, Majeti R, Traver D, van Rooijen N and Weissman IL: CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell. 138:271–285. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Topalian SL, Drake CG and Pardoll DM: Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Curr Opin Immunol. 24:207–212. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Lian S, Xie X, Lu Y and Jia L: Checkpoint CD47 function on tumor metastasis and immune therapy. Onco Targets Ther. 12:9105–9114. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Lian S, Xie R, Ye Y, Lu Y, Cheng Y, Xie X, Li S and Jia L: Dual blockage of both PD-L1 and CD47 enhances immunotherapy against circulating tumor cells. Sci Rep. 9:45322019. View Article : Google Scholar : PubMed/NCBI | |
|
Yu Y, Cheng Q, Ji X, Chen H, Zeng W, Zeng X, Zhao Y and Mei L: Engineered drug-loaded cellular membrane nanovesicles for efficient treatment of postsurgical cancer recurrence and metastasis. Sci Adv. 8:eadd35992022. View Article : Google Scholar : PubMed/NCBI | |
|
Terme M, Ullrich E, Aymeric L, Meinhardt K, Desbois M, Delahaye N, Viaud S, Ryffel B, Yagita H, Kaplanski G, et al: IL-18 induces PD-1-dependent immunosuppression in cancer. Cancer Res. 71:5393–5399. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Jacot W, Mazel M, Mollevi C, Pouderoux S, D'Hondt V, Cayrefourcq L, Bourgier C, Boissiere-Michot F, Berrabah F, Lopez-Crapez E, et al: Clinical correlations of programmed cell death ligand 1 status in liquid and standard biopsies in breast cancer. Clin Chem. 66:1093–1101. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Praharaj PP, Bhutia SK, Nagrath S, Bitting RL and Deep G: Circulating tumor cell-derived organoids: Current challenges and promises in medical research and precision medicine. Biochim Biophys Acta Rev Cancer. 1869:117–127. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Riethdorf S, Fritsche H, Müller V, Rau T, Schindlbeck C, Rack B, Janni W, Coith C, Beck K, Jänicke F, et al: Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: A validation study of the CellSearch system. Clin Cancer Res. 13:920–928. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Li F, Li J, Yuan Y, Zhang H, Zhang S, Bian L, Wang T and Jiang Z: A real-world comparison of circulating tumor cells in breast cancer from China: Novel device, CTC counts and its overall survival. Heliyon. 10:e292172024. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Z, Fusi A, Klopocki E, Schmittel A, Tinhofer I, Nonnenmacher A and Keilholz U: Negative enrichment by immunomagnetic nanobeads for unbiased characterization of circulating tumor cells from peripheral blood of cancer patients. J Transl Med. 9:702011. View Article : Google Scholar : PubMed/NCBI | |
|
Seyfoori A, Seyyed Ebrahimi SA, Samandari M, Samiei E, Stefanek E, Garnis C and Akbari M: Microfluidic-Assisted CTC isolation and in situ monitoring using smart magnetic microgels. Small. 19:e22053202023. View Article : Google Scholar : PubMed/NCBI | |
|
Shen MJ, Olsthoorn RCL, Zeng Y, Bakkum T, Kros A and Boyle AL: Magnetic-activated cell sorting using coiled-coil peptides: An alternative strategy for isolating cells with high efficiency and specificity. ACS Appl Mater Interfaces. 13:11621–11630. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang W, Duan X, Zhang Z, Yang Z, Zhao C, Liang C, Liu Z, Cheng S and Zhang K: Combination of CT and telomerase+ circulating tumor cells improves diagnosis of small pulmonary nodules. JCI Insight. 6:e1481822021.PubMed/NCBI | |
|
Vasantharajan SS, Barnett E, Gray ES, McCall JL, Rodger EJ, Eccles MR, Munro F, Pattison S and Chatterjee A: Assessment of a size-based method for enriching circulating tumour cells in colorectal cancer. Cancers (Basel). 14:34462022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang X, Xie P, Zhang K and Zhang W: Circulating tumour cell isolation, analysis and clinical application. Cell Oncol (Dordr). 46:533–544. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Lin E, Cao T, Nagrath S and King MR: Circulating tumor cells: Diagnostic and therapeutic applications. Annu Rev Biomed Eng. 20:329–352. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Pantel K and Alix-Panabières C: Liquid biopsy and minimal residual disease-latest advances and implications for cure. Nat Rev Clin Oncol. 16:409–424. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Kulasinghe A, Kenny L, Perry C, Thiery JP, Jovanovic L, Vela I, Nelson C and Punyadeera C: Impact of label-free technologies in head and neck cancer circulating tumour cells. Oncotarget. 7:71223–71234. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Ye F, Wechsler J, Bouzidi A, Uzan G and Naserian S: Fast and efficient isolation of murine circulating tumor cells using screencell technology for pre-clinical analyzes. Sci Rep. 14:150192024. View Article : Google Scholar : PubMed/NCBI | |
|
Philippron A, Depypere L, Oeyen S, De Laere B, Vandeputte C, Nafteux P, De Preter K and Pattyn P: Evaluation of a marker independent isolation method for circulating tumor cells in esophageal adenocarcinoma. PLoS One. 16:e02510522021. View Article : Google Scholar : PubMed/NCBI | |
|
Andrikou K, Rossi T, Verlicchi A, Priano I, Cravero P, Burgio MA, Crinò L, Bandini S, Ulivi P and Delmonte A: Circulating tumour cells: Detection and application in advanced non-small cell lung cancer. Int J Mol Sci. 24:160852023. View Article : Google Scholar : PubMed/NCBI | |
|
Çağlayan Arslan Z, Demircan Yalçın Y and Külah H: Label-free enrichment of MCF7 breast cancer cells from leukocytes using continuous flow dielectrophoresis. Electrophoresis. 43:1531–1544. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Sarioglu AF, Aceto N, Kojic N, Donaldson MC, Zeinali M, Hamza B, Engstrom A, Zhu H, Sundaresan TK, Miyamoto DT, et al: A microfluidic device for label-free, physical capture of circulating tumor cell clusters. Nat Methods. 12:685–691. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou W, Zhu C, Shen P, Wang JF, Zhu G, Jia Y, Wu Y, Wang S, Sun J, Yang F, et al: Hypoxia stimulates CTC-platelet cluster formation to promote breast cancer metastasis. IScience. 27:1095472024. View Article : Google Scholar : PubMed/NCBI | |
|
Boyer M, Cayrefourcq L, Garima F, Foulongne V, Dereure O and Alix-Panabières C: Circulating tumor cell detection and polyomavirus status in merkel cell carcinoma. Sci Rep. 10:16122020. View Article : Google Scholar : PubMed/NCBI | |
|
Smit DJ and Pantel K: Circulating tumor cells as liquid biopsy markers in cancer patients. Mol Aspects Med. 96:1012582024. View Article : Google Scholar : PubMed/NCBI | |
|
Karabacak NM, Spuhler PS, Fachin F, Lim EJ, Pai V, Ozkumur E, Martel JM, Kojic N, Smith K, Chen PI, et al: Microfluidic, marker-free isolation of circulating tumor cells from blood samples. Nat Protoc. 9:694–710. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Sassi A and You L: Microfluidics-based technologies for the assessment of castration-resistant prostate cancer. Cells. 13:5752024. View Article : Google Scholar : PubMed/NCBI | |
|
Wei J, Deng W, Weng J, Li M, Lan G, Li X, Ye L, Wang Y, Liu F, Ou H, et al: Epithelial-mesenchymal transition classification of circulating tumor cells predicts clinical outcomes in progressive nasopharyngeal carcinoma. Front Oncol. 12:9884582022. View Article : Google Scholar : PubMed/NCBI | |
|
Lopresti A, Malergue F, Bertucci F, Liberatoscioli ML, Garnier S, DaCosta Q, Finetti P, Gilabert M, Raoul JL, Birnbaum D, et al: Sensitive and easy screening for circulating tumor cells by flow cytometry. JCI Insight. 5:e1281802019. View Article : Google Scholar : PubMed/NCBI | |
|
Kotsifaki A, Maroulaki S and Armakolas A: Exploring the immunological profile in breast cancer: Recent advances in diagnosis and prognosis through circulating tumor cells. Int J Mol Sci. 25:48322024. View Article : Google Scholar : PubMed/NCBI | |
|
Mazard T, Cayrefourcq L, Perriard F, Senellart H, Linot B, de la Fouchardière C, Terrebonne E, François E, Obled S, Guimbaud R, et al: Clinical relevance of viable circulating tumor cells in patients with metastatic colorectal cancer: The COLOSPOT prospective study. Cancers (Basel). 13:29662021. View Article : Google Scholar : PubMed/NCBI | |
|
Soler A, Cayrefourcq L, Mazel M and Alix-Panabières C: EpCAM-Independent enrichment and detection of viable circulating tumor cells using the EPISPOT assay. Methods Mol Biol. 1634:263–276. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Xu C, Zhang Y, Fan X, Lan X, Ye X and Wu T: An efficient fluorescence in situ hybridization (FISH)-based circulating genetically abnormal cells (CACs) identification method based on Multi-scale MobileNet-YOLO-V4. Quant Imaging Med Surg. 12:2961–2976. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu Y and Lowe AC: Multiplexed fluorescence in situ hybridization-based detection of circulating tumor cells: A novel liquid-based technology to facilitate accurate and early identification of non-small cell lung cancer patients. Cancer Cytopathol. 128:518–519. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Kruse A, Abdel-Azim N, Kim HN, Ruan Y, Phan V, Ogana H, Wang W, Lee R, Gang EJ, Khazal S and Kim YM: Minimal residual disease detection in acute lymphoblastic leukemia. Int J Mol Sci. 21:10542020. View Article : Google Scholar : PubMed/NCBI | |
|
Zavridou M, Smilkou S, Tserpeli V, Sfika A, Bournakis E, Strati A and Lianidou E: Development and analytical validation of a 6-plex reverse transcription droplet digital PCR assay for the absolute quantification of prostate cancer biomarkers in circulating tumor cells of patients with metastatic castration-resistant prostate cancer. Clin Chem. 68:1323–1335. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
De Luca G, Cardinali B, Del Mastro L, Lastraioli S, Carli F, Ferrarini M, Calin GA, Garuti A, Mazzitelli C, Zupo S and Dono M: Optimization of a WGA-free molecular tagging-based NGS protocol for CTCs mutational profiling. Int J Mol Sci. 21:43642020. View Article : Google Scholar : PubMed/NCBI |