Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
World Academy of Sciences Journal
Join Editorial Board Propose a Special Issue
Print ISSN: 2632-2900 Online ISSN: 2632-2919
Journal Cover
September-October 2019 Volume 1 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
September-October 2019 Volume 1 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Role of p53 family isoforms in enhancing aggressiveness and chemoresistance in pancreatic cancer (Review)

  • Authors:
    • Hossein Jahedi
    • Aminath Luveysa Fahud
    • Chooi Ling Lim
  • View Affiliations / Copyright

    Affiliations: School of Health Sciences, Department of Applied Biomedical Science and Biotechnology, International Medical University, 126, Jalan Jalil Perkasa 19, Kuala Lumpur 57000, Malaysia
    Copyright: © Jahedi et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 236-246
    |
    Published online on: September 10, 2019
       https://doi.org/10.3892/wasj.2019.23
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Pancreatic cancer remains one of the leading causes of cancer‑related mortality worldwide. The role of p53 family isoforms in the pathogenesis of human cancer has been under the radar for decades, mainly due to the significant structural homology of p63 and p73 genes with the notorious p53 gene. Both p63 and p73 have two main isoforms, transactivating (TA) and deltaN (DN), each of which has been studied in normal and cancer cells. Although their role in cancer remains elusive and is tissue‑specific, the manner in which they act in pancreatic cancer is evident. As for p53, the mechanism of its gain‑of‑function activities in pancreatic cancer is now better understood. In this review, the role of each gene and their isoforms is discussed, as well as the possible therapeutic agents for pancreatic cancer. Currently, the science revolving around p53 family isoforms focuses on their specific roles. Thus, we propose that future research be directed at studying the interaction between the isoforms, as well as accelerating the assessment of potential therapeutic agents.
View Figures

Figure 1

View References

1 

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018.PubMed/NCBI View Article : Google Scholar

2 

Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM and Matrisian LM: Projecting cancer incidence and deaths to 2030: The unexpected burden of thyroid, liver, and pancreas cancers in the united states. Cancer Res. 74:2913–2921. 2014.PubMed/NCBI View Article : Google Scholar

3 

Siegel R, Miller K and Jemal A: Cancer statistics, 2015. CA Cancer J Clin. 65:5–29. 2015.PubMed/NCBI View Article : Google Scholar

4 

What is pancreatic cancer? The American Cancer Society Atlanta GA 2016. https://www.cancer.org/cancer/pancreatic-cancer/about/what-is-pancreatic-cancer.html. Accessed February 11, 2019.

5 

Kleeff J, Korc M, Apte M, La Vecchia C, Johnson CD, Biankin AV, Neale RE, Tempero M, Tuveson DA, Hruban RH and Neoptolemos JP: Pancreatic cancer. Nat Rev Dis Primers. 2(16022)2016.PubMed/NCBI View Article : Google Scholar

6 

Survival Rates for Pancreatic Cancer. The American Cancer Society, Atlanta, GA, 2016. https://www.cancer.org/cancer/pancreatic-cancer/detection-diagnosis-staging/survival-rates.html. Accessed March 14, 2016.

7 

Can pancreatic cancer be found early? The American Cancer Society Atlanta GA , 2016. https://www.cancer.org/cancer/pancreatic-cancer/detection-diagnosis-staging/detection.html. Accessed February 11, 2019.

8 

Yang A, Kaghad M, Wang Y, Gillett E, Fleming MD, Dötsch V, Andrews NC, Caput D and McKeon F: P63, a P53 homolog at 3Q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol Cell. 2:305–316. 1998.PubMed/NCBI View Article : Google Scholar

9 

Hanel W, Marchenko N, Xu S, Yu SX, Weng W and Moll U: Two hot spot mutant p53 mouse models display differential gain of function in tumorigenesis. Cell Death Differ. 20:898–909. 2013.PubMed/NCBI View Article : Google Scholar

10 

Ferraiuolo M, Di Agostino S, Blandino G and Strano S: Oncogenic intra-p53 family member interactions in human cancers. Front Oncol. 6(77)2016.PubMed/NCBI View Article : Google Scholar

11 

Jost C, Marin M and Kaelin W Jr: p73 is a human p53-related protein that can induce apoptosis. Nature. 389:191–194. 1997.PubMed/NCBI View Article : Google Scholar

12 

Kaghad M, Bonnet H, Yang A, Creancier L, Biscan JC, Valent A, Minty A, Chalon P, Lelias JM, Dumont X, et al: Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell. 90:809–819. 1997.PubMed/NCBI View Article : Google Scholar

13 

Vanbokhoven H, Melino G, Candi E and Declercq W: P63, a story of mice and men. J Invest Dermatol. 131:1196–1207. 2011.PubMed/NCBI View Article : Google Scholar

14 

Monti P, Russo D, Bocciardi R, Foggetti G, Menichini P, Divizia MT, Lerone M, Graziano C, Wischmeijer A, Viadiu H, et al: EEC- and ADULT-associated TP63 mutations exhibit functional heterogeneity toward P63 responsive sequences. Hum Mutat. 34:894–904. 2013.PubMed/NCBI View Article : Google Scholar

15 

Lane DP: Cancer. p53, guardian of the genome. Nature. 358:15–16. 1992.PubMed/NCBI View Article : Google Scholar

16 

Allocati N, Di Ilio C and De Laurenzi V: p63/p73 in the control of cell cycle and cell death. Exp Cell Res. 318:1285–1290. 2012.PubMed/NCBI View Article : Google Scholar

17 

Flores ER, Tsai KY, Crowley D, Sengupta S, Yang A, McKeon F and Jacks T: p63 and p73 are required for p53-dependent apoptosis in response to DNA damage. Nature. 416:560–564. 2002.PubMed/NCBI View Article : Google Scholar

18 

Danilov AV, Neupane D, Nagaraja AS, Feofanova EV, Humphries LA, DiRenzo J and Korc M: DeltaNp63alpha-mediated induction of epidermal growth factor receptor promotes pancreatic cancer cell growth and chemoresistance. PLoS One. 6(e26815)2011.PubMed/NCBI View Article : Google Scholar

19 

Thakur AK, Nigri J, Lac S, Leca J, Bressy C, Berthezene P, Bartholin L, Chan P, Calvo E, Iovanna JL, et al: TAp73 loss favors Smad-independent TGF-β signaling that drives EMT in pancreatic ductal adenocarcinoma. Cell Death Differ. 23:1358–1370. 2016.PubMed/NCBI View Article : Google Scholar

20 

Nakamura M, Sugimoto H, Ogata T, Hiraoka K, Yoda H, Sang M, Sang M, Zhu Y, Yu M, Shimozato O and Ozaki T: Improvement of gemcitabine sensitivity of p53-mutated pancreatic cancer MiaPaCa-2 cells by RUNX2 depletion-mediated augmentation of TAp73-dependent cell death. Oncogenesis. 5:e233. 2016.PubMed/NCBI View Article : Google Scholar

21 

Levrero M, De Laurenzi V, Costanzo A, Gong J, Wang JY and Melino G: The p53/p63/p73 family of transcription factors: Overlapping and distinct functions. J Cell Sci. 113:1661–1670. 2000.PubMed/NCBI

22 

Murray-Zmijewski F, Lane DP and Bourdon JC: p53/p63/p73 isoforms: An orchestra of isoforms to harmonise cell differentiation and response to stress. Cell Death Differ. 13:962–972. 2006.PubMed/NCBI View Article : Google Scholar

23 

Enthart A, Klein C, Dehner A, Coles M, Gemmecker G, Kessler H and Hagn F: Solution structure and binding specificity of the p63 DNA binding domain. Sci Rep. 6(26707)2016.PubMed/NCBI View Article : Google Scholar

24 

Chen TH, Wu YJ, Hou JN, Chiu CH and Chen WJ: The p53 gene with emphasis on its paralogues in mosquitoes. J Microbiol Immunol Infect. 50:747–754. 2017.PubMed/NCBI View Article : Google Scholar

25 

Heering J, Jonker HR, Löhr F, Schwalbe H and Dötsch V: Structural investigations of the p53/p73 homologs from the tunicate species Ciona intestinalis reveal the sequence requirements for the formation of a tetramerization domain. Protein Sci. 25:410–422. 2016.PubMed/NCBI View Article : Google Scholar

26 

Dos Santos HG, Nunez-Castilla J and Siltberg-Liberles J: Functional diversification after gene duplication: Paralog specific regions of structural disorder and phosphorylation in p53, p63, and p73. PLoS One. 11(e0151961)2016.PubMed/NCBI View Article : Google Scholar

27 

Yoon MK, Ha JH, Lee MS and Chi SW: Structure and apoptotic function of p73. BMB Rep. 48:81–90. 2015.PubMed/NCBI View Article : Google Scholar

28 

Shin JS, Ha JH, Lee DH, Ryu KS, Bae KH, Park BC, Park SG, Yi GS and Chi SW: Structural convergence of unstructured p53 family transactivation domains in MDM2 recognition. Cell Cycle. 14:533–543. 2015.PubMed/NCBI View Article : Google Scholar

29 

Walker CW, Van Beneden RJ, Muttray AF, Böttger SA, Kelley ML, Tucker AE and Thomas WK: P53 superfamily proteins in marine bivalve cancer and stress biology. Adv Mar Biol. 59:1–36. 2011.PubMed/NCBI View Article : Google Scholar

30 

Neira JL and Cámara-Artigas A: Trifluoroethanol-induced conformational transition of the C-terminal sterile alpha motif (SAM) of human p73. Arch Biochem Biophys. 619:1–9. 2017.PubMed/NCBI View Article : Google Scholar

31 

Brandt T, Kaar JL, Fersht AR and Veprintsev DB: Stability of p53 homologs. PLoS One. 7(e47889)2012.PubMed/NCBI View Article : Google Scholar

32 

Swiatkowska A, Żydowicz P, Sroka J and Ciesiołka J: The role of the 5' terminal region of p53 mRNA in the p53 gene expression. Acta Biochim Pol. 63:645–651. 2016.PubMed/NCBI View Article : Google Scholar

33 

Vousden KH and Prives C: Blinded by the light: The growing complexity of p53. Cell. 137:413–431. 2009.PubMed/NCBI View Article : Google Scholar

34 

Luh LM, Kehrloesser S, Deutsch GB, Gebel J, Coutandin D, Schäfer B, Agostini M, Melino G and Dötsch V: Analysis of the oligomeric state and transactivation potential of TAp73α. Cell Death Differ. 20:1008–1016. 2013. View Article : Google Scholar

35 

Billant O, Léon A, Le Guellec S, Friocourt G, Blondel M and Voisset C: The dominant-negative interplay between p53, p63 and p73: A family affair. Oncotarget. 7:69549–69564. 2016.PubMed/NCBI View Article : Google Scholar

36 

Muller PA and Vousden KH: P53 mutations in cancer. Nat Cell Biol. 15:2–8. 2013.PubMed/NCBI View Article : Google Scholar

37 

Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C, Xie M, Zhang Q, McMichael JF, Wyczalkowski MA, et al: Mutational landscape and significance across 12 major cancer types. Nature. 503:333–339. 2013.PubMed/NCBI View Article : Google Scholar

38 

Joerger AC and Fersht AR: Structural biology of the tumor suppressor p53 and cancer-associated mutants. Adv Cancer Res. 97:1–23. 2007.PubMed/NCBI View Article : Google Scholar

39 

Leroy B, Fournier JL, Ishioka C, Monti P, Inga A, Fronza G and Soussi T: The TP53 website: An integrative resource centre for the TP53 mutation database and TP53 mutant analysis. Nucleic Acids Res. 41 (Database issue):D962–D969. 2013.PubMed/NCBI View Article : Google Scholar

40 

Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian SV, Hainaut P and Olivier M: Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: Lessons from recent developments in the IARC TP53 database. Hum Mutat. 28:622–629. 2007.PubMed/NCBI View Article : Google Scholar

41 

Zerdoumi Y, Aury-Landas J, Bonaïti-Pellié C, Derambure C, Sesboüé R, Renaux-Petel M, Frebourg T, Bougeard G and Flaman JM: Drastic effect of germline TP53 missense mutations in Li-Fraumeni patients. Hum Mutat. 34:453–461. 2013.PubMed/NCBI View Article : Google Scholar

42 

Olivier M, Hollstein M and Hainaut P: TP53 mutations in human cancers: Origins, consequences, and clinical use. Cold Spring Harb Perspect Biol. 2(a001008)2010.PubMed/NCBI View Article : Google Scholar

43 

Lehmann BD, Ding Y, Viox DJ, Jiang M, Zheng Y, Liao W, Chen X, Xiang W and Yi Y: Evaluation of public cancer datasets and signatures identifies TP53 mutant signatures with robust prognostic and predictive value. BMC Cancer. 15(179)2015.PubMed/NCBI View Article : Google Scholar

44 

Inga A, Cresta S, Monti P, Aprile A, Scott G, Abbondandolo A, Iggo R and Fronza G: Simple identification of dominant p53 mutants by a yeast functional assay. Carcinogenesis. 18:2019–2021. 1997. View Article : Google Scholar

45 

Monti P, Campomenosi P, Ciribilli Y, Iannone R, Inga A, Abbondandolo A, Resnick MA and Fronza G: Tumour p53 mutations exhibit promoter selective dominance over wild type p53. Oncogene. 21:1641–1648. 2002.PubMed/NCBI View Article : Google Scholar

46 

Monti P, Perfumo C, Bisio A, Ciribilli Y, Menichini P, Russo D, Umbach DM, Resnick MA, Inga A and Fronza G: Dominant-negative features of mutant p53 in germline carriers have limited impact on cancer outcomes. Mol Cancer Res. 9:271–279. 2011.PubMed/NCBI View Article : Google Scholar

47 

Di Como CJ, Gaiddon C and Prives C: p73 function is inhibited by tumor- derived p53 mutants in mammalian cells. Mol Cell Biol. 19:1438–1449. 1999.PubMed/NCBI View Article : Google Scholar

48 

Gaiddon C, Lokshin M, Ahn J, Zhang T and Prives C: A subset of tumor-derived mutant forms of p53 down-regulate p63 and p73 through a direct interaction with the p53 core domain. Mol Cell Biol. 21:1874–1887. 2001.PubMed/NCBI View Article : Google Scholar

49 

Strano S, Fontemaggi G, Costanzo A, Rizzo MG, Monti O, Baccarini A, Del Sal G, Levrero M, Sacchi A, Oren M and Blandino G: Physical interaction with human tumor-derived p53 mutants inhibits p63 activities. J Biol Chem. 277:18817–18826. 2002.PubMed/NCBI View Article : Google Scholar

50 

Monti P, Campomenosi P, Ciribilli Y, Iannone R, Aprile A, Inga A, Tada M, Menichini P, Abbondandolo A and Fronza G: Characterization of the p53 mutants ability to inhibit p73 beta transactivation using a yeast-based functional assay. Oncogene. 22:5252–5260. 2003.PubMed/NCBI View Article : Google Scholar

51 

Melino G: P63 is a suppressor of tumorigenesis and metastasis interacting with mutant P53. Cell Death Differ. 18:1487–1499. 2011.PubMed/NCBI View Article : Google Scholar

52 

Oren M and Rotter V: Mutant p53 gain-of-function in cancer. Cold Spring Harbor perspectives in biology. 2(a001107)2010.PubMed/NCBI View Article : Google Scholar

53 

Li DH, Xie KP, Wolff R and Abbruzzese JL: Pancreatic cancer. Lancet. 363:1049–1057. 2004.PubMed/NCBI View Article : Google Scholar

54 

Brody JR, Costantino CL, Potoczek M, Cozzitorto J, McCue P, Yeo CJ, Hruban RH and Witkiewicz AK: Adenosquamous carcinoma of the pancreas harbors KRAS2, DPC4 and TP53 molecular alterations similar to pancreatic ductal adenocarcinoma. Mod Pathol. 22:651–659. 2009.PubMed/NCBI View Article : Google Scholar

55 

Simtniece Z, Vanags A, Strumfa I, Sperga M, Vasko E, Prieditis P, Trapencieris P and Gardovskis J: Morphological and immunohistochemical profile of pancreatic neuroendocrine neoplasms. Pol J Pathol. 66:176–194. 2015.PubMed/NCBI View Article : Google Scholar

56 

Weissmueller S, Manchado E, Saborowski M, Morris JP IV, Wagenblast E, Davis CA, Moon SH, Pfister NT, Tschaharganeh DF, Kitzing T, et al: Mutant p53 drives pancreatic cancer metastasis through cell-autonomous PDGF receptor β signaling. Cell. 157:382–394. 2014.PubMed/NCBI View Article : Google Scholar

57 

Morton JP, Timpson P, Karim SA, Ridgway RA, Athineos D, Doyle B, Jamieson NB, Oien KA, Lowy AM, Brunton VG, et al: Mutant p53 drives metastasis and overcomes growth arrest/senescence in pancreatic cancer. Proc Natl Acad Sci USA. 107:246–251. 2010.PubMed/NCBI View Article : Google Scholar

58 

Wolf D, Harris N and Rotter V: Reconstitution of p53 expression in a nonproducer Ab-MuLV-transformed cell line by transfection of a functional p53 gene. Cell. 38:119–126. 1984.PubMed/NCBI View Article : Google Scholar

59 

Muller PA, Vousden KH and Norman JC: p53 and its mutants in tumor cell migration and invasion. J Cell Biol. 192:209–218. 2011.PubMed/NCBI View Article : Google Scholar

60 

Freed-Pastor WA and Prives C: Mutant p53: One name, many proteins. Genes Dev. 26:1268–1286. 2012.PubMed/NCBI View Article : Google Scholar

61 

Brosh R and Rotter V: When mutants gain new powers: News from the mutant p53 field. Nat Rev Cancer. 9:701–713. 2009.PubMed/NCBI View Article : Google Scholar

62 

Zhang C, Liu J, Liang Y, Wu R, Zhao Y, Hong X, Lin M, Yu H, Liu L, Levine AJ, et al: Tumour-associated mutant p53 drives the Warburg effect. Nat Commun. 4(2935)2013.PubMed/NCBI View Article : Google Scholar

63 

Yan W, Liu G, Scoumanne A and Chen X: Suppression of inhibitor of differentiation 2, a target of mutant p53, is required for gain-of-function mutations. Cancer Res. 68:6789–6796. 2008.PubMed/NCBI View Article : Google Scholar

64 

Do PM, Varanasi L, Fan S, Li C, Kubacka I, Newman V, Chauhan K, Daniels SR, Boccetta M, Garrett MR, et al: Mutant p53 cooperates with ETS2 to promote etoposide resistance. Genes Dev. 26:830–845. 2012.PubMed/NCBI View Article : Google Scholar

65 

Yan W and Chen X: Identification of GRO1 as a critical determinant for mutant p53 gain of function. J Biol Chem. 284:12178–12187. 2009.PubMed/NCBI View Article : Google Scholar

66 

Rosenfeldt MT, O'Prey J, Morton JP, Nixon C, MacKay G, Mrowinska A, Au A, Rai TS, Zheng L, Ridgway R, et al: P53 status determines the role of autophagy in pancreatic tumour development. Nature. 504:296–300. 2013.PubMed/NCBI View Article : Google Scholar

67 

Li Y and Prives C: Are interactions with p63 and p73 involved in mutant p53 gain of oncogenic function? Oncogene. 26:2220–2225. 2007.PubMed/NCBI View Article : Google Scholar

68 

Di Agostino S, Strano S, Emiliozzi V, Zerbini V, Mottolese M, Sacchi A, Blandino G and Piaggio G: Gain of function of mutant p53: The mutant p53/NF-Y protein complex reveals an aberrant transcriptional mechanism of cell cycle regulation. Cancer Cell. 10:191–202. 2006.PubMed/NCBI View Article : Google Scholar

69 

Fiorini C, Cordani M, Padroni C, Blandino G, Di Agostino S and Donadelli M: Mutant p53 stimulates chemoresistance of pancreatic adenocarcinoma cells to gemcitabine. Biochim Biophys Acta. 1853:89–100. 2015.PubMed/NCBI View Article : Google Scholar

70 

Song H, Hollstein M and Xu Y: p53 gain-of-function cancer mutants induce genetic instability by inactivating ATM. Nat Cell Biol. 9:573–580. 2007.PubMed/NCBI View Article : Google Scholar

71 

Restle A, Färber M, Baumann C, Böhringer M, Scheidtmann KH, Müller-Tidow C and Wiesmüller L: Dissecting the role of p53 phosphorylation in homologous recombination provides new clues for gain-of-function mutants. Nucleic Acids Res. 36:5362–5375. 2008.PubMed/NCBI View Article : Google Scholar

72 

Liu DP, Song H and Xu Y: A common gain of function of p53 cancer mutants in inducing genetic instability. Oncogene. 29:949–956. 2010.PubMed/NCBI View Article : Google Scholar

73 

Müller BF, Paulsen D and Deppert W: Specific binding of MAR/SAR DNA-elements by mutant p53. Oncogene. 12:1941–1952. 1996.PubMed/NCBI

74 

Will K, Warnecke G, Wiesmüller L and Deppert W: Specific interaction of mutant p53 with regions of matrix attachment region DNA elements (MARs) with a high potential for base-unpairing. Proc Natl Acad Sci USA. 95:13681–13686. 1998. View Article : Google Scholar

75 

Neilsen PM, Noll JE, Mattiske S, Bracken CP, Gregory PA, Schulz RB, Lim SP, Kumar R, Suetani RJ, Goodall GJ and Callen DF: Mutant p53 drives invasion in breast tumors through up-regulation of miR-155. Oncogene. 32:2992–3000. 2013.PubMed/NCBI View Article : Google Scholar

76 

Wang W, Cheng B, Miao L, Mei Y and Wu M: Mutant p53-R273H gains new function in sustained activation of EGFR signaling via suppressing miR-27a expression. Cell Death Dis. 4(e574)2013.PubMed/NCBI View Article : Google Scholar

77 

Gonfloni S, Caputo V and Iannizzotto V: P63 in health and cancer. Int J Dev Biol. 59:87–93. 2015.PubMed/NCBI View Article : Google Scholar

78 

Flores ER, Sengupta S, Miller JB, Newman JJ, Bronson R, Crowley D, Yang A, McKeon F and Jacks T: Tumor predisposition in mice mutant for p63 and p73: Evidence for broader tumor suppressor functions for the p53 family. Cancer Cell. 7:363–373. 2005.PubMed/NCBI View Article : Google Scholar

79 

Keyes WM, Vogel H, Koster MI, Guo X, Qi Y, Petherbridge KM, Roop DR, Bradley A and Mills AA: P63 heterozygous mutant mice are not prone to spontaneous or chemically induced tumors. Proc Natl Acad Sci USA. 103:8435–8440. 2006.PubMed/NCBI View Article : Google Scholar

80 

Su X, Gi YJ, Chakravarti D, Chan IL, Zhang A, Xia X, Tsai KY and Flores ER: TAp63 is a master transcriptional regulator of lipid and glucose metabolism. Cell Metab. 16:511–525. 2012.PubMed/NCBI View Article : Google Scholar

81 

Giacobbe A, Bongiorno-Borbone L, Bernassola F, Terrinoni A, Markert EK, Levine AJ, Feng Z, Agostini M, Zolla L, Agrò AF, et al: P63 regulates glutaminase 2 expression. Cell Cycle. 12:1395–1405. 2013.PubMed/NCBI View Article : Google Scholar

82 

Liu G and Chen X: The ferredoxin reductase gene is regulated by the p53 family and sensitizes cells to oxidative stress-induced apoptosis. Oncogene. 21:7195–7204. 2002.PubMed/NCBI View Article : Google Scholar

83 

Suh EK, Yang A, Kettenbach A, Bamberger C, Michaelis AH, Zhu Z, Elvin JA, Bronson RT, Crum CP and McKeon F: P63 protects the female germ line during meiotic arrest. Nature. 444:624–628. 2006.PubMed/NCBI View Article : Google Scholar

84 

Su X, Napoli M, Abbas HA, Venkatanarayan A, Bui NHB, Coarfa C, Gi YJ, Kittrell F, Gunaratne PH, Medina D, et al: TAp63 suppresses mammary tumorigenesis through regulation of the Hippo pathway. Oncogene. 36:2377–2393. 2017.PubMed/NCBI View Article : Google Scholar

85 

Urist MJ, Di Como CJ, Lu M-L, Charytonowicz E, Verbel D, Crum CP, Ince TA, McKeon FD and Cordon-Cardo C: Loss of p63 expression is associated with tumor progression in bladder cancer. Am J Pathol. 161:1199–1206. 2002.PubMed/NCBI View Article : Google Scholar

86 

Barbieri CE, Tang LJ, Brown KA and Pietenpol JA: Loss of p63 leads to increased cell migration and up-regulation of genes involved in invasion and metastasis. Cancer Res. 66:7589–7597. 2006.PubMed/NCBI View Article : Google Scholar

87 

Adorno M, Cordenonsi M, Montagner M, Dupont S, Wong C, Hann B, Solari A, Bobisse S, Rondina MB, Guzzardo V, et al: A mutant-p53/Smad complex opposes p63 to empower TGFbeta-induced metastasis. Cell. 137:87–98. 2009.PubMed/NCBI View Article : Google Scholar

88 

Tan EH, Morton JP, Timpson P, Tucci P, Melino G, Flores ER, Sansom OJ, Vousden KH and Muller PA: Functions of TAp63 and p53 in restraining the development of metastatic cancer. Oncogene. 33:3325–3333. 2014.PubMed/NCBI View Article : Google Scholar

89 

Lin YL, Sengupta S, Gurdziel K, Bell GW, Jacks T and Flores ER: p63 and p73 transcriptionally regulate genes involved in DNA repair. PLoS Genet. 5(e1000680)2009.PubMed/NCBI View Article : Google Scholar

90 

Marine JC and Berx G: Transforming growth factor-beta and mutant p53 conspire to induce metastasis by antagonizing p63: A (ternary) complex affair. Breast Cancer Res. 11(304)2009.PubMed/NCBI View Article : Google Scholar

91 

Neilsen PM, Noll JE, Suetani RJ, Schulz RB, Al-ejeh F, Evdokiou A, Lane DP and Callen DF: Mutant p53 uses p63 as a molecular chaperone to alter gene expression and induce a pro-invasive secretome. Oncotarget. 2:1203–1217. 2011.PubMed/NCBI View Article : Google Scholar

92 

Viticchiè G, Agostini M, Lena AM, Mancini M, Zhou H, Zolla L, Dinsdale D, Saintigny G, Melino G and Candi E: p63 supports aerobic respiration through hexokinase II. Proc Natl Acad Sci USA. 112:11577–11582. 2015.PubMed/NCBI View Article : Google Scholar

93 

Yan W and Chen X: GPX2, a direct target of p63, inhibits oxidative stress-induced apoptosis in a p53-dependent manner. J Biol Chem. 281:7856–7862. 2006.PubMed/NCBI View Article : Google Scholar

94 

Senoo M, Pinto F, Crum CP and McKeon F: p63 is essential for the proliferative potential of stem cells in stratified epithelia. Cell. 129:523–536. 2007.PubMed/NCBI View Article : Google Scholar

95 

Pignon JC, Grisanzio C, Geng Y, Song J, Shivdasani RA and Signoretti S: P63-expressing cells are the stem cells of developing prostate, bladder, and colorectal epithelia. Proc Natl Acad Sci USA. 110:8105–8110. 2013.PubMed/NCBI View Article : Google Scholar

96 

Rocco JW, Leong CO, Kuperwasser N, DeYoung MP and Ellisen LW: P63 mediates survival in squamous cell carcinoma by suppression of p73-dependent apoptosis. Cancer Cell. 9:45–56. 2006.PubMed/NCBI View Article : Google Scholar

97 

Di Como CJ, Urist MJ, Babayan I, Drobnjak M, Hedvat CV, Teruya-Feldstein J, Pohar K, Hoos A and Cordon-Cardo C: P63 expression profiles in human normal and tumor tissues. Clin Cancer Res. 8:494–501. 2002.PubMed/NCBI

98 

Deyoung MP and Ellisen LW: P63 and P73 in human cancer: Defining the network. Oncogene. 26:5169–5183. 2007.PubMed/NCBI View Article : Google Scholar

99 

Leong CO, Vidnovic N, DeYoung MP, Sgroi D and Ellisen LW: The p63/p73 network mediates chemosensitivity to cisplatin in a biologically defined subset of primary breast cancers. J Clin Invest. 117:1370–1380. 2007.PubMed/NCBI View Article : Google Scholar

100 

Fukushima H, Koga F, Kawakami S, Fujii Y, Yoshida S, Ratovitski E, Trink B and Kihara K: Loss of DeltaNp63alpha promotes invasion of urothelial carcinomas via N-cadherin/Src homology and collagen/extracellular signal-regulated kinase pathway. Cancer Res. 69:9263–9270. 2009.PubMed/NCBI View Article : Google Scholar

101 

Yang X, Lu H, Yan B, Romano RA, Bian Y, Friedman J, Duggal P, Allen C, Chuang R, Ehsanian R, et al: ΔNp63 versatilely regulates a broad NF-κB gene program and promotes squamous epithelial proliferation, migration, and inflammation. Cancer Res. 71:3688–3700. 2011.PubMed/NCBI View Article : Google Scholar

102 

Basturk O, Khanani F, Sarkar F, Levi E, Cheng JD and Adsay NV: DeltaNp63 expression in pancreas and pancreatic neoplasia. Mod Pathol. 18:1193–1198. 2005.PubMed/NCBI View Article : Google Scholar

103 

Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, et al: Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell. 89:755–764. 1997.PubMed/NCBI View Article : Google Scholar

104 

Otto F, Thornell AP, Crompton T, Denzel A, Gilmour KC, Rosewell IR, Stamp GW, Beddington RS, Mundlos S, Olsen BR, et al: Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell. 89:765–771. 1997.PubMed/NCBI View Article : Google Scholar

105 

Barnes GL, Javed A, Waller SM, Kamal MH, Hebert KE, Hassan MQ, Bellahcene A, Van Wijnen AJ, Young MF, Lian JB, et al: Osteoblast-related transcription factors Runx2 (Cbfa1/AML3) and MSX2 mediate the expression of bone sialoprotein in human metastatic breast cancer cells. Cancer Res. 63:2631–2637. 2003.PubMed/NCBI

106 

Akech J, Wixted JJ, Bedard K, van der Deen M, Hussain S, Guise TA, van Wijnen AJ, Stein JL, Languino LR, Altieri DC, et al: Runx2 association with progression of prostate cancer in patients: Mechanisms mediating bone osteolysis and osteoblastic metastatic lesions. Oncogene. 29:811–821. 2010.PubMed/NCBI View Article : Google Scholar

107 

Pratap J, Javed A, Languino LR, van Wijnen AJ, Stein JL, Stein GS and Lian JB: The Runx2 osteogenic transcription factor regulates matrix metalloproteinase 9 in bone metastatic cancer cells and controls cell invasion. Mol Cell Biol. 25:8581–8591. 2005.PubMed/NCBI View Article : Google Scholar

108 

Kuo Y, Zaidi SK, Gornostaeva S, Komori T, Stein GS and Castilla LH: Runx2 induces acute myeloid leukemia in cooperation with Cbfbeta-SMMHC in mice. Blood. 113:3323–3333. 2019.PubMed/NCBI View Article : Google Scholar

109 

Kayed H, Jiang X, Keleg S, Jesnowski R, Giese T, Berger M, Esposito I, Löhr M, Friess H and Kleeff J: Regulation and functional role of the Runt-related transcription factor-2 in pancreatic cancer. Br J Cancer. 97:1106–1115. 2007.PubMed/NCBI View Article : Google Scholar

110 

Boregowda R, Olabisi O, Abushahba W, Jeong B, Haenssen K, Chen W, Chekmareva M, Lasfar A, Foran DJ, Goydos JS and Cohen-Solal KA: RUNX2 is overexpressed in melanoma cells and mediates their migration and invasion. Cancer Lett. 348:61–70. 2014.PubMed/NCBI View Article : Google Scholar

111 

Zelzer E, Glotzer DJ, Hartmann C, Thomas D, Fukai N, Soker S and Olsen BR: Tissue specific regulation of VEGF expression during bone development requires Cbfa1/Runx2. Mech Dev. 106:97–106. 2001.PubMed/NCBI View Article : Google Scholar

112 

Ozaki T, Wu D, Sugimoto H, Nagase H and Nakagawara A: Runt-related transcription factor 2 (RUNX2) inhibits p53-dependent apoptosis through the collaboration with HDAC6 in response to DNA damage. Cell Death Dis. 4(e610)2013.PubMed/NCBI View Article : Google Scholar

113 

Sugimoto H, Nakamura M, Yoda H, Hiraoka K, Shinohara K, Sang M, Fujiwara K, Shimozato O, Nagase H and Ozaki T: Silencing of RUNX2 enhances gemcitabine sensitivity of p53-deficient human pancreatic cancer AsPC-1 cells through the stimulation of TAp63-mediated cell death. Cell Death Dis. 6(e1914)2015.PubMed/NCBI View Article : Google Scholar

114 

Ozaki T, Sugimoto H, Nakamura M, Hiraoka K, Yoda H, Sang M, Fujiwara K and Nagase H: Runt-related transcription factor 2 attenuates the transcriptional activity as well as DNA damage-mediated induction of pro-apoptotic TAp73 to regulate chemosensitivity. FEBS J. 282:114–128. 2015.PubMed/NCBI View Article : Google Scholar

115 

Stojanovic N, Hassan Z, Wirth M, Wenzel P, Beyer M, Schäfer C, Brand P, Kroemer A, Stauber RH, Schmid RM, et al: HDAC1 and HDAC2 integrate the expression of p53 mutants in pancreatic cancer. Oncogene. 36:1804–1815. 2017.PubMed/NCBI View Article : Google Scholar

116 

Grant S, Easley C and Kirkpatrick P: Vorinostat. Nat Rev Drug Discov. 6:21–22. 2007.PubMed/NCBI View Article : Google Scholar

117 

Gryder B, Sodji Q and Oyelere A: Targeted cancer therapy: Giving histone deacetylase inhibitors all they need to succeed. Futur Med Chem. 4:505–524. 2012.PubMed/NCBI View Article : Google Scholar

118 

Ogata T, Nakamura M, Sang M, Yoda H, Hiraoka K, Yin D, Sang M, Shimozato O and Ozaki T: Depletion of runt-related transcription factor 2 (RUNX2) enhances SAHA sensitivity of p53-mutated pancreatic cancer cells through the regulation of mutant p53 and TAp63. PLoS One. 12(e0179884)2017.PubMed/NCBI View Article : Google Scholar

119 

Ozaki T, Nakamura M, Ogata T, Sang M, Yoda H, Hiraoka K, Sang M and Shimozato O: Depletion of pro-oncogenic RUNX2 enhances gemcitabine (GEM) sensitivity of p53-mutated pancreatic cancer Panc-1 cells through the induction of pro-apoptotic TAp63. Oncotarget. 7:71937–71950. 2016.PubMed/NCBI View Article : Google Scholar

120 

Nakaya N, Ishigaki Y, Nakajima H, Murakami M, Shimasaki T, Takata T, Ozaki M, Dusetti NJ, Iovanna JL and Motoo Y: Meaning of tumor protein 53-induced nuclear protein 1 in the molecular mechanism of gemcitabine sensitivity. Mol Clin Oncol. 1:100–104. 2013.PubMed/NCBI View Article : Google Scholar

121 

Irwin M, Marin MC, Phillips AC, Seelan RS, Smith DI, Liu W, Flores ER, Tsai KY, Jacks T, Vousden KH and Kaelin WG Jr: Role for the p53 homologue p73 in E2F-1-induced apoptosis. Nature. 407:645–648. 2000.PubMed/NCBI View Article : Google Scholar

122 

Stiewe T and Putzer BM: Role of the p53-homologue p73 in E2F1-induced apoptosis. Nat Genet. 26:464–469. 2000.PubMed/NCBI View Article : Google Scholar

123 

Xia X, Zhang K, Luo G, Cen G, Cao J, Huang K and Qiu Z: Downregulation of miR-301a-3p sensitizes pancreatic cancer cells to gemcitabine treatment via PTEN. Am J Transl Res. 9:1886–1895. 2017.PubMed/NCBI

124 

Luo G, Xia X, Wang X, Zhang K, Cao J, Jiang T, Zhao Q and Qiu Z: miR-301a plays a pivotal role in hypoxia-induced gemcitabine resistance in pancreatic cancer. Exp Cell Res. 369:120–128. 2018.PubMed/NCBI View Article : Google Scholar

125 

Lee EJ, Gusev Y, Jiang J, Nuovo GJ, Lerner MR, Frankel WL, Morgan DL, Postier RG, Brackett DJ and Schmittgen TD: Expression profiling identifies microRNA signature in pancreatic cancer. Int J Cancer. 120:1046–1054. 2007.PubMed/NCBI View Article : Google Scholar

126 

Xia X, Zhang K, Cen G, Jiang T, Cao J, Huang K, Huang C, Zhao Q and Qiu Z: MicroRNA-301a-3p promotes pancreatic cancer progression via negative regulation of SMAD4. Oncotarget. 6:21046–21063. 2015.PubMed/NCBI View Article : Google Scholar

127 

Rohwer N and Cramer T: Hypoxia-mediated drug resistance: Novel insights on the functional interaction of HIFs and cell death pathways. Drug Resist Updat. 14:191–201. 2011.PubMed/NCBI View Article : Google Scholar

128 

Nakazawa MS, Keith B and Simon MC: Oxygen availability and metabolic adaptations. Nat Rev Cancer. 16:663–673. 2016.PubMed/NCBI View Article : Google Scholar

129 

Rankin EB and Giaccia AJ: Hypoxic control of metastasis. Science. 352:175–180. 2016.PubMed/NCBI View Article : Google Scholar

130 

Shukla SK, Purohit V, Mehla K, Gunda V, Chaika NV, Vernucci E, King RJ, Abrego J, Goode GD, Dasgupta A, et al: MUC1 and HIF-1alpha signaling crosstalk induces anabolic glucose metabolism to impart gemcitabine resistance to pancreatic cancer. Cancer Cell. 32:71–87.e7. 2017.PubMed/NCBI View Article : Google Scholar

131 

Comerford KM, Wallace TJ, Karhausen J, Louis NA, Montalto MC and Colgan SP: Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Res. 62:3387–3394. 2002.PubMed/NCBI

132 

He X, Wang J, Wei W, Shi M, Xin B, Zhang T and Shen X: Hypoxia regulates ABCG 2 activity through the activivation of ERK1/2/HIF-1α and contributes to chemoresistance in pancreatic cancer cells. Cancer Biol Ther. 17:188–198. 2016.PubMed/NCBI View Article : Google Scholar

133 

Choi W, Shah JB, Tran M, Svatek R, Marquis L, Lee I, Yu D, Adam L, Wen S, Shen Y, et al: p63 expression defines a lethal subset of muscle-invasive bladder cancers. PLoS One. 7(e30206)2012.PubMed/NCBI View Article : Google Scholar

134 

Dang TT, Westcott JM, Maine EA, Kanchwala M, Xing C and Pearson GW: ΔNp63α induces the expression of FAT2 and slug to promote tumor invasion. Oncotarget. 7:28592–28611. 2016.PubMed/NCBI View Article : Google Scholar

135 

Melino G, Bernassola F, Ranalli M, Yee K, Zong WX, Corazzari M, Knight RA, Green DR, Thompson C and Vousden KH: p75 induces apoptosis via PUMA transactivation and Bax mitochondrial translocation. J Biol Chem. 279:8076–8083. 2004.PubMed/NCBI View Article : Google Scholar

136 

John K, Alla V, Meier C and Pützer BM: GRAMD4 mimics p53 and mediates the apoptotic function of p73 at mitochondria. Cell Death Differ. 18:874–886. 2011.PubMed/NCBI View Article : Google Scholar

137 

Deng Y and Wu X: Peg3/Pw1 promotes p53-mediated apoptosis by inducing Bax translocation from cytosol to mitochondria. Proc Natl Acad Sci USA. 97:12050–12055. 2000.PubMed/NCBI View Article : Google Scholar

138 

Stantic M, Sakil HAM, Zirath H, Fang T, Sanz G, Fernandez-Woodbridge A, Marin A, Susanto E, Mak TW, Arsenian Henriksson M and Wilhelm MT: TAp73 suppresses tumor angiogenesis through repression of proangiogenic cytokines and HIF-1α activity. Proc Natl Acad Sci USA. 112:220–225. 2015.PubMed/NCBI View Article : Google Scholar

139 

Amelio I, Inoue S, Markert EK, Levine AJ, Knight RA, Mak TW and Melino G: TAp73 opposes tumor angiogenesis by promoting hypoxia-inducible factor 1α degradation. Proc Natl Acad Sci USA. 112:226–231. 2015.PubMed/NCBI View Article : Google Scholar

140 

Dulloo I, Hooi PB and Sabapathy K: Hypoxia-induced DNp73 stabilization regulates Vegf-A expression and tumor angiogenesis similar to TAp73. Cell Cycle. 14:3533–3539. 2015.PubMed/NCBI View Article : Google Scholar

141 

Dulloo I, Phang BH, Othman R, Tan SY, Vijayaraghavan A, Goh LK, Martin-Lopez M, Marques MM, Li CW, Wang de Y, et al: Hypoxia-inducible TAp73 supports tumorigenesis by regulating the angiogenic transcriptome. Nat Cell Biol. 17:511–523. 2015.PubMed/NCBI View Article : Google Scholar

142 

Fernandez-Alonso R, Martin-Lopez M, Gonzalez-Cano L, Garcia S, Castrillo F, Diez-Prieto I, Fernandez-Corona A, Lorenzo-Marcos ME, Li X, Claesson-Welsh L, et al: p73 is required for endothelial cell differentiation, migration and the formation of vascular networks regulating VEGF and TGFβ signaling. Cell Death Differ. 22:1287–1299. 2015.PubMed/NCBI View Article : Google Scholar

143 

Tomasini R, Tsuchihara K, Wilhelm M, Fujitani M, Rufini A, Cheung CC, Khan F, Itie-Youten A, Wakeham A, Tsao MS, et al: TAp73 knockout shows genomic instability with infertility and tumor suppressor functions. Genes Dev. 22:2677–2691. 2008.PubMed/NCBI View Article : Google Scholar

144 

Tomasini R, Tsuchihara K, Tsuda C, Lau SK, Wilhelm M, Ruffini A, Tsao MS, Iovanna JL, Jurisicova A, Melino G and Mak TW: TAp73 regulates the spindle assembly checkpoint by modulating BubR1 activity. Proc Natl Acad Sci USA. 106:797–802. 2009.PubMed/NCBI View Article : Google Scholar

145 

Vikhreva P, Petrova V, Gokbulut T, Pestlikis I, Mancini M, Di Daniele N, Knight RA and Melino G: TAp73 upregulates IL-1β in cancer cells: Potential biomarker in lung and breast cancer? Biochem Biophys Res Commun. 482:498–505. 2017.PubMed/NCBI View Article : Google Scholar

146 

Galtsidis S, Logotheti S, Pavlopoulou A, Zampetidis CP, Papachristopoulou G, Scorilas A, Vojtesek B, Gorgoulis V and Zoumpourlis V: Unravelling a p73-regulated network: The role of a novel p73-dependent target, MIR3158, in cancer cell migration and invasiveness. Cancer Lett. 388:96–106. 2017.PubMed/NCBI View Article : Google Scholar

147 

Ory B, Ramsey MR, Wilson C, Vadysirisack DD, Forster N, Rocco JW, Rothenberg SM and Ellisen LW: A microRNA-dependent program controls p53-independent survival and chemosensitivity in human and murine squamous cell carcinoma. J Clin Invest. 121:809–820. 2011.PubMed/NCBI View Article : Google Scholar

148 

Bardeesy N, Cheng K, Berger JH, Chu GC, Pahler J, Olson P, Hezel AF, Horner J, Lauwers GY, Hanahan D and DePinho RA: Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer. Genes Dev. 20:3130–3146. 2006.PubMed/NCBI View Article : Google Scholar

149 

de la Fuente M, Jones MC, Santander-Ortega MJ, Mirenska A, Marimuthu P, Uchegbu I and Schätzlein A: A nano-enabled cancer-specific ITCH RNAi chemotherapy booster for pancreatic cancer. Nanomedicine. 11:369–377. 2015.PubMed/NCBI View Article : Google Scholar

150 

Plunkett W, Huang P, Xu YZ, Heinemann V, Grunewald R and Gandhi V: Gemcitabine: Metabolism, mechanisms of action, and self-potentiation. Semin Oncol. 22 (4 Suppl 11):S3–S10. 1995.PubMed/NCBI

151 

Huang P, Chubb S, Hertel L, Grindey G and Plunkett W: Action of 2',2'-difluorodeoxycytidine on DNA synthesis. Cancer Res. 51:6110–6117. 1991.PubMed/NCBI

152 

Achanta G, Pelicano H, Feng L, Plunkett W and Huang P: Interaction of p53 and DNA-PK in response to nucleoside analogues: Potential role as a sensor complex for DNA damage. Cancer Res. 61:8723–8729. 2001.PubMed/NCBI

153 

Galmarini CM, Clarke ML, Falette N, Puisieux A, Mackey JR and Dumontet C: Expression of a non-functional p53 affects the sensitivity of cancer cells to gemcitabine. Int J Cancer. 97:439–445. 2002.PubMed/NCBI View Article : Google Scholar

154 

Zeng X, Chen L, Jost CA, Maya R, Keller D, Wang X, Kaelin WG Jr, Oren M, Chen J and Lu H: MDM2 suppresses p73 function without promoting p73 degradation. Mol Cell Biol. 19:3257–3266. 1999.PubMed/NCBI View Article : Google Scholar

155 

Su J, Zhou X, Yin X, Wang L, Zhao Z, Hou Y, Zheng N, Xia J and Wang Z: The effects of curcumin on proliferation, apoptosis, invasion, and NEDD4 expression in pancreatic cancer. Biochem Pharmacol. 140:28–40. 2017.PubMed/NCBI View Article : Google Scholar

156 

Yang SH, Lee JC, Guo JC, Kuo SH, Tien YW, Kuo TC, Cheng AL and Yeh KH: Association of MDM2 expression with shorter progression-free survival and overall survival in patients with advanced pancreatic cancer treated with gemcitabine-based chemotherapy. PLoS One. 12(e0180628)2017.PubMed/NCBI View Article : Google Scholar

157 

Azmi AS, Aboukameel A, Banerjee S, Wang Z, Mohammad M, Wu J, Wang S, Yang D, Philip PA, Sarkar FH and Mohammad RM: MDM2 inhibitor MI-319 in combination with cisplatin is an effective treatment for pancreatic cancer independent of p53 function. Eur J Cancer. 46:1122–1131. 2010.PubMed/NCBI View Article : Google Scholar

158 

Azmi AS, Ali S, Banerjee S, Bao B, Maitah M, Padhye S, Philip PA, Mohammad RM and Sarkar FH: Network modeling of CDF treated pancreatic cancer cells reveals a novel c-myc-p73 dependent apoptotic mechanism. Am J Transl Res. 3:374–382. 2011.PubMed/NCBI

159 

Hamilton G, Abraham A, Morton J, Sampson O, Pefani D, Khoronenkova S, Grawenda A, Papaspyropoulos A, Jamieson N, McKay C, et al: AKT regulates NPM dependent ARF localization and p53mut stability in tumors. Oncotarget. 5:6142–6167. 2014.PubMed/NCBI View Article : Google Scholar

160 

Bid HK, Roberts RD, Cam M, Audino A, Kurmasheva RT, Lin J, Houghton PJ and Cam H: ΔNp63 promotes pediatric neuroblastoma and osteosarcoma by regulating tumor angiogenesis. Cancer Res. 74:320–329. 2014.PubMed/NCBI View Article : Google Scholar

161 

Zhang Y, Zeng SX, Hao Q and Lu H: Monitoring p53 by MDM2 and MDMX is required for endocrine pancreas development and function in a spatio-temporal manner. Dev Biol. 423:34–45. 2017.PubMed/NCBI View Article : Google Scholar

162 

Vassilev LT, Vu BT, Craves B, Carvajal D, Podlaski F, Filipovic Z, Kong N, Kammlott U, Lukacs C, Klein C, et al: In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science. 303:844–848. 2004.PubMed/NCBI View Article : Google Scholar

163 

Grasberger BL, Lu T, Schubert C, Parks DJ, Carver TE, Koblish HK, Cummings MD, LaFrance LV, Milkiewicz KL, Calvo RR, et al: Discovery and cocrystal structure of benzodiazepinedione HDM2 antagonists that activate p53 in cells. J Med Chem. 48:909–912. 2005.PubMed/NCBI View Article : Google Scholar

164 

Issaeva N, Bozko P, Enge M, Protopopova M, Verhoef LGGC, Masucci M, Pramanik A and Selivanova G: Small molecule RITA binds to p53, blocks p53-HDM-2 interaction and activates p53 function in tumors. Nat Med. 10:1321–1328. 2004.PubMed/NCBI View Article : Google Scholar

165 

Yu X, Vazquez A, Levine AJ and Carpizo DR: Allele-specific p53 mutant reactivation. Cancer Cell. 21:614–625. 2012.PubMed/NCBI View Article : Google Scholar

166 

Lambert JMR, Moshfegh A, Hainaut P, Wiman KG and Bykov VJ: Mutant p53 reactivation by PRIMA-1MET induces multiple signaling pathways converging on apoptosis. Oncogene. 29:1329–1338. 2010.PubMed/NCBI View Article : Google Scholar

167 

Tang X, Zhu Y, Han L, Kim AL, Kopelovich L, Bickers DR and Athar M: CP-31398 restores mutant p53 tumor suppressor function and inhibits UVB-induced skin carcinogenesis in mice. J Clin Invest. 117:3753–3764. 2007.PubMed/NCBI View Article : Google Scholar

168 

Bykov VJN, Issaeva N, Shilov A, Hultcrantz M, Pugacheva E, Chumakov P, Bergman J, Wiman KG and Selivanova G: Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound. Nat Med. 8:282–288. 2002.PubMed/NCBI View Article : Google Scholar

169 

Li D, Marchenko ND, Schulz R, Fischer V, Velasco-Hernandez T, Talos F and Moll UM: Functional inactivation of endogenous MDM2 and CHIP by HSP90 causes aberrant stabilization of mutant p53 in human cancer cells. Mol Cancer Res. 9:577–588. 2011.PubMed/NCBI View Article : Google Scholar

170 

Li D, Marchenko ND and Moll UM: SAHA shows preferential cytotoxicity in mutant p53 cancer cells by destabilizing mutant p53 through inhibition of the HDAC6-Hsp90 chaperone axis. Cell Death Differ. 18:1904–1913. 2011.PubMed/NCBI View Article : Google Scholar

171 

Liu J, Zhang C and Feng Z: Tumor suppressor p53 and its gain-of-function mutants in cancer. Acta Biochim Biophys Sin (Shanghai). 46:170–179. 2014.PubMed/NCBI View Article : Google Scholar

172 

Stindt MH, Muller PAJ, Ludwig RL, Kehrloesser S, Dötsch V and Vousden KH: Functional interplay between MDM2, p63/p73 and mutant p53. Oncogene. 34:4300–4310. 2015.PubMed/NCBI View Article : Google Scholar

173 

Ludes-Meyers JH, Subler MA, Shivakumar CV, Munoz RM, Jiang P, Bigger JE, Brown DR, Deb SP and Deb S: Transcriptional activation of the human epidermal growth factor receptor promoter by human p53. Mol Cell Biol. 16:6009–6019. 1996.PubMed/NCBI View Article : Google Scholar

174 

Weisz L, Zalcenstein A, Stambolsky P, Cohen Y, Goldfinger N, Oren M and Rotter V: Transactivation of the EGR1 gene contributes to mutant p53 gain of function. Cancer Res. 64:8318–8327. 2004.PubMed/NCBI View Article : Google Scholar

175 

Scian MJ, Stagliano KER, Anderson MAE, Hassan S, Bowman M, Miles MF, Deb SP and Deb S: Tumor-derived p53 mutants induce NF-kappaB2 gene expression. Mol Cell Biol. 25:10097–10110. 2005.PubMed/NCBI View Article : Google Scholar

176 

Strano S, Dell'Orso S, Di Agostino S, Fontemaggi G, Sacchi A and Blandino G: Mutant p53: An oncogenic transcription factor. Oncogene. 26:2212–2219. 2007.PubMed/NCBI View Article : Google Scholar

177 

Wang Q, Selth LA and Callen DF: MiR-766 induces p53 accumulation and G2/M arrest by directly targeting MDM4. Oncotarget. 8:29914–29924. 2017.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
Copy and paste a formatted citation
Spandidos Publications style
Jahedi H, Fahud AL and Lim CL: Role of p53 family isoforms in enhancing aggressiveness and chemoresistance in pancreatic cancer (Review). World Acad Sci J 1: 236-246, 2019.
APA
Jahedi, H., Fahud, A.L., & Lim, C.L. (2019). Role of p53 family isoforms in enhancing aggressiveness and chemoresistance in pancreatic cancer (Review). World Academy of Sciences Journal, 1, 236-246. https://doi.org/10.3892/wasj.2019.23
MLA
Jahedi, H., Fahud, A. L., Lim, C. L."Role of p53 family isoforms in enhancing aggressiveness and chemoresistance in pancreatic cancer (Review)". World Academy of Sciences Journal 1.5 (2019): 236-246.
Chicago
Jahedi, H., Fahud, A. L., Lim, C. L."Role of p53 family isoforms in enhancing aggressiveness and chemoresistance in pancreatic cancer (Review)". World Academy of Sciences Journal 1, no. 5 (2019): 236-246. https://doi.org/10.3892/wasj.2019.23
Copy and paste a formatted citation
x
Spandidos Publications style
Jahedi H, Fahud AL and Lim CL: Role of p53 family isoforms in enhancing aggressiveness and chemoresistance in pancreatic cancer (Review). World Acad Sci J 1: 236-246, 2019.
APA
Jahedi, H., Fahud, A.L., & Lim, C.L. (2019). Role of p53 family isoforms in enhancing aggressiveness and chemoresistance in pancreatic cancer (Review). World Academy of Sciences Journal, 1, 236-246. https://doi.org/10.3892/wasj.2019.23
MLA
Jahedi, H., Fahud, A. L., Lim, C. L."Role of p53 family isoforms in enhancing aggressiveness and chemoresistance in pancreatic cancer (Review)". World Academy of Sciences Journal 1.5 (2019): 236-246.
Chicago
Jahedi, H., Fahud, A. L., Lim, C. L."Role of p53 family isoforms in enhancing aggressiveness and chemoresistance in pancreatic cancer (Review)". World Academy of Sciences Journal 1, no. 5 (2019): 236-246. https://doi.org/10.3892/wasj.2019.23
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team