Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
World Academy of Sciences Journal
Join Editorial Board Propose a Special Issue
Print ISSN: 2632-2900 Online ISSN: 2632-2919
Journal Cover
March-April 2020 Volume 2 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-April 2020 Volume 2 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Diagnostic significance and prognostic role of the ARID1A gene in cancer outcomes (Review)

  • Authors:
    • Evangelia N. Pavlidou
    • Vasileios Balis
  • View Affiliations / Copyright

    Affiliations: Covance Clinical and Periapproval Services Ltd., Harrogate, North Yorkshire HG3 1PY, UK, AMC Metropolitan College, 54624 Thessaloniki, Greece
    Copyright: © Pavlidou et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 49-64
    |
    Published online on: January 31, 2020
       https://doi.org/10.3892/wasj.2020.37
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Mutations of the ARID1A gene, which encodes the basic directional subunit of SWI/SNF chromatin remodeling complexes, were detected in the middle of the last decade in several cancerous tissue types, highlighting its tumour‑suppressive role. Since then, functional studies of the homologous protein have indicated that through its interactions with nucleosomal DNA, transcription factors and nuclear hormone receptors, it plays a key role in regulating cellular proliferation, gene expression and the repair of genetic material, while the loss of its expression triggers carcinogenesis, through mechanisms which have not yet been elucidated. This bibliographic review of clinical investigations focused on the detection of ARID1A mutations and expression levels in malignant tumours, as well as on their association with the prognosis of ARID1A‑deficient patients exhibiting a high degree of heterogeneity in the corresponding research findings. The clarification of the prognostic significance of the gene requires further investigation, focusing on cancers and patients of common clinicopathological features.
View Figures

Figure 1

View References

1 

Bagchi A and Mills AA: The quest for the 1p36 tumor suppressor. Cancer Res. 68:2551–2556. 2008.PubMed/NCBI View Article : Google Scholar

2 

Reisman D, Glaros S and Thompson EA: The SWI/SNF complex and cancer. Oncogene. 28:1653–1668. 2009.PubMed/NCBI View Article : Google Scholar

3 

Wu JN and Roberts CW: ARID1A mutations in cancer: Another epigenetic tumor suppressor? Cancer Discov. 3:35–43. 2013.PubMed/NCBI View Article : Google Scholar

4 

Guan B, Gao M, Wu CH, Wang TL and Shih IM: Functional analysis of in-frame indel ARID1A mutations reveals new regulatory mechanisms of its tumor suppressor functions. Neoplasia. 14:986–993. 2012.PubMed/NCBI View Article : Google Scholar

5 

Samartzis EP, Noske A, Dedes KJ, Fink D and Imesch P: ARID1A mutations and PI3K/AKT pathway alterations in endometriosis and endometriosis-associated ovarian carcinomas. Int J Mol Sci. 14:18824–18849. 2013.PubMed/NCBI View Article : Google Scholar

6 

Wang X, Nagl NG Jr, Flowers S, Zweitzig D, Dallas PB and Moran E: Expression of p270 (ARID1A), a component of human SWI/SNF complexes, in human tumors. Int J Cancer. 112(636)2004.PubMed/NCBI View Article : Google Scholar

7 

Flores-Alcantar A, Gonzales-Sandoval A, Escalante-Alcalde D and Lomeli H: Dynamics of expression of ARID1A and ARID1B subunits in mouse embryos and in cells during the cell cycle. Cell Tissue Res. 345:137–148. 2011.PubMed/NCBI View Article : Google Scholar

8 

Jones S, Wang TL, Shih IeM, Mao TL, Nakayama K, Roden R, Glas R, Slamon D, Diaz LA Jr, Vogelstein B, et al: Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science. 330:228–231. 2010.PubMed/NCBI View Article : Google Scholar

9 

Wiegand KC, Shah SP, Al-Agha OM, Zhao Y, Tse K, Zeng T, Senz J, McConechy MK, Anglesio MS, Kalloger SE, et al: ARID1A mutations in endometriosis-associated ovarian carcinomas. N Engl J Med. 363:1532–1543. 2010.PubMed/NCBI View Article : Google Scholar

10 

Jones S, Meng L, Parsons DW, Zhang X, Wesseling J, Kristel P, Schmidt MK, Markowitz S, Yan H, Bigner D, et al: Somatic mutations in the chromatin remodeling gene ARID1A occur in several tumor types. Hum Mutat. 33:100–103. 2012.PubMed/NCBI View Article : Google Scholar

11 

Luchini C, Veronese N, Solmi M, Cho H, Kim JH, Chou A, Gill AJ, Faraj SF, Chaux A, Netto GJ, et al: Prognostic role and implications of mutation status of tumor suppressor gene ARID1A in cancer: A systematic review and meta-analysis. Oncotarget. 6:39088–39097. 2015.PubMed/NCBI View Article : Google Scholar

12 

Mao TL and Shih IeM: The roles of ARID1A in gynecologic cancer. J Gynecol Oncol. 24:376–381. 2013.PubMed/NCBI View Article : Google Scholar

13 

Wu RC, Wang TL and Shih IeM: The emerging roles of ARID1A in tumor suppression. Cancer Biol Ther. 15:655–664. 2014.PubMed/NCBI View Article : Google Scholar

14 

Lyu C, Zhang Y, Zhou X and Lang J: ARID1A gene silencing reduces the sensitivity of ovarian clear cell carcinoma to cisplastin. Exp Ther Med. 12:4067–4071. 2016.PubMed/NCBI View Article : Google Scholar

15 

Gregory SL, Kortschak DR, Kallionis B and Saint R: Characterization of the dead ringer gene identifies a novel, highly conserved family of sequence-specific DNA-binding proteins. Mol Cell Biol. 16:792–799. 1996.PubMed/NCBI View Article : Google Scholar

16 

Herrscher RF, Kaplan MH, Lelsz DL, Das C, Scheuermann R and Tucker PW: The immunoglobulin heavy-chain matrix-associating regions are bound by Bright: A B cell-specific trans-activator that describes a new DNA-binding protein family. Genes Dev. 9:3067–3082. 1995.PubMed/NCBI View Article : Google Scholar

17 

Patsialou A, Wilsker D and Moran E: DNA-binding properties of ARID family proteins. Nucleic Acids Res. 33:66–80. 2005.PubMed/NCBI View Article : Google Scholar

18 

Dallas PB, Pacchione S, Wilsker D, Bowrin V, Kobayashi R and Moran E: The human SWI-SNF complex protein p270 is an ARID family member with non-sequence-specific DNA binding activity. Mol Cell Biol. 20:3137–3146. 2000.PubMed/NCBI View Article : Google Scholar

19 

Wang X, Haswell JR and Roberts CW: Molecular pathways: SWI/SNF (BAF) complexes are frequently mutated in cancer-mechanisms and potential therapeutic insights. Clin Cancer Res. 20:21–27. 2014.PubMed/NCBI View Article : Google Scholar

20 

Carlson M, Osmond BC and Botstein D: Mutants of yeast defective in sucrose utilization. Genetics. 98:25–40. 1981.PubMed/NCBI

21 

Wilsker D, Patsialou A, Zumbrun SD, Kim S, Chen Y, Dallas PB and Moran E: The DNA-binding properties of the ARID-containing subunits of yeast and mammalian SWI/SNF complexes. Nucleic Acids Res. 32:1345–1353. 2004.PubMed/NCBI View Article : Google Scholar

22 

Kwon H, Imbalzano AN, Khavari PA, Kingston RE and Green MR: Nucleosome disruption and enhancement of activator binding by a human SWI/SNF complex. Nature. 370:477–481. 1994.PubMed/NCBI View Article : Google Scholar

23 

Li XS, Trojer P, Matsumura T, Treisman JE and Tanese N: Mammalian SWI/SNF-a subunit BAF250/ARID1 is an E3 ubiquitin ligase that targets histone H2B. Mol Cell Biol. 30:1673–1688. 2010.PubMed/NCBI View Article : Google Scholar

24 

Narlicar GJ, Sundaramoorthy R and Owen-Hughes T: Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes. Cell. 154:490–503. 2013.PubMed/NCBI View Article : Google Scholar

25 

Smith CL and Peterson CL: A conserved Swi2/Snf2 ATPase motif couples ATP hydrolysis to chromatin remodeling. Mol Cell Biol. 25:5880–5892. 2005.PubMed/NCBI View Article : Google Scholar

26 

Becker PB: Nucleosome sliding: Facts and fiction. EMBO J. 21:4749–4753. 2002.PubMed/NCBI View Article : Google Scholar

27 

Cairns BR: Chromatin remodeling: Insights and intrigue from single-molecule studies. Nat Struct Mol Biol. 14:989–996. 2007.PubMed/NCBI View Article : Google Scholar

28 

Hargreaves DC and Crabtree GR: ATP-dependent chromatin remodeling: Genetics, genomics and mechanisms. Cell Res. 21:396–420. 2011.PubMed/NCBI View Article : Google Scholar

29 

Vignali M, Hassan AH, Neely KE and Workman JL: ATP-dependent chromatin-remodeling complexes. Mol Cell Biol. 20:1899–1910. 2000.PubMed/NCBI View Article : Google Scholar

30 

Schnitzler G, Sif S and Kingston RE: Human SWI/SNF interconverts a nucleosome between its base state and a stable remodeled state. Cell. 94:17–27. 1998.PubMed/NCBI View Article : Google Scholar

31 

Imbalzano AN, Kwon H, Green MR and Kingston RE: Facilitated binding of TATA-binding protein to nucleosomal DNA. Nature. 370:481–485. 1994.PubMed/NCBI View Article : Google Scholar

32 

Bartolomew B: Regulating the chromatin landscape: Structural and mechanistic perspectives. Annu Rev Biochem. 83:671–696. 2014.PubMed/NCBI View Article : Google Scholar

33 

Jeong KW, Lee YH and Stallcup MR: Recruitment of the SWI/SNF chromatin remodeling complex to steroid hormone-regulated promoters by nuclear receptor coactivator flightless-I. J Biol Chem. 284:29298–29309. 2009.PubMed/NCBI View Article : Google Scholar

34 

Ronan JL, Wu W and Crabtree GR: From neural development to cognition: Unexpected roles for chromatin. Nat Rev Genet. 14:347–359. 2013.PubMed/NCBI View Article : Google Scholar

35 

Decristofaro MF, Betz BL, Rorie CJ, Reisman DN, Wang W and Weissman BE: Characterization of SWI/SNF protein expression in human breast cancer cell lines and other malignancies. J Cell Physiol. 186:136–145. 2001.PubMed/NCBI View Article : Google Scholar

36 

Inoue H, Furukawa T, Giannakopoulos S, Zhou S, King DS and Tanese N: Largest subunits of the human SWI/SNF chromatin-remodeling complex promote transcriptional activation by steroid hormone receptors. J Biol Chem. 277:41674–41685. 2002.PubMed/NCBI View Article : Google Scholar

37 

Kadoch C, Hargreaves DC, Hodges C, Elias L, Ho L, Ranish J and Crabtree GR: Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nat Genet. 45:592–601. 2013.PubMed/NCBI View Article : Google Scholar

38 

Keenen B, Qi H, Saladi SV, Yeung M and de la Serna IL: Heterogeneous SWI/SNF chromatin remodeling complexes promote expression of microphthalmia-associated transcription factor target genes in melanoma. Oncogene. 29:81–92. 2010.PubMed/NCBI View Article : Google Scholar

39 

Tang L, Nogales E and Ciferri C: Structure and function of SWI/SNF chromatin remodeling complexes and mechanistic implications for transcription. Prog Biophys Mol Biol. 102:122–128. 2010.PubMed/NCBI View Article : Google Scholar

40 

Nie Z, Xue Y, Yang D, Zhou S, Deroo BJ, Archer TK and Wang W: A specificity and targeting subunit of a human SWI/SNF family-related chromatin-remodeling complex. Mol Cell Biol. 20:8879–8888. 2000.PubMed/NCBI View Article : Google Scholar

41 

Takao C, Morikawa A, Ohkubo H, Kito Y, Saigo K, Sakuratami T, Futamura M, Takeuchi T and Yoshida K: Downregulation of ARID1A, a component of the SWI/SNF chromatin remodeling complex, in breast cancer. J Cancer. 8:1–8. 2017.PubMed/NCBI View Article : Google Scholar

42 

Inoue H, Giannakopoulos S, Parkhurst CN, Matsumura T, Kono EA, Furukawa T and Tanese N: Target genes of the largest human SWI/SNF complex subunit control cell growth. Biochem J. 434:83–92. 2011.PubMed/NCBI View Article : Google Scholar

43 

Dechassa ML, Zhang B, Horowitz-Scherer R, Persinger J, Woodcock CL, Peterson CL and Bartholomew B: Architecture of the SWI/SNF-nucleosome complex. Mol Cell Biol. 28:6010–6021. 2008.PubMed/NCBI View Article : Google Scholar

44 

Nagl NG Jr, Wang X, Patsialou A, Van Scoy M and Moran E: Distinct mammalian SWI/SNF chromatin remodeling complexes with opposing roles in cell-cycle control. EMBO J. 26:752–763. 2007.PubMed/NCBI View Article : Google Scholar

45 

Wang X, Nagl NG, Wilsker D, Van Scoy M, Pacchione S, Yaciuk P, Dallas PB and Moran E: Two related ARID family proteins are alternative subunits of human SWI/SNF complexes. Biochem J. 383:319–325. 2004.PubMed/NCBI View Article : Google Scholar

46 

Yan HB, Wang XF, Zhang Q, Tang ZQ, Jiang YH, Fan HZ, Sun Y, Yang PY and Liu F: Reduced expression of the chromatin remodeling gene ARID1A enhances gastric cancer cell migration and invasion via downregulation of E-cadherin transcription. Carcinogenesis. 35:867–876. 2014.PubMed/NCBI View Article : Google Scholar

47 

Saghafinia S, Mina M, Riggi N, Hanahan D and Ciriello G: Pan-cancer landscape of aberrant DNA methylation across human tumors. Cell Rep. 25:1066–1080.e8. 2018.PubMed/NCBI View Article : Google Scholar

48 

Kamińska K, Nalejska E, Kubiak M, Wojtysiak J, Żołna Ł, Kowalewski J and Lewandowska MA: Prognostic and predictive epigenetic biomarkers in oncology. Mol Diagn Ther. 23:83–95. 2019.PubMed/NCBI View Article : Google Scholar

49 

Tsai HC and Baylin SB: Cancer epigenetics: Linking basic biology to clinical medicine. Cell Res. 21:502–517. 2011.PubMed/NCBI View Article : Google Scholar

50 

Heinz S, Romanoski CE, Benner C and Glass CK: The selection and function of cell type-specific enhancers. Nat Rev Mol Cell Biol. 16:144–154. 2015.PubMed/NCBI View Article : Google Scholar

51 

Tillo D, Kaplan N, Moore IK, Fondufe-Mittendorf Y, Gossett AJ, Field Y, Lieb JD, Widom J, Segal E and Hughes TR: High nucleosome occupancy is encoded at human regulatory sequences. PLoS One. 5(e9129)2010.PubMed/NCBI View Article : Google Scholar

52 

Sun X, Chuang JC, Kanchwala M, Wu L, Celen C, Li L, Liang H, Zhang S, Maples T, Nguyen LH, et al: Suppression of the SWI/SNF component Arid1a promotes mammalian regeneration. Cell Stem Cell. 18:456–466. 2016.PubMed/NCBI View Article : Google Scholar

53 

Wu S, Zhang R and Bitler BG: Arid1a controls tissue regeneration. Stem Cell Investig. 3(35)2016.PubMed/NCBI View Article : Google Scholar

54 

Lei I, West J, Yan Z, Gao X, Fang P, Dennis JH, Gnatovskiy L, Wang W, Kingston RE and Wang Z: BAF250a protein regulates nucleosome occupancy and histone modifications in priming embryonic stem cell differentiation. J Biol Chem. 290:19343–19352. 2015.PubMed/NCBI View Article : Google Scholar

55 

Gao X, Tate P, Hu P, Tjian R, Skarnes WC and Wang Z: ES cell pluripotency and germ-layer formation require the SWI/SNF chromatin remodeling component BAF250a. Proc Natl Acad Sci USA. 105:6656–6661. 2008.PubMed/NCBI View Article : Google Scholar

56 

Han L, Madan V, Mayakonda A, Dakle P, Woon TW, Shyamsunder P, Nordin HBM, Cao Z, Sundaresan J, Lei I, et al: Chromatin remodeling mediated by ARID1A is indispensable for normal hematopoiesis in mice. Leukemia. 33:2291–2305. 2019.PubMed/NCBI View Article : Google Scholar

57 

Hota SK, Johnson JR, Verschueren E, Thomas R, Blotnick AM, Zhu Y, Sun X, Pennacchio LA, Krogan NJ and Bruneau BG: Dynamic BAF chromatin remodeling complex subunit inclusion promotes temporally distinct gene expression programs in cardiogenesis. Development. 146(pii: dev174086)2019.PubMed/NCBI View Article : Google Scholar

58 

Lei I, Gao X, Sham MH and Wang Z: SWI/SNF protein component BAF250a regulates cardiac progenitor cell differentiation by modulating chromatin accessibility during second heart field development. J Biol Chem. 287:24255–24262. 2012.PubMed/NCBI View Article : Google Scholar

59 

Watanabe R, Ui A, Kanno S, Ogiwara H, Nagase T, Kohno T and Yasui A: SWI/SNF factors required for cellular resistance to DNA damage include ARID1A and ARID1B and show interdependent protein stability. Cancer Res. 74:2465–2475. 2014.PubMed/NCBI View Article : Google Scholar

60 

Shen J, Peng Y, Wei L, Zhang W, Yang L, Lan L, Kapoor P, Ju Z, Mo Q, Shih IM, et al: ARID1A deficiency impairs the DNA damage checkpoint and sensitizes cells to PARP inhibitors. Cancer Discov. 5:752–767. 2015.PubMed/NCBI View Article : Google Scholar

61 

Lakshminarasimhan R, Andreu-Vieyra C, Lawrenson K, Duymich CE, Gayther SA, Liang G and Jones PA: Down-regulation of ARID1A is sufficient to initiate neoplastic transformation along with epigenetic reprogramming in non-tumorigenic endometriotic cells. Cancer Lett. 401:11–19. 2017.PubMed/NCBI View Article : Google Scholar

62 

Miranda TB and Jones PA: DNA methylation: The nuts and bolts of repression. J Cell Physiol. 213:384–390. 2007.PubMed/NCBI View Article : Google Scholar

63 

Jang HS, Shin WJ, Lee JE and Do JT: CpG and Non-CpG methylation in epigenetic gene regulation and brain function. Genes (Basel). 8(pii: E148)2017.PubMed/NCBI View Article : Google Scholar

64 

Herman JG, Latif F, Weng Y, Lerman MI, Zbar B, Liu S, Samid D, Duan DS, Gnarra JR, Linehan WM, et al: Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc Natl Acad Sci USA. 91:9700–9704. 1994.PubMed/NCBI View Article : Google Scholar

65 

Baylin SB, Makos M, Wu JJ, Yen RW, De Bustros A, Vertino P and Nelkin BD: Abnormal patterns of DNA methylation in human neoplasia: Potential consequences for tumor progression. Cancer Cells. 3:383–390. 1991.PubMed/NCBI

66 

Makos M, Nelkin BD, Lerman MI, Latif F, Zbar B and Baylin SB: Distinct hypermethylation patterns occur at altered chromosome loci in human lung and colon cancer. Proc Natl Acad Sci USA. 89:1929–1933. 1992.PubMed/NCBI View Article : Google Scholar

67 

Qu Y, Dang S and Hou P: Gene methylation in gastric cancer. Clin Chim Acta. 424:53–65. 2013.PubMed/NCBI View Article : Google Scholar

68 

Zhang X, Sun Q, Shan M, Niu M, Liu T, Xia B, Liang X, Wei W, Sun S, Zhang Y, et al: Promoter hypermethylation of ARID1A gene is responsible for its low mRNA expression in many invasive breast cancers. PLoS One. 8(e53931)2013.PubMed/NCBI View Article : Google Scholar

69 

Aso T, Uozaki H, Morita S, Kumagai A and Watanabe M: Loss of ARID1A, ARID1B, and ARID2 expression during progression of gastric cancer. Anticancer Res. 35:6819–6827. 2015.PubMed/NCBI

70 

Xie H, Chen P, Huang HW, Liu LP and Zhao F: Reactive oxygen species downregulate ARID1A expression via its promoter methylation during the pathogenesis of endometriosis. Eur Rev Med Pharmacol Sci. 21:4509–4515. 2017.PubMed/NCBI

71 

Ibragimova I, Maradeo ME, Dulaimi E and Cairns P: Aberrant promoter hypermethylation of PBRM1, BAP1, SETD2, KDM6A and other chromatin-modifying genes is absent or rare in clear cell RCC. Epigenetics. 8:486–493. 2013.PubMed/NCBI View Article : Google Scholar

72 

Xiao W, Lou N, Ruan H, Bao L, Xiong Z, Yuan C, Tong J, Xu G, Zhou Y, Qu Y, et al: Mir-144-3p promotes cell proliferation, metastasis, sunitinib resistance in clear cell renal cell carcinoma by downregulating ARID1A. Cell Physiol Biochem. 43:2420–2433. 2017.PubMed/NCBI View Article : Google Scholar

73 

Lee RC, Feinbaum RL and Ambros V: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 75:843–854. 1993.PubMed/NCBI View Article : Google Scholar

74 

He L and Hannon GJ: MicroRNAs: Small RNAs with a big role in gene regulation. Nat Rev Genet. 5:522–531. 2004.PubMed/NCBI View Article : Google Scholar

75 

Iorio MV and Croce CM: MicroRNAs in cancer: Small molecules with a huge impact. J Clin Oncol. 27:5848–5856. 2009.PubMed/NCBI View Article : Google Scholar

76 

Yang F, Xu Y, Liu C, Ma C, Zou S, Xu X, Jia J and Liu Z: NF-κB/miR-223-3p/ARID1A axis is involved in Helicobacter pylori CagA-induced gastric carcinogenesis and progression. Cell Death Dis. 9(12)2018.PubMed/NCBI View Article : Google Scholar

77 

Lu WC, Liu CJ, Tu HF, Chung YT, Yang CC, Kao SY, Chang KW and Lin SC: miR-31 targets ARID1A and enhances the oncogenicity and stemness of head and neck squamous cell carcinoma. Oncotarget. 7:57254–57267. 2016.PubMed/NCBI View Article : Google Scholar

78 

Wang N, Zhou Y, Zheng L and Li H: MiR-31 is an independent prognostic factor and functions as an oncomir in cervical cancer via targeting ARID1A. Gynecol Oncol. 134:129–137. 2014.PubMed/NCBI View Article : Google Scholar

79 

Yang Y, Zhao X and Li HX: MiR-221 and miR-222 simultaneously target ARID1A and enhance proliferation and invasion of cervical cancer cells. Eur Rev Med Pharmacol Sci. 20:1509–1515. 2016.PubMed/NCBI

80 

Li ZY, Zhu SS, Chen XJ, Zhu J, Chen Q, Zhang YQ, Zhang CL, Guo TT and Zhang LM: ARID1A suppresses malignant transformation of human pancreatic cells via mediating senescence-associated miR-503/CDKN2A regulatory axis. Biochem Biophys Res Commun. 493:1018–1025. 2017.PubMed/NCBI View Article : Google Scholar

81 

Kim YS, Jeong H, Choi JW, Oh HE and Lee JH: Unique characteristics of ARID1A mutation and protein level in gastric and colorectal cancer: A meta-analysis. Saudi J Gastroenterol. 23:268–274. 2017.PubMed/NCBI View Article : Google Scholar

82 

Lichner Z, Scorilas A, White NM, Girgis AH, Rotstein L, Wiegand KC, Latif A, Chow C, Huntsman D and Yousef GM: The chromatin remodeling gene ARID1A is a new prognostic marker in clear cell carcinoma. Am J Pathol. 182:1163–1170. 2013.PubMed/NCBI View Article : Google Scholar

83 

Takeda T, Banno K, Okawa R, Yanokura M, Iijima M, Irie-Kunitomi H, Nakamura K, Iida M, Adachi M, Umene K, et al: ARID1A gene mutation in ovarian and endometrial cancers (Review). Oncol Rep. 35:607–613. 2016.PubMed/NCBI View Article : Google Scholar

84 

Dawson MA and Kouzarides T: Cancer epigenetics: From mechanism to therapy. Cell. 150:12–27. 2012.PubMed/NCBI View Article : Google Scholar

85 

Okawa R, Banno K, Iida M, Yanokura M, Takeda T, Iijima M, Kunitomi-Irie H, Nakamura K, Adachi M, Umene K, et al: Aberrant chromatin remodeling in gynecological cancer. Oncol Lett. 14:5107–5113. 2017.PubMed/NCBI View Article : Google Scholar

86 

Wang Y, Wysocka J, Perlin JR, Leonelli L, Allis CD and Coonrod SA: Linking covalent histone modifications to epigenetics: The rigidity and plasticity of the marks. Cold Spring Harb Symp Quant Biol. 69:161–169. 2004.PubMed/NCBI View Article : Google Scholar

87 

Guan B, Mao TL, Panuganti PK, Kuhn E, Kurman RJ, Maeda D, Chen E, Jeng YM, Wang TL and Shih IeM: Mutation and loss of expression of ARID1A in uterine low-grade endometrioid carcinoma. Am J Surg Pathol. 35:625–632. 2011.PubMed/NCBI View Article : Google Scholar

88 

He F, Li J, Xu JF, Zhang S, Xu Y, Zhao W, Yin Z and Wang X: Decreased expression of ARID1A associates with poor prognosis and promotes metastases of hepatocellular carcinoma. J Exp Clin Cancer Res. 34(47)2015.PubMed/NCBI View Article : Google Scholar

89 

Kim KJ, Jung HY, Oh MH, Cho H, Lee JH, Lee HJ, Jang SH and Lee MS: Loss of ARID1A expression in gastric cancer: Correlation with mismatch repair deficiency and clinicopathologic features. J Gastric Cancer. 15:201–208. 2015.PubMed/NCBI View Article : Google Scholar

90 

Mamo A, Cavallone L, Tuzmen S, Chabot C, Ferrario C, Hassan S, Edgren H, Kalliomeni O, Aleynikova O, Przybytkowski E, et al: An integrated genomic approach identifies ARID1A as a candidate tumor-suppressor gene in breast cancer. Oncogene. 31:2090–2100. 2012.PubMed/NCBI View Article : Google Scholar

91 

Bosse T, ter Haar NT, Seeber LM, v Diest PJ, Hes FJ, Vasen HF, Nout RA, Creutzberg CL, Morreau H and Smit VT: Loss of ARID1A expression and its relationship with PI3K-Akt pathway alterations, TP53 and microsatellite instability in endometrial cancer. Mod Pathol. 26:1525–1535. 2013.PubMed/NCBI View Article : Google Scholar

92 

Lee D, Yu EJ, Ham IH, Hur H and Kim YS: AKT-inhibition is an effective treatment strategy in ARID1A-deficient gastric cancer cells. Onco Targets Ther. 10:4153–4159. 2017.PubMed/NCBI View Article : Google Scholar

93 

Samartzis EP, Gutsche K, Dedes KJ, Fink D, Stucki M and Imesch P: Loss of ARID1A expression sensitizes cancer cells to PI3K- and AKT-inhibition. Oncotarget. 5:5295–5303. 2014.PubMed/NCBI View Article : Google Scholar

94 

Guan B, Wang TL and Shih IeM: ARID1A, a factor that promotes formation of SWI/SNF-mediated chromatin remodeling, is a tumor suppressor in gynecologic cancers. Cancer Res. 71:6718–6727. 2011.PubMed/NCBI View Article : Google Scholar

95 

Shain AH, Giacomini CP, Matsukuma K, Karikari CA, Bashyam MD, Hidalgo M, Maitra A and Pollack JR: Convergent structural alterations define SWItch/Sucrose NonFermentable (SWI/SNF) chromatin remodeler as a central tumor suppressive complex in pancreatic cancer. Proc Natl Acad Sci USA. 109:E252–E259. 2012.PubMed/NCBI View Article : Google Scholar

96 

Xiao W, Awadallah A and Xin W: Loss of ARID1A/BAF250a expression in ovarian endometriosis and clear cell carcinoma. Int J Clin Exp Pathol. 5:642–650. 2012.PubMed/NCBI

97 

Dykhuizen EC, Hargreaves DC, Miller EL, Cui K, Korshunov A, Kool M, Pfister S, Cho YJ, Zhao K and Crabtree GR: BAF complexes facilitate decatenation of DNA by topoisomerase IIα. Nature. 497:624–627. 2013.PubMed/NCBI View Article : Google Scholar

98 

Bochar DA, Wang L, Beniya H, Kinev A, Xue Y, Lane WS, Wang W, Kashanchi F and Shiekhattar R: BRCA1 is associated with a human SWI/SNF-related complex: Linking chromatin remodeling to breast cancer. Cell. 102:257–265. 2000.PubMed/NCBI View Article : Google Scholar

99 

Putra J and Suriawinata AA: Clinical significance of loss of ARID1A expression in colorectal and small intestinal carcinoma. Clin Transl Gastroenterol. 6(e131)2015.PubMed/NCBI View Article : Google Scholar

100 

Wang K, Kan J, Yuen ST, Shi ST, Chu KM, Law S, Chan TL, Kan Z, Chan AS, Tsui WY, et al: Exome sequencing identifies frequent mutation of ARID1A in molecular subtypes of gastric cancer. Nat Genet. 43:1219–1223. 2011.PubMed/NCBI View Article : Google Scholar

101 

Cho H, Kim JS, Chung H, Perry C, Lee H and Kim JH: Loss of ARID1A/BAF250a expression is linked to tumor progression and adverse prognosis in cervical cancer. Hum Pathol. 44:1365–1374. 2013.PubMed/NCBI View Article : Google Scholar

102 

Katagiri A, Nakayama K, Rahman MT, Rahman M, Katagiri H, Ishikawa M, Ishibashi T, Iida K, Otsuki Y, Nakayama S and Miyazaki K: Frequent loss of tumor suppressor ARID1A protein expression in adenocarcinomas/adenosquamous carcinomas of the uterine cervix. Int J Gynecol Cancer. 22:208–212. 2012.PubMed/NCBI View Article : Google Scholar

103 

Ayhan A, Mao TL, Seckin T, Wu CH, Guan B, Ogawa H, Futagami M, Mizukami H, Yokoyama Y, Kurman RJ and Shih IeM: Loss of ARID1A expression is an early molecular event in tumor progression from ovarian endometriotic cyst to clear cell and endometrioid carcinoma. Int J Gynecol Cancer. 22:1310–1315. 2012.PubMed/NCBI View Article : Google Scholar

104 

Yamamoto S, Tsuda H, Takano M, Tamai S and Matsubara O: Loss of ARID1A protein expression occurs as an early event in ovarian clear-cell carcinoma development and frequently coexists with PIK3CA mutations. Mod Pathol. 25:615–624. 2012.PubMed/NCBI View Article : Google Scholar

105 

Yang L, Wei S, Zhao R, Wu Y, Qiu H and Xiong H: Loss of ARID1A expression predicts poor survival prognosis in gastric cancer: A systematic meta-analysis from 14 studies. Sci Rep. 6(28919)2016.PubMed/NCBI View Article : Google Scholar

106 

Ahn DH, Javle M, Ahn CW, Jain A, Mikhail S, Noonan AM, Ciombor K, Wu C, Shroff R, Chen JL and Bekaii-Saab T: Next-generation sequencing survey of biliary tract cancer reveals the association between tumor somatic variants and chemotherapy resistance. Cancer. 122:3657–3666. 2016.PubMed/NCBI View Article : Google Scholar

107 

Balbás-Martinez C, Rodriguez-Pinilla M, Casanova A, Dominguez O, Pisano DG, Gómez G, Lloreta J, Lorente JA, Malats N and Real FX: ARID1A alterations are associated with FGFR3-wild type, poor-prognosis, urothelial bladder tumors. PLoS One. 8(e62483)2013.PubMed/NCBI View Article : Google Scholar

108 

Cho HD, Lee JE, Jung HY, Oh MH, Lee JH, Jang SH, Kim KJ, Han SW, Kim SY, Kim HJ, et al: Loss of tumor supressor ARID1A protein expression correlates with poor prognosis in patients with primary breast cancer. J Breast Cancer. 18:339–346. 2015.PubMed/NCBI View Article : Google Scholar

109 

Drage MG, Tippayawong M, Agoston TA, Zheng Y, Bueno R, Hornick JL, Odge RD and Srivastava A: Morphological features and prognostic significance of ARID1A-deficient esophageal adenocarcinomas. Arch Pathol Lab Med. 141:970–977. 2017.PubMed/NCBI View Article : Google Scholar

110 

Faraj SF, Chaux A, Gonzales-Roibon N, Munari E, Ellis C, Driscoll T, Schoenberg MP, Bivalacqua TJ, Shih IeM and Netto GJ: ARID1A immunohistochemistry improves outcome prediction in invasive urothelial carcinoma of urinary bladder. Hum Pathol. 45:2233–2239. 2014.PubMed/NCBI View Article : Google Scholar

111 

Wang DD, Chen YB, Pan K, Wang W, Chen SP, Chen JG, Zhao JJ, Lv L, Pan QZ, Li YQ and Wang QJ: Decreased expression of the ARID1A gene is associated with poor prognosis in primary gastric cancer. PLoS One. 7(e40364)2012.PubMed/NCBI View Article : Google Scholar

112 

Wei XL, Wang DS, Xi SY, Wu WJ, Chen DL, Zeng ZL, Wang RY, Huang YX, Jin Y, Wang F, et al: Clinicopathologic and prognostic relevance of ARID1A protein loss in colorectal cancer. World J Gastroenterol. 20:18404–18412. 2014.PubMed/NCBI View Article : Google Scholar

113 

Wiegand KC, Hennesy BT, Leung S, Wang Y, Ju Z, McGahren M, Kalloger SE, Finlayson S, Stemke-Hale K, Lu Y, et al: A functional proteogenomic analysis of endometrioid and clear cell carcinomas using reverse phase protein array and mutation analysis: Protein expression is histotype-specific and loss of ARID1A/BAF250a is associated with AKT phosphorylation. BMC Cancer. 14(120)2014.PubMed/NCBI View Article : Google Scholar

114 

Cajuso T, Hӓnninen UA, Kondelin J, Gylfe AE, Tanskanen T, Katainen R, Pitkӓnen E, Ristolainen H, Kaasinen E, Taipale M, et al: Exome sequencing reveals frequent inactivating mutations in ARID1A, ARID1B, ARID2 and ARID4A in microsatellite unstable colorectal cancer. Int J Cancer. 135:611–623. 2014.PubMed/NCBI View Article : Google Scholar

115 

Wiegand KC, Sy K, Kalloger SE, Li-Chang H, Woods R, Kumar A, Streutker CJ, Hafezi-Bakhtiari S, Zhou C, Lim HJ, et al: ARID1A/BAF250a as a prognostic marker for gastric carcinoma: A study of 2 cohorts. Hum Pathol. 45:1258–1268. 2014.PubMed/NCBI View Article : Google Scholar

116 

Zhang L, Wang C, Yu S, Jia C, Yan J, Lu Z and Chen J: Loss of ARID1A expression correlates with tumor differentiation and tumor progression stage in pancreatic ductal adenocarcinoma. Technol Cancer Res Treat. 17(1533034618754475)2018.PubMed/NCBI View Article : Google Scholar

117 

Tan ZX, Liu HJ and Hou B: Decreased expression of ARID1A is related to the poor prognosis of glioma patients. Int J Clin Exp Pathol. 9:2009–2014. 2016.

118 

Nastase A, Teo JY, Heng HL, Ng CC, Myint SS, Rajaseragan V, Loh JL, Lee SY, Ooi LL, Chung AY, et al: Genomic and proteomic characterization of ARID1A chromatin remodeller in ampullary tumors. Am J Cancer Res. 7:484–502. 2017.PubMed/NCBI

119 

Itamochi H, Oumi N, Oishi T, Shoji T, Fujiwara J, Sugiyama T, Suzuki M, Kigawa J and Harada T: Loss of ARID1A expression is associated with poor prognosis in patients with stage I/II clear cell carcinoma of the ovary. Int J Clin Oncol. 20:967–973. 2015.PubMed/NCBI View Article : Google Scholar

120 

Gui Y, Guo G, Huang Y, Hu X, Tang A, Gao S, Wu R, Chen C, Li X, Zhou L, et al: Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder. Nat Genet. 43:875–878. 2011.PubMed/NCBI View Article : Google Scholar

121 

Jiao Y, Pawlik TM, Anders RA, Selaru FM, Streppel MM, Lucas DJ, Niknafs N, Guthrie VB, Maitra A, Argani  , et al: Exome sequencing identifies frequent inactivating mutations in BAP1, ARID1A and PBRM1 in intrahepatic cholangiocarcinomas. Nat Genet. 45:1470–1473. 2013.PubMed/NCBI View Article : Google Scholar

122 

Sausen M, Leary RJ, Jones S, Wu J, Reynolds PC, Liu X, Blackford A, Parmigiani G, Diaz LA Jr, Papadopoulos N, et al: Integrated genomic analyses identify ARID1A and ARID1B alterations in the childhood cancer neuroblastoma. Nat Genet. 45:12–17. 2013.PubMed/NCBI View Article : Google Scholar

123 

Illumina: An introduction to Next-Generation Sequencing Technology. Illumina, Inc., 2017. https://www.illumina.com/documents/products/illumina_sequencing_introduction.pdf.

124 

Zhou X, Ren L, Meng Q, Li Y, Yu Y and Yu J: The next-generation sequencing technology and application. Protein Cell. 6:520–536. 2010.PubMed/NCBI View Article : Google Scholar

125 

Huang HN, Lin MC, Huang WC, Chiang YC and Kuo KT: Loss of ARID1A expression and its relationship with PI3K-Akt pathway alterations and ZNF217 amplification in ovarian clear cell carcinoma. Mod Pathol. 27:983–990. 2014.PubMed/NCBI View Article : Google Scholar

126 

Lai CR, Hsu CY, Chen YJ, Yen MS, Chao KC and Li AF: Ovarian cancers arising from endometriosis: A microenvironmental biomarker study including ER, HNF1ß, p53, PTEN, BAF250a, and COX-2. J Chin Med Assoc. 76:629–634. 2013.PubMed/NCBI View Article : Google Scholar

127 

Lowery WJ, Schildkraut JM, Akushevich L, Bentley R, Marks JR, Huntsman D and Berchuck A: Loss of ARID1A-associated protein expression is a frequent event in clear cell and endometrioid ovarian cancers. Int J Gynecol Cancer. 22:9–14. 2012.PubMed/NCBI View Article : Google Scholar

128 

Maeda D, Mao TL, Fukayama M, Nakagawa S, Yano T, Taketani Y and Shih leM: Clinicopathological significance of loss of ARID1A immunoreactivity in ovarian clear cell carcinoma. Int J Mol Sci. 11:5120–5128. 2010.PubMed/NCBI View Article : Google Scholar

129 

Wu RC, Ayhan A, Maeda D, Kim KR, Clarke BA, Shaw P, Chui MH, Rosen B, Shih leM and Wang TL: Frequent somatic mutations of the telomerase reverse transcriptase promoter in ovarian clear cell carcinoma but not in other major types of gynecologic malignancies. J Pathol. 232:473–481. 2014.PubMed/NCBI View Article : Google Scholar

130 

Yamamoto S, Tsuda H, Takano M, Tamai S and Matsubara O: PIK3CA mutations and loss of ARID1A protein expression are early events in the development of cystic ovarian clear cell adenocarcinoma. Virchows Arch. 460:77–87. 2012.PubMed/NCBI View Article : Google Scholar

131 

Murakami R, Matsumura N, Brown JB, Higasa K, Tsutsumi T, Kamada M, Abou-Taleb H, Hosoe Y, Kitamura S, Yamaguchi K, et al: Exome sequencing landscape analysis in ovarian clear cell carcinoma shed light on key chromosomal regions and mutation gene networks. Am J Pathol. 187:2246–2258. 2017.PubMed/NCBI View Article : Google Scholar

132 

Katagiri A, Nakayama K, Rahman MT, Rahman M, Katagiri H, Nakayama N, Ishikawa M, Ishibashi T, Iida K, Kobayashi H, et al: Loss of ARID1A expression is related to shorter progression-free survival and chemoresistance in ovarian clear cell carcinoma. Mod Pathol. 25:282–288. 2012.PubMed/NCBI View Article : Google Scholar

133 

Samartzis EP, Samartzis N, Noske A, Fedier A, Caduff R, Dedes KJ, Fink D and Imesch P: Loss of ARID1A/BAF250a-expression in endometriosis: A biomarker for risk of carcinogenic transformation? Mod Pathol. 25:885–892. 2012.PubMed/NCBI View Article : Google Scholar

134 

McConechy MK, Ding J, Senz J, Yang W, Melnyk N, Tone AA, Prentice LM, Wiegand KC, McAlpine JN, Shah SP, et al: Ovarian and endometrial endometrioid carcinomas have distinct CTNNB1 and PTEN mutation profiles. Mod Pathol. 27:128–134. 2014.PubMed/NCBI View Article : Google Scholar

135 

Wu CH, Mao TL, Vang R, Ayhan A, Wang TL, Kurman RJ and Shih leM: Endocervical-type mucinous borderline tumors are related to endometrioid tumors based on mutation and loss of expression of ARID1A. Int J Gynecol Pathol. 31:297–303. 2012.PubMed/NCBI View Article : Google Scholar

136 

Choi JY, Han HH, Kim YT, Lee JH, Kim BG, Kang S and Cho NH: Ovarian clear cell carcinoma sub-typing by ARID1A expression. Yonsei Med J. 58:59–66. 2017.PubMed/NCBI View Article : Google Scholar

137 

Yokoyama Y, Matsushita Y, Shigeto T, Futagami M and Mizunuma H: Decreased ARID1A expression is correlated with chemoresistance in epithelial ovarian cancer. J Gynecol Oncol. 25:58–63. 2014.PubMed/NCBI View Article : Google Scholar

138 

Cancer Genome Atlas Research Network, Kandoth C, Schultz N, Cherniack AD, Akbani R, Liu Y, Shen H, Robertson AG, Pashtan I, Shen R, et al: Integrated genomic characterization of endometrial carcinoma. Nature 497: 67-73, 2013.

139 

Liang H, Cheung LW, Li J, Ju Z, Yu S, Stemke-Hale K, Dogruluk T, Lu Y, Liu X, Gu C, et al: Whole-exome sequencing combined with functional genomics reveals novel candidate driver cancer genes in endometrial cancer. Genome Res. 22:2120–2129. 2012.PubMed/NCBI View Article : Google Scholar

140 

Fadare O, Renshaw IL and Liang SX: Does the loss of ARID1A (BAF-250a) expression in endometrial clear cell carcinomas have any clinicopathological significance? A pilot assessment. J Cancer. 3:129–136. 2012.PubMed/NCBI View Article : Google Scholar

141 

Fadare O, Gwin K, Desouki MM, Crispens MA, Jones HW III, Khabele D, Liang SX, Zheng W, Mohammed K, Hecht JL and Parkash V: The clinicopathologic significance of p53 and BAF-250a (ARID1A) expression in clear cell carcinoma of the endometrium. Mod Pathol. 26:1101–1110. 2013.PubMed/NCBI View Article : Google Scholar

142 

Werner HM, Berg A, Wik E, Birkeland E, Krakstad C, Kusonmano K, Petersen K, Kalland KH, Oyan AM, Akslen LA, et al: ARID1A loss is prevalent in endometrial hyperplasia with atypia and low-grade endometrioid carcinomas. Mod Pathol. 26:428–434. 2013.PubMed/NCBI View Article : Google Scholar

143 

Wiegand KC, Lee AF, Al-Agha OM, Chow C, Kalloger SE, Scott DW, Steidl C, Wiseman SM, Gascoyne RD, Gilks B and Huntsman DG: Loss of BAF250a (ARID1A) is frequent in high-grade endometrial carcinomas. J Pathol. 224:328–333. 2011.PubMed/NCBI View Article : Google Scholar

144 

Rahman M, Nakayama K, Rahman MT, Katagiri H, Katagiri A, Ishibashi T, Ishikawa M, Iida K and Miyazaki K: Clinicopathologic analysis of loss of AT-Rich interactive domain 1A expression in endometrial cancer. Hum Pathol. 44:103–109. 2013.PubMed/NCBI View Article : Google Scholar

145 

Cornen S, Adelaide J, Bertucci F, Finetti P, Guille A, Birnbaum DJ, Birnbaum D and Chaffanet M: Mutations and deletions of ARID1A in breast tumors. Oncogene. 31:4255–4256. 2012.PubMed/NCBI View Article : Google Scholar

146 

Zhang X, Zhang Y, Yang Y, Niu M, Sun S, Ji H, Ma Y, Yao G, Jiang Y, Shan M, et al: Frequent low expression of chromatin remodeling gene ARID1A in breast cancer and its clinical significance. Cancer Epidemiol. 36:288–293. 2012.PubMed/NCBI View Article : Google Scholar

147 

Zhao J, Liu C and Zhao Z: ARID1A: A potential prognostic factor for breast cancer. Tumour Biol. 35:4813–4819. 2014.PubMed/NCBI View Article : Google Scholar

148 

Ünçel M, Diniz G, Aköz G, Ekin ZY, Sayhan S, Yardım S and Salimoğlu S: Loss of nuclear ARID-1A expressions is associated with hormone receptor status in breast cancers. Eur J Breast Health. 15:125–129. 2019.PubMed/NCBI View Article : Google Scholar

149 

Momozawa Y, Iwasaki Y, Parsons MT, Kamatani Y, Takahashi A, Tamura C, Katagiri T, Yoshida T, Nakamura S, Sugano K, et al: Germline pathogenic variants of 11 breast cancer genes in 7,051 Japanese patients and 11,241 controls. Nat Commun. 9(4083)2018.PubMed/NCBI View Article : Google Scholar

150 

Rajendran KB and Deng C: Characterization of potential driver mutations involved in human breast cancer by computational approaches. Oncotarget. 8:50252–50272. 2017.PubMed/NCBI View Article : Google Scholar

151 

Zang ZJ, Cutcutache I, Poon SL, Zhang SL, McPherson JR, Tao J, Rajasegaran V, Heng HL, Deng N, Gan A, et al: Exome sequencing of gastric adenocarcinoma identifies recurrent somatic mutations in cell adhesion and chromatin remodeling genes. Nat Genet. 44:570–574. 2012.PubMed/NCBI View Article : Google Scholar

152 

Abe H, Maeda D, Hino R, Otake Y, Isogai M, Ushiku AS, Matsusaka K, Kunita A, Ushiku T, Uozaki H, et al: ARID1A expression loss in gastric cancer: Pathway-dependent roles with and without Epstein-Barr virus infection and microsatellite instability. Virchows Arch. 461:367–377. 2012.PubMed/NCBI View Article : Google Scholar

153 

Han N, Kim MA, Lee HS and Kim WH: Loss of ARID1A expression is related to gastric cancer progression, Epstein-Barr Virus infection, and mismatch repair deficiency. Appl Immunohistochem Mol Morphol. 24:320–325. 2016.PubMed/NCBI View Article : Google Scholar

154 

Ibarrola-Villava M, Llorca-Cardeñosa MJ, Tarazona N, Mongort C, Fleitas T, Perez-Fidalgo JA, Roselló S, Navarro S, Ribas G and Cervantes A: Deregulation of ARID1A, CDH1, cMET and PIK3CA and target-related microRNA expression in gastric cancer. Oncotarget. 6:26935–26945. 2015.PubMed/NCBI View Article : Google Scholar

155 

Kim YB, Ham IH, Hur H and Lee D: Various ARID1A expression patterns and their clinical significance in gastric cancers. Hum Pathol. 49:61–70. 2016.PubMed/NCBI View Article : Google Scholar

156 

Imielinski M, Berger AH, Hammerman PS, Hernandez B, Pugh TJ, Hodis E, Cho J, Suh J, Capelletti M, Sivachenko A, et al: Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell. 150:1107–1120. 2012.PubMed/NCBI View Article : Google Scholar

157 

Fujimoto A, Totoki Y, Abe T, Boroevich KA, Hosoda F, Nguyen HH, Aoki M, Hosono N, Kubo M, Miya M, et al: Whole-genome sequencing of liver cancers identifies etiological influences on mutation patterns and recurrent mutations in chromatin regulators. Nat Genet. 44:760–764. 2012.PubMed/NCBI View Article : Google Scholar

158 

Guichard C, Amaddeo G, Imbeaud S, Ladeiro Y, Pelletier L, Maad IB, Calderaro J, Bioulac-Sage P, Letexier M, Degos F, et al: Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nat Genet. 44:694–698. 2012.PubMed/NCBI View Article : Google Scholar

159 

Streppel MM, Lata S, DelaBastide M, Montgomery EA, Wang JS, Canto MI, Macgregor-Das AM, Pai S, Morsink FH, Offerhaus GJ, et al: Next-generation sequencing of endoscopic biopsies identifies ARID1A as a tumor-suppressor gene in Barrett's esophagus. Oncogene. 33:347–357. 2014.PubMed/NCBI View Article : Google Scholar

160 

Lee SY, Kim DW, Lee HS, Ihn MH, Oh HK, Park DJ, Kim HH and Kang SB: Loss of AT-rich interactive domain 1A expression in gastrointestinal malignancies. Oncology. 88:234–240. 2015.PubMed/NCBI View Article : Google Scholar

161 

Sen M, Wang X, Hamdan FH, Rapp J, Eggert J, Kosinsky RL, Wegwitz F, Kutschat AP, Younesi FS, Gaedcke J, et al: ARID1A facilitates KRAS signaling-regulated enhancer activity in an AP1-dependent manner in colorectal cancer cells. Clin Epigenet. 11(92)2019.PubMed/NCBI View Article : Google Scholar

162 

Guo G, Sun X, Chen C, Wu S, Huang P, Li Z, Dean M, Huang Y, Jia W, Zhou Q, et al: Whole-genome and whole-exome sequencing of bladder cancer identifies frequent alterations in genes involved in sister chromatid cohesion and segregation. Nat Genet. 45:1459–1463. 2013.PubMed/NCBI View Article : Google Scholar

163 

Treon SP, Xu L, Yang G, Zhou Y, Liu X, Cao Y, Sheehy P, Manning RJ, Patterson CJ, Tripsas C, et al: MYD88 L265P somatic mutation in Waldenström's macroglobulinemia. N Engl J Med. 367:826–833. 2012.PubMed/NCBI View Article : Google Scholar

164 

Giulino-Roth L, Wang K, MacDonald TY, Mathew S, Tam Y, Cronin MT, Palmer G, Lucena-Silva N, Pedrosa F, Pedrosa M, et al: Targeted genomic sequencing of pediatric Burkitt lymphoma identifies recurrent alterations in antiapoptotic and chromatin-remodeling genes. Blood. 120:5181–5184. 2012.PubMed/NCBI View Article : Google Scholar

165 

Weaver IC, Korgan AC, Lee K, Wheeler RV, Hundert AS and Goguen D: Stress and the emerging roles of chromatin remodeling in signal integration and stable transmission of reversible phenotypes. Front Behav Neurosci. 11(41)2017.PubMed/NCBI View Article : Google Scholar

166 

Bitler BG, Wu S, Park PH, Hai Y, Aird KM, Wang Y, Zhai Y, Kossenkov AV, Vara-Ailor A, Rauscher FJ III, et al: ARID1A-mutated ovarian cancers depend on HDAC6 activity. Nat Cell Biol. 19:962–973. 2017.PubMed/NCBI View Article : Google Scholar

167 

Bitler BG, Aird KM, Garipov A, Li H, Amatangelo M, Kossenkov AV, Schultz DC, Liu Q, Shih IeM, Conejo-Garcia JR, et al: Synthetic lethality by targeting EZH2 methyltransferase activity in ARID1A-mutated cancers. Nat Med. 21:231–238. 2015.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
Copy and paste a formatted citation
Spandidos Publications style
Pavlidou EN and Balis V: Diagnostic significance and prognostic role of the ARID1A gene in cancer outcomes (Review). World Acad Sci J 2: 49-64, 2020.
APA
Pavlidou, E.N., & Balis, V. (2020). Diagnostic significance and prognostic role of the ARID1A gene in cancer outcomes (Review). World Academy of Sciences Journal, 2, 49-64. https://doi.org/10.3892/wasj.2020.37
MLA
Pavlidou, E. N., Balis, V."Diagnostic significance and prognostic role of the ARID1A gene in cancer outcomes (Review)". World Academy of Sciences Journal 2.2 (2020): 49-64.
Chicago
Pavlidou, E. N., Balis, V."Diagnostic significance and prognostic role of the ARID1A gene in cancer outcomes (Review)". World Academy of Sciences Journal 2, no. 2 (2020): 49-64. https://doi.org/10.3892/wasj.2020.37
Copy and paste a formatted citation
x
Spandidos Publications style
Pavlidou EN and Balis V: Diagnostic significance and prognostic role of the ARID1A gene in cancer outcomes (Review). World Acad Sci J 2: 49-64, 2020.
APA
Pavlidou, E.N., & Balis, V. (2020). Diagnostic significance and prognostic role of the ARID1A gene in cancer outcomes (Review). World Academy of Sciences Journal, 2, 49-64. https://doi.org/10.3892/wasj.2020.37
MLA
Pavlidou, E. N., Balis, V."Diagnostic significance and prognostic role of the ARID1A gene in cancer outcomes (Review)". World Academy of Sciences Journal 2.2 (2020): 49-64.
Chicago
Pavlidou, E. N., Balis, V."Diagnostic significance and prognostic role of the ARID1A gene in cancer outcomes (Review)". World Academy of Sciences Journal 2, no. 2 (2020): 49-64. https://doi.org/10.3892/wasj.2020.37
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team