|
1
|
Cancer Genome Atlas Research Network.
Integrated genomic characterization of papillary thyroid carcinoma.
Cell. 159:676–690. 2014.PubMed/NCBI View Article : Google Scholar
|
|
2
|
La Vecchia C, Malvezzi M, Bosetti C,
Garavello W, Bertuccio P, Levi F and Negri E: Thyroid cancer
mortality and incidence: A global overview. Int J Cancer.
136:2187–2195. 2015.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Siegel RL, Miller KD, Fedewa SA, Ahnen DJ,
Meester RGS, Barzi A and Jemal A: Colorectal cancer statistics,
2017. CA Cancer J Clin. 67:177–193. 2017.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Xing M: BRAF mutation in papillary thyroid
cancer: Pathogenic role, molecular bases, and clinical
implications. Endocr Rev. 28:742–762. 2007.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Sheu SY, Grabellus F, Schwertheim S, Worm
K, Broecker-Preuss M and Schmid KW: Differential miRNA expression
profiles in variants of papillary thyroid carcinoma and
encapsulated follicular thyroid tumours. Br J Cancer. 102:376–382.
2010.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Xu B, Shao Q, Xie K, Zhang Y, Dong T, Xia
Y and Tang W: The long non-coding RNA ENST00000537266 and
ENST00000426615 influence papillary thyroid cancer cell
proliferation and motility. Cell Physiol Biochem. 38:368–378.
2016.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Saporito D, Brock P, Hampel H, Sipos J,
Fernandez S, Liyanarachchi S, de la Chapelle A and Nagy R:
Penetrance of a rare familial mutation predisposing to papillary
thyroid cancer. Fam Cancer. 17:431–434. 2018.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Clarke CA, Reynolds P, Oakley-Girvan I,
Lee E, Lu Y, Yang J, Moy LM, Bernstein L and Horn-Ross PL:
Indicators of microbial-rich environments and the development of
papillary thyroid cancer in the California teachers study. Cancer
Epidemiol. 39:548–553. 2015.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Viola D, Materazzi G, Valerio L, Molinaro
E, Agate L, Faviana P, Seccia V, Sensi E, Romei C, Piaggi P, et al:
Prophylactic central compartment lymph node dissection in papillary
thyroid carcinoma: Clinical implications derived from the first
prospective randomized controlled single institution study. J Clin
Endocrinol Metab. 100:1316–1324. 2015.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Haugen BR, Alexander EK, Bible KC, Doherty
GM, Mandel SJ, Nikiforov YE, Pacini F, Randolph GW, Sawka AM,
Schlumberger M, et al: 2015 American Thyroid Association management
guidelines for adult patients with thyroid nodules and
differentiated thyroid cancer: The American Thyroid Association
guidelines task force on thyroid nodules and differentiated thyroid
cancer. Thyroid. 26:1–133. 2016.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Yin Y, Hong S, Yu S, Huang Y, Chen S, Liu
Y, Zhang Q, Li Y and Xiao H: miR-195 inhibits tumor growth and
metastasis in papillary thyroid carcinoma cell lines by targeting
CCND1 and FGF2. Int J Endocrinol. 2017(6180425)2017.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Ren H, Liu Z, Liu S, Zhou X, Wang H, Xu J,
Wang D and Yuan G: Profile and clinical implication of circular
RNAs in human papillary thyroid carcinoma. PeerJ.
6(e5363)2018.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Xing M, Tufano RP, Tufaro AP, Basaria S,
Ewertz M, Rosenbaum E, Byrne PJ, Wang J, Sidransky D and Ladenson
PW: Detection of BRAF mutation on fine needle aspiration biopsy
specimens: A new diagnostic tool for papillary thyroid cancer. J
Clin Endocrinol Metab. 89:2867–2872. 2004.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Kimura ET, Nikiforova MN, Zhu Z, Knauf JA,
Nikiforov YE and Fagin JA: High prevalence of BRAF mutations in
thyroid cancer: Genetic evidence for constitutive activation of the
RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma.
Cancer Res. 63:1454–1457. 2003.PubMed/NCBI
|
|
15
|
Kwak JY, Kim EK, Chung WY, Moon HJ, Kim MJ
and Choi JR: Association of BRAFV600E mutation with poor clinical
prognostic factors and US features in Korean patients with
papillary thyroid microcarcinoma. Radiology. 253:854–860.
2009.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Haugen BR: 2015 American Thyroid
Association management guidelines for adult patients with thyroid
nodules and differentiated thyroid cancer: What is new and what has
changed? Cancer. 123:372–381. 2017.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Vriens MR, Weng J, Suh I, Huynh N,
Guerrero MA, Shen WT, Duh QY, Clark OH and Kebebew E: MicroRNA
expression profiling is a potential diagnostic tool for thyroid
cancer. Cancer. 118:3426–3432. 2012.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Chen LL and Yang L: Regulation of circRNA
biogenesis. RNA Biol. 12:381–388. 2015.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Kos A, Dijkema R, Arnberg AC, van der
Meide PH and Schellekens H: The hepatitis delta (delta) virus
possesses a circular RNA. Nature. 323:558–560. 1986.PubMed/NCBI View
Article : Google Scholar
|
|
20
|
Conn VM, Hugouvieux V, Nayak A, Conos SA,
Capovilla G, Cildir G, Jourdain A, Tergaonkar V, Schmid M, Zubieta
C and Conn SJ: A circRNA from SEPALLATA3 regulates splicing of its
cognate mRNA through R-loop formation. Nat Plants.
3(17053)2017.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Chen Y, Li C, Tan C and Liu X: Circular
RNAs: A new frontier in the study of human diseases. J Med Genet.
53:359–365. 2016.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Qian L, Yu S, Chen Z, Meng Z, Huang S and
Wang P: The emerging role of circRNAs and their clinical
significance in human cancers. Biochim Biophys Acta Rev Cancer.
1870:247–260. 2018.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Hansen TB, Jensen TI, Clausen BH, Bramsen
JB, Finsen B, Damgaard CK and Kjems J: Natural RNA circles function
as efficient microRNA sponges. Nature. 495:384–388. 2013.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Li Y, Hu J, Li L, Cai S, Zhang H, Zhu X,
Guan G and Dong X: Upregulated circular RNA circ_0016760 indicates
unfavorable prognosis in NSCLC and promotes cell progression
through miR-1287/GAGE1 axis. Biochem Biophys Res Commun.
503:2089–2094. 2018.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Memczak S, Jens M, Elefsinioti A, Torti F,
Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer
M, et al: Circular RNAs are a large class of animal RNAs with
regulatory potency. Nature. 495:333–338. 2013.
|
|
26
|
Soghli N, Qujeq D, Yousefi T and Soghli N:
The regulatory functions of circular RNAs in osteosarcoma.
Genomics. S0888-7543:31052–31053. 2020.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Xu B, Yang T, Wang Z, Zhang Y, Liu S and
Shen M: CircRNA CDR1as/miR-7 signals promote tumor growth of
osteosarcoma with a potential therapeutic and diagnostic value.
Cancer Manag Res. 10:4871–4880. 2018.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Kai D, Yannian L, Yitian C, Dinghao G, Xin
Z and Wu J: Circular RNA HIPK3 promotes gallbladder cancer cell
growth by sponging microRNA-124. Biochem Biophys Res Commun.
503:863–869. 2018.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Ling H, Fabbri M and Calin GA: MicroRNAs
and other non-coding RNAs as targets for anticancer drug
development. Nat Rev Drug Discov. 12:847–865. 2013.PubMed/NCBI View
Article : Google Scholar
|
|
30
|
Huang H, Wei L, Qin T, Yang N, Li Z and Xu
Z: Circular RNA ciRS-7 triggers the migration and invasion of
esophageal squamous cell carcinoma via miR-7/KLF4 and NF-κB
signals. Cancer Biol Ther. 20:73–80. 2019.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Arnaiz E, Sole C, Manterola L,
Iparraguirre L, Otaegui D and Lawrie CH: CircRNAs and cancer:
Biomarkers and master regulators. Semin Cancer Biol. 58:90–99.
2019.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Chen F, Feng Z, Zhu J, Liu P, Yang C,
Huang R and Deng Z: Emerging roles of circRNA_NEK6 targeting
miR-370-3p in the proliferation and invasion of thyroid cancer via
Wnt signaling pathway. Cancer Biol Ther. 19:1139–1152.
2018.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Kulcheski FR, Christoff AP and Margis R:
Circular RNAs are miRNA sponges and can be used as a new class of
biomarker. J Biotechnol. 238:42–51. 2016.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Peng N, Shi L, Zhang Q, Hu Y, Wang N and
Ye H: Microarray profiling of circular RNAs in human papillary
thyroid carcinoma. PLoS One. 12(e0170287)2017.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Teng H, Mao F, Liang J, Xue M, Wei W, Li
X, Zhang K, Feng D, Liu B and Sun Z: Transcriptomic signature
associated with carcinogenesis and aggressiveness of papillary
thyroid carcinoma. Theranostics. 8:4345–4358. 2018.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Griffith OL, Melck A, Jones SJ and Wiseman
SM: Meta-analysis and meta-review of thyroid cancer gene expression
profiling studies identifies important diagnostic biomarkers. J
Clin Oncol. 24:5043–5051. 2006.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Yao Y, Chen X, Yang H, Chen W, Qian Y, Yan
Z, Liao T, Yao W, Wu W, Yu T, et al: Hsa_circ_0058124 promotes
papillary thyroid cancer tumorigenesis and invasiveness through the
NOTCH3/GATAD2A axis. J Exp Clin Cancer Res. 38(318)2019.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Pan Y, Xu T, Liu Y, Li W and Zhang W:
Upregulated circular RNA circ_0025033 promotes papillary thyroid
cancer cell proliferation and invasion via sponging miR-1231 and
miR-1304. Biochem Biophys Res Commun. 510:334–338. 2019.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Yang Y, Ding L, Li Y and Xuan C:
Hsa_circ_0039411 promotes tumorigenesis and progression of
papillary thyroid cancer by miR-1179/ABCA9 and miR-1205/MTA1
signaling pathways. J Cell Physiol. 235:1321–1329. 2020.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Cai X, Zhao Z, Dong J, Lv Q, Yun B, Liu J,
Shen Y, Kang J and Li J: Circular RNA circBACH2 plays a role in
papillary thyroid carcinoma by sponging miR-139-5p and regulating
LMO4 expression. Cell Death Dis. 10(184)2019.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Zhang J, Zhang J, Qiu W, Zhang J, Li Y,
Kong E, Lu A, Xu J and Lu X: MicroRNA-1231 exerts a tumor
suppressor role through regulating the EGFR/PI3K/AKT axis in
glioma. J Neurooncol. 139:547–562. 2018.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Wang H, Wu J, Luo W and Hu J: Low
expression of miR-1231 in patients with glioma and its prognostic
significance. Eur Rev Med Pharmacol Sci. 22:8399–8405.
2018.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Li CG, Pu MF, Li CZ, Gao M, Liu MX, Yu CZ,
Yan H, Peng C, Zhao Y, Li Y, et al: MicroRNA-1304 suppresses human
non-small cell lung cancer cell growth in vitro by targeting heme
oxygenase-1. Acta Pharmacol Sin. 38:110–119. 2017.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Zhou GK, Zhang GY, Yuan ZN, Pei R and Liu
DM: Has_circ_0008274 promotes cell proliferation and invasion
involving AMPK/mTOR signaling pathway in papillary thyroid
carcinoma. Eur Rev Med Pharmacol Sci. 22:8772–8780. 2018.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Cargnello M, Tcherkezian J and Roux PP:
The expanding role of mTOR in cancer cell growth and proliferation.
Mutagenesis. 30:169–176. 2015.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Liu F, Zhang J, Qin L, Yang Z, Xiong J,
Zhang Y, Li R, Li S, Wang H, Yu B, et al: Circular RNA EIF6
(Hsa_circ_0060060) sponges miR-144-3p to promote the
cisplatin-resistance of human thyroid carcinoma cells by autophagy
regulation. Aging (Albany NY). 10:3806–3820. 2018.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Xiao W, Lou N, Ruan H, Bao L, Xiong Z,
Yuan C, Tong J, Xu G, Zhou Y, Qu Y, et al: Mir-144-3p promotes cell
proliferation, metastasis, sunitinib resistance in clear cell renal
cell carcinoma by downregulating ARID1A. Cellular Cell Physiol
Biochem. 43:2420–2433. 2017.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Zhao Y, Xie Z, Lin J and Liu P: MiR-144-3p
inhibits cell proliferation and induces apoptosis in multiple
myeloma by targeting c-Met. Am J Transl Res. 9:2437–2446.
2017.PubMed/NCBI
|
|
49
|
Bi W, Huang J, Nie C, Liu B, He G, Han J,
Pang R, Ding Z, Xu J and Zhang J: CircRNA circRNA_102171 promotes
papillary thyroid cancer progression through modulating
CTNNBIP1-dependent activation of β-catenin pathway. J Exp Clin
Cancer Res. 37(275)2018.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Fu X, Zhu X, Qin F, Zhang Y, Lin J, Ding
Y, Yang Z, Shang Y, Wang L, Zhang Q and Gao Q: Linc00210 drives
Wnt/β-catenin signaling activation and liver tumor progression
through CTNNBIP1-dependent manner. Mol Cancer.
17(73)2018.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Li X, Tian Y, Hu Y, Yang Z, Zhang L and
Luo J: CircNUP214 sponges miR-145 to promote the expression of ZEB2
in thyroid cancer cells. Biochem Biophys Res Commun. 507:168–172.
2018.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Liu Q, Chen J, Wang B, Zheng Y, Wan Y,
Wang Y, Zhou L, Liu S, Li G and Yan Y: miR-145 modulates
epithelial-mesenchymal transition and invasion by targeting ZEB2 in
non-small cell lung cancer cell lines. J Cell Biochem: Dec 7, 2018
(Epub ahead of print).
|
|
53
|
Brown CY, Dayan S, Wong SW, Kaczmarek A,
Hope CM, Pederson SM, Arnet V, Goodall GJ, Russell D, Sadlon TJ and
Barry SC: FOXP3 and miR-155 cooperate to control the invasive
potential of human breast cancer cells by down regulating ZEB2
independently of ZEB1. Oncotarget. 9:27708–27727. 2018.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Jin X, Wang Z, Pang W, Zhou J, Liang Y,
Yang J, Yang L and Zhang Q: Upregulated hsa_circ_0004458
contributes to progression of papillary thyroid carcinoma by
inhibition of miR-885-5p and activation of RAC1. Med Sci Monit.
24:5488–5500. 2018.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Chen QY, Zheng Y, Jiao DM, Chen FY, Hu HZ,
Wu YQ, Song J, Yan J, Wu LJ and Lv GY: Curcumin inhibits lung
cancer cell migration and invasion through Rac1-dependent signaling
pathway. J Nutr Biochem. 25:177–185. 2014.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Becker MS, Müller PM, Bajorat J, Schroeder
A, Giaisi M, Amin E, Ahmadian MR, Rocks O, Köhler R, Krammer PH and
Li-Weber M: The anticancer phytochemical rocaglamide inhibits Rho
GTPase activity and cancer cell migration. Oncotarget.
7:51908–51921. 2016.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Ren S, Xin Z, Xu Y, Xu J and Wang G:
Construction and analysis of circular RNA molecular regulatory
networks in liver cancer. Cell Cycle. 16:2204–2211. 2017.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Liu T, Liu S, Xu Y, Shu R, Wang F, Chen C,
Zeng Y and Luo H: Circular RNA-ZFR inhibited cell proliferation and
promoted apoptosis in gastric cancer by sponging miR-130a/miR-107
and modulating PTEN. Cancer Res Treat. 50:1396–1417.
2018.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Wei H, Pan L, Tao D and Li R: Circular RNA
circZFR contributes to papillary thyroid cancer cell proliferation
and invasion by sponging miR-1261 and facilitating C8orf4
expression. Biochem Biophys Res Commun. 503:56–61. 2018.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Sunde M, McGrath KC, Young L, Matthews JM,
Chua EL, Mackay JP and Death AK: TC-1 is a novel tumorigenic and
natively disordered protein associated with thyroid cancer. Cancer
Res. 64:2766–2773. 2004.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Lei J, Li W, Yang Y, Lu Q, Zhang N, Bai G,
Zhong D, Su K, Liu B, Li X, et al: TC-1 overexpression promotes
cell proliferation in human non-small cell lung cancer that can be
inhibited by PD173074. PLoS One. 9(e100075)2014.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Tao L, Yang L, Tian P, Guo X and Chen Y:
Knockdown of circPVT1 inhibits progression of papillary thyroid
carcinoma by sponging miR-126. RSC Adv. 9:13316–13324. 2019.
|
|
63
|
Kitano M, Rahbari R, Patterson EE, Xiong
Y, Prasad NB, Wang Y, Zeiger MA and Kebebew E: Expression profiling
of difficult-to-diagnose thyroid histologic subtypes shows distinct
expression profiles and identify candidate diagnostic microRNAs.
Ann Surg Oncol. 18:3443–34452. 2011.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Wu G, Zhou W, Lin X, Sun Y, Li J, Xu H,
Shi P, Gao L and Tian X: CircRASSF2 Acts as ceRNA and promotes
papillary thyroid carcinoma progression through miR-1178/TLR4
signaling pathway. Mol Ther Nucleic Acids. 19:1153–1163.
2020.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Zhang W, Zhang H and Zhao X: Circ_0005273
promotes thyroid carcinoma progression by SOX2 expression. Endocr
Relat Cancer. 27:11–21. 2020.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Li F, Ma K, Sun M and Shi S:
Identification of the tumor-suppressive function of circular RNA
ITCH in glioma cells through sponging miR-214 and promoting linear
ITCH expression. Am J Transl Res. 10:1373–1386. 2018.PubMed/NCBI
|
|
67
|
Wang M, Chen B, Ru Z and Cong L: CircRNA
circ-ITCH suppresses papillary thyroid cancer progression through
miR-22-3p/CBL/β-catenin pathway. Biochem Biophys Res Commun.
504:283–288. 2018.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Shashar M, Siwak J, Tapan U, Lee SY, Meyer
RD, Parrack P, Tan J, Khatami F, Francis J, Zhao Q, et al: C-Cbl
mediates the degradation of tumorigenic nuclear β-catenin
contributing to the heterogeneity in Wnt activity in colorectal
tumors. Oncotarget. 7:71136–71150. 2016.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Lupi C, Giannini R, Ugolini C, Proietti A,
Berti P, Minuto M, Materazzi G, Elisei R, Santoro M, Miccoli P and
Basolo F: Association of BRAF V600E mutation with poor
clinicopathological outcomes in 500 consecutive cases of papillary
thyroid carcinoma. J Clin Endocrinol Metab. 92:4085–4090.
2007.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Elisei R, Ugolini C, Viola D, Lupi C,
Biagini A, Giannini R, Romei C, Miccoli P, Pinchera A and Basolo F:
BRAF(V600E) mutation and outcome of patients with papillary thyroid
carcinoma: A 15-year median follow-up study. J Clin Endocrinol
Metab. 93:3943–3949. 2008.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Lan X, Cao J, Xu J, Chen C, Zheng C, Wang
J, Zhu X, Zhu X and Ge M: Decreased expression of hsa_circ_0137287
predicts aggressive clinicopathologic characteristics in papillary
thyroid carcinoma. J Clin Lab Anal. 32(e22573)2018.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics 2018. CA Cancer J Clin. 68:7–30. 2018.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Lan X, Xu J, Chen C, Zheng C, Wang J, Cao
J, Zhu X and Ge M: The landscape of circular RNA expression
profiles in papillary thyroid carcinoma based on RNA sequencing.
Cell Physiol Biochem. 47:1122–1132. 2018.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Liu Q, Pan LZ, Hu M and Ma JY: Molecular
Network-Based identification of circular RNA-Associated ceRNA
network in papillary thyroid cancer. Pathol Oncol Res 2019 [Epub
ahead of print].
|