|
1
|
Losowsky MS: A history of coeliac disease.
Dig Dis. 26:112–120. 2008.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Dowd B and Walker-Smith J: Samuel Gee,
Aretaeus, and the coeliac affection. BMJ. 2:45–47. 1974.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Fasano A: Surprises from celiac disease.
Sci Am. 301:54–61. 2009.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Dubé C, Rostom A, Sy R, Cranney A,
Saloojee N, Garritty C, Sampson M, Zhang L, Yazdi F, Mamaladze V,
et al: The prevalence of celiac disease in average-risk and at-risk
Western European populations: A systematic review.
Gastroenterology. 128 (Suppl 1):S57–S67. 2005.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Barada K, Bitar A, Mokadem MA, Hashash JG
and Green P: Celiac disease in Middle Eastern and North African
countries: A new burden? World J Gastroenterol. 16:1449–1457.
2010.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Yadav P, Das P, Mirdha BR, Gupta SD,
Bhatnagar S, Pandey RM and Makharia GK: Current spectrum of
malabsorption syndrome in adults in India. Indian J Gastroenterol.
30:22–28. 2011.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Fasano A, Berti I, Gerarduzzi T, Not T,
Colletti RB, Drago S, Elitsur Y, Green PH, Guandalini S, Hill ID,
et al: Prevalence of celiac disease in at-risk and not-at-risk
groups in the United States: A large multicenter study. Arch Intern
Med. 163:286–292. 2003.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Mohindra S, Yachha SK, Srivastava A,
Krishnani N, Aggarwal R, Ghoshal UC, Prasad KK and Naik SR: Coeliac
disease in Indian children: Assessment of clinical, nutritional and
pathologic characteristics. J Health Popul Nutr. 19:204–208.
2001.PubMed/NCBI
|
|
9
|
Sollid LM: Molecular basis of celiac
disease. Annu Rev Immunol. 18:53–81. 2000.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Korponay-Szabó IR, Halttunen T, Szalai Z,
Laurila K, Király R, Kovács JB, Fésüs L and Mäki M: In vivo
targeting of intestinal and extraintestinal transglutaminase 2 by
coeliac autoantibodies. Gut. 53:641–648. 2004.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Ivarsson A, Hernell O, Stenlund H and
Persson LA: Breast-feeding protects against celiac disease. Am J
Clin Nutr. 75:914–921. 2002.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Chander AM, Yadav H, Jain S, Bhadada SK
and Dhawan DK: Cross-talk between gluten, intestinal microbiota and
intestinal mucosa in celiac disease: Recent advances and basis of
autoimmunity. Front Microbiol. 9(2597)2018.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Rastogi A, Bhadada SK, Bhansali A, Kochhar
R and Santosh R: Celiac disease: A missed cause of metabolic bone
disease. Indian J Endocrinol Metab. 16:780–785. 2012.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Howard MR, Turnbull AJ, Morley P, Hollier
P, Webb R and Clarke A: A prospective study of the prevalence of
undiagnosed coeliac disease in laboratory defined iron and folate
deficiency. J Clin Pathol. 55:754–757. 2002.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Rostom A, Murray JA and Kagnoff MF:
American Gastroenterological Association (AGA) Institute technical
review on the diagnosis and management of celiac disease.
Gastroenterology. 131:1981–2002. 2006.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Annibale B, Lahner E, Chistolini A,
Gailucci C, Di Giulio E, Capurso G, Luana O, Monarca B and Delle
Fave G: Endoscopic evaluation of the upper gastrointestinal tract
is worthwhile in premenopausal women with iron deficiency anaemia
irrespective of menstrual flow. Scand J Gastroenterol. 38:239–245.
2003.PubMed/NCBI
|
|
17
|
Ludvigsson JF, Osby U, Ekbom A and
Montgomery SM: Coeliac disease and risk of schizophrenia and other
psychosis: A general population cohort study. Scand J
Gastroenterol. 42:179–185. 2007.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Gayathri D and Rashmi BS: Development of
celiac disease; pathogenesis and strategies to control: A molecular
approach. J Nutr Food Sci. 4(310)2014.
|
|
19
|
Coqueiro AY, Bonvini A, Tirapegui J and
Rogero MM: Probiotics supplementation as an alternative method for
celiac disease treatment. Int J Probiotics Prebiotics. 12:23–32.
2017.
|
|
20
|
Högberg L, Fälth-Magnusson K, Grodzinsky E
and Stenhammar L: Familial prevalence of coeliac disease: A
twenty-year follow-up study. Scand J Gastroenterol. 38:61–65.
2003.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Hill ID: Management of celiac disease in
childhood and adolescence: Unique challenges and strategies. Curr
Treat Options Gastroenterol. 9:399–408. 2006.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Ludvigsson JF, Fälth-Magnusson K and
Ludvigsson J: Tissue transglutaminase auto-antibodies in cord blood
from children to become celiacs. Scand J Gastroenterol.
36:1279–1283. 2001.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Sollid LM, Markussen G, Ek J, Gjerde H,
Vartdal F and Thorsby E: Evidence for a primary association of
celiac disease to a particular HLA-DQ alpha/beta heterodimer. J Exp
Med. 169:345–350. 1989.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Kaur G, Sarkar N, Bhatnagar S, Kumar S,
Rapthap CC, Bhan MK and Mehra NK: Pediatric celiac disease in India
is associated with multiple DR3-DQ2 haplotypes. Hum Immunol.
63:677–682. 2002.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Megiorni F and Pizzuti A: HLA-DQA1 and
HLA-DQB1 in Celiac disease predisposition: Practical implications
of the HLA molecular typing. J Biomed Sci. 19(88)2012.PubMed/NCBI View Article : Google Scholar
|
|
26
|
van de Wal Y, Kooy YM, van Veelen P, Vader
W, August SA, Drijfhout JW, Peña SA and Koning F: Glutenin is
involved in the gluten-driven mucosal T cell response. Eur J
Immunol. 29:3133–3139. 1999.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Molberg O, Kett K, Scott H, Thorsby E,
Sollid LM and Lundin KE: Gliadin specific, HLA DQ2-restricted T
cells are commonly found in small intestinal biopsies from coeliac
disease patients, but not from controls. Scand J Immunol.
46:103–109. 1997.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Arentz-Hansen H, Körner R, Molberg O,
Quarsten H, Vader W, Kooy YM, Lundin KE, Koning F, Roepstorff P,
Sollid LM, et al: The intestinal T cell response to alpha-gliadin
in adult celiac disease is focused on a single deamidated glutamine
targeted by tissue transglutaminase. J Exp Med. 191:603–612.
2000.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Visser J, Rozing J, Sapone A, Lammers K
and Fasano A: Tight junctions, intestinal permeability, and
autoimmunity: Celiac disease and type 1 diabetes paradigms. Ann N Y
Acad Sci. 1165:195–205. 2009.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Ráki M, Schjetne KW, Stamnaes J, Molberg
Ø, Jahnsen FL, Issekutz TB, Bogen B and Sollid LM: Surface
expression of transglutaminase 2 by dendritic cells and its
potential role for uptake and presentation of gluten peptides to T
cells. Scand J Immunol. 65:213–220. 2007.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Manavalan JS, Hernandez L, Shah JG,
Konikkara J, Naiyer AJ, Lee AR, Ciaccio E, Minaya MT, Green PH and
Bhagat G: Serum cytokine elevations in celiac disease: Association
with disease presentation. Hum Immunol. 71:50–57. 2010.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Xu H, Feely SL, Wang X, Liu DX, Borda JT,
Dufour J, Li W, Aye PP, Doxiadis GG, Khosla C, et al:
Gluten-sensitive enteropathy coincides with decreased capability of
intestinal T cells to secrete IL-17 and IL-22 in a macaque model
for celiac disease. Clin Immunol. 147:40–49. 2013.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Husby S, Koletzko S, Korponay-Szabó IR,
Mearin ML, Phillips A, Shamir R, Troncone R, Giersiepen K, Branski
D, Catassi C, et al: ESPGHAN Working Group on Coeliac Disease
Diagnosis; ESPGHAN Gastroenterology Committee; European Society for
Pediatric Gastroenterology, Hepatology, and Nutrition: European
Society for Pediatric Gastroenterology, Hepatology, and Nutrition
guidelines for the diagnosis of coeliac disease. J Pediatr
Gastroenterol Nutr. 54:136–160. 2012.
|
|
34
|
Fasano A, Araya M, Bhatnagar S, Cameron D,
Catassi C, Dirks M, Mearin ML, Ortigosa L and Phillips A: Celiac
Disease Working Group, FISPGHAN. Federation of International
Societies of Pediatric Gastroenterology, Hepatology, and Nutrition
consensus report on celiac disease. J Pediatr Gastroenterol Nutr.
47:214–219. 2008.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Ciacci C, Maiuri L, Russo I, Tortora R,
Bucci C, Cappello C, Santonicola A, Luciani A, Passananti V and
Iovino P: Efficacy of budesonide therapy in the early phase of
treatment of adult coeliac disease patients with malabsorption: An
in vivo/in vitro pilot study. Clin Exp Pharmacol Physiol.
36:1170–1176. 2009.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Liang L, Pinier M, Leroux JC and Subirade
M: Interaction of alpha-gliadin with poly(HEMA-co-SS): Structural
characterization and biological implication. Biopolymers.
91:169–178. 2009.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Dieterich W, Trapp D, Esslinger B,
Leidenberger M, Piper J, Hahn E and Schuppan D: Autoantibodies of
patients with coeliac disease are insufficient to block tissue
transglutaminase activity. Gut. 52:1562–1566. 2003.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Goerres MS, Meijer JW, Wahab PJ,
Kerckhaert JA, Groenen PJ, Van Krieken JH and Mulder CJ:
Azathioprine and prednisone combination therapy in refractory
coeliac disease. Aliment Pharmacol Ther. 18:487–494.
2003.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Pinier M, Fuhrmann G, Galipeau HJ, Rivard
N, Murray JA, David CS, Drasarova H, Tuckova L, Leroux JC and Verdu
EF: The copolymer P(HEMA-co-SS) binds gluten and reduces immune
response in gluten-sensitized mice and human tissues.
Gastroenterology. 142:316–25.e1, 12. 2012.PubMed/NCBI View Article : Google Scholar
|
|
40
|
De Angelis M, Cassone A, Rizzello CG,
Gagliardi F, Minervini F, Calasso M, Di Cagno R, Francavilla R and
Gobbetti M: Mechanism of degradation of immunogenic gluten epitopes
from Triticum turgidum L. var. durum by sourdough
lactobacilli and fungal proteases. Appl Environ Microbiol.
76:508–518. 2010.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Gass J, Ehren J, Strohmeier G, Isaacs I
and Khosla C: Fermentation, purification, formulation, and
pharmacological evaluation of a prolyl endopeptidase from
Myxococcus xanthus: Implications for Celiac Sprue therapy.
Biotechnol Bioeng. 92:674–684. 2005.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Hallert C, Grant C, Grehn S, Grännö C,
Hultén S, Midhagen G, Ström M, Svensson H and Valdimarsson T:
Evidence of poor vitamin status in coeliac patients on a
gluten-free diet for 10 years. Aliment Pharmacol Ther.
16:1333–1339. 2002.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Asha and Gayathri D: Synergistic
impact of Lactobacillus fermentum, Lactobacillus
plantarum and vincristine on 1,2-dimethylhydrazine-induced
colorectal carcinogenesis in mice. Exp Ther Med. 3:1049–1054.
2012.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Gayathri D, Asha and Devaraja TN:
Lactobacillus sp. as probiotics for human health with
special emphasis on colorectal cancer. Indian J Sci Technol.
4:1008–1014. 2011.
|
|
45
|
Quigley EMM: Gut bacteria in health and
disease. Gastroenterol Hepatol (N Y). 9:560–569. 2013.PubMed/NCBI
|
|
46
|
Patel RM and Lin PW: Developmental biology
of gut-probiotic interaction. Gut Microbes. 1:186–195.
2010.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Lebeer S, Vanderleyden J and De
Keersmaecker SC: Host interactions of probiotic bacterial surface
molecules: Comparison with commensals and pathogens. Nat Rev
Microbiol. 8:171–184. 2010.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Pagnini C, Saeed R, Bamias G, Arseneau KO,
Pizarro TT and Cominelli F: Probiotics promote gut health through
stimulation of epithelial innate immunity. Proc Natl Acad Sci USA.
107:454–459. 2010.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Corr SC, Li Y, Riedel CU, O'Toole PW, Hill
C and Gahan CG: Bacteriocin production as a mechanism for the
antiinfective activity of Lactobacillus salivarius UCC118.
Proc Natl Acad Sci USA. 104:7617–7621. 2007.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Metchnikoff E: The nature of man. Studies
in optimistic philosophy. William Heinemann, London, 1908.
|
|
51
|
Fuller R: Probiotics in man and animals. J
Appl Bacteriol. 66:365–378. 1989.PubMed/NCBI
|
|
52
|
Havenaar R, Brink T and Huis in't Veld
JHJ: Selection of Strains for Probiotic Use. In: Probiotics: The
Scientific Basis. Fuller R (ed). Chapman & Hall, London,
pp151-170, 1992.
|
|
53
|
Salminen S, Ouwehand A, Benno Y and Lee
YK: Probiotics: How should they be defined. Trends Food Sci
Technol. 10:107–110. 1999.
|
|
54
|
Khatri I, Sharma S, Ramya TNC and
Subramanian S: Complete genomes of Bacillus coagulans S-lac
and Bacillus subtilis TO-A JPC, two phylogenetically
distinct probiotics. PLoS One. 11(e0156745)2016.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Isolauri E, Salminen S and Ouwehand AC:
Microbial-gut interactions in health and diseasein infective
diarrhoea and inflammatory bowel diseases. J Gastroenterol Hepatol.
15:489–493. 2000.
|
|
56
|
Loponen J: Prolamin degradation in
sourdoughs(unpublished PhD thesis). University of Helsinki,
2006.
|
|
57
|
Piper JL, Gray GM and Khosla C: Effect of
prolyl endopeptidase on digestive-resistant gliadin peptides in
vivo. J Pharmacol Exp Ther. 311:213–219. 2004.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Hausch F, Shan L, Santiago NA, Gray GM and
Khosla C: Intestinal digestive resistance of immunodominant gliadin
peptides. Am J Physiol Gastrointest Liver Physiol. 283:G996–G1003.
2002.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Tye-Din JA, Anderson RP, Ffrench RA, Brown
GJ, Hodsman P, Siegel M, Botwick W and Shreeniwas R: The effects of
ALV003 pre-digestion of gluten on immune response and symptoms in
celiac disease in vivo. Clin Immunol. 134:289–295. 2010.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Shan L, Marti T, Sollid LM, Gray GM and
Khosla C: Comparative biochemical analysis of three bacterial
prolyl endopeptidases: Implications for coeliac sprue. Biochem J.
383:311–318. 2004.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Pyle GG, Paaso B, Anderson BE, Allen DD,
Marti T, Li Q, Siegel M, Khosla C and Gray GM: Effect of
pretreatment of food gluten with prolyl endopeptidase on
gluten-induced malabsorption in celiac sprue. Clin Gastroenterol
Hepatol. 3:687–694. 2005.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Chen YS, Christensen JE, Broadbent JR and
Steele JL: Identification and characterization of Lactobacillus
helveticus PepO2, an endopeptidase with post-proline
specificity. Appl Environ Microbiol. 69:1276–1282. 2003.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Rashmi BS and Gayathri D: Draft genome
sequence of gluten hydrolysing bacterium Bacillus subtilis
GS 188, Isolated from Wheat Sourdough. Genome Announc.
5(e00952)2017.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Rashmi BS and Gayathri D: Molecular
characterization of gluten hydrolysing Bacillus sp and their
efficacy and biotherapeutic potential as probiotics using Caco-2
cell line. J Appl Microbiol. 123:759–772. 2017.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Stepniak D, Spaenij-Dekking L, Mitea C,
Moester M, de Ru A, Baak-Pablo R, van Veelen P, Edens L and Koning
F: Highly efficient gluten degradation with a newly identified
prolyl endoprotease: Implications for celiac disease. Am J Physiol
Gastrointest Liver Physiol. 291:G621–G629. 2006.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Edens L, Dekker P, van der Hoeven R, Deen
F, de Roos A and Floris R: Extracellular prolyl endoprotease from
Aspergillus niger and its use in the debittering of protein
hydrolysates. J Agric Food Chem. 53:7950–7957. 2005.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Di Cagno R, De Angelis M, Lavermicocca P,
De Vincenzi M, Giovannini C, Faccia M and Gobbetti M: Proteolysis
by sourdough lactic acid bacteria: Effects on wheat flour protein
fractions and gliadin peptides involved in human cereal
intolerance. Appl Environ Microbiol. 68:623–633. 2002.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Gobbetti M, Cagno RD and De Angelis M:
Functional microorganisms for functional food quality. Crit Rev
Food Sci Nutr. 50:716–727. 2010.PubMed/NCBI View Article : Google Scholar
|
|
69
|
di Cagno R, de Angelis M, Alfonsi G, de
Vincenzi M, Silano M, Vincentini O and Gobbetti M: Pasta made from
durum wheat semolina fermented with selected lactobacilli as a tool
for a potential decrease of the gluten intolerance. J Agric Food
Chem. 53:4393–4402. 2005.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Rizzello CG, De Angelis M, Di Cagno R,
Camarca A, Silano M, Losito I, De Vincenzi M, De Bari MD, Palmisano
F, Maurano F, et al: Highly efficient gluten degradation by
lactobacilli and fungal proteases during food processing: New
perspectives for celiac disease. Appl Environ Microbiol.
73:4499–4507. 2007.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Dekking EHA, Veelen PAV, de Ru A,
Kooy-Winkelaar EMC and Groneveld T: Microbial transglutaminases
generate T cell stimulatory epitopes involved in celiac disease. J
Cereal Sci. 47:339–346. 2008.
|
|
72
|
de Sousa Moraes LF, Grzeskowiak LM, de
Sales Teixeira TF and Gouveia Peluzio MC: Intestinal microbiota and
probiotics in celiac disease. Clin Microbiol Rev. 27:482–489.
2014.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Ohland CL and Macnaughton WK: Probiotic
bacteria and intestinal epithelial barrier function. Am J Physiol
Gastrointest Liver Physiol. 298:G807–G819. 2010.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Sartor RB: Mechanisms of disease:
Pathogenesis of Crohn's disease and ulcerative colitis. Nat Clin
Pract Gastroenterol Hepatol. 3:390–407. 2006.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Anderson RC, Cookson AL, McNabb WC, Park
Z, McCann MJ, Kelly WJ and Roy NC: Lactobacillus plantarum
MB452 enhances the function of the intestinal barrier by increasing
the expression l. Probiotics. Best Pract Res Clin Gastroenterol.
18:299–313. 2004.
|
|
76
|
O'Shea EF, Cotter PD, Stanton C, Ross RP
and Hill C: Production of bioactive substances by intestinal
bacteria as a basis for explaining probiotic mechanisms:
Bacteriocins and conjugated linoleic acid. Int J Food Microbiol.
152:189–205. 2012.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Thomas CM and Versalovic J:
Probiotics-host communication: Modulation of signaling pathways in
the intestine. Gut Microbes. 1:148–163. 2010.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Boirivant M and Strober W: The mechanism
of action of probiotics. Curr Opin Gastroenterol. 23:679–692.
2007.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Gionchetti P, Rizzello F, Venturi A and
Campieri M: Probiotics evels of genes involved in tight junction
formation. BMC Microbiol. 10(316)2010.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Hummel S, Veltman K, Cichon C, Sonnenborn
U and Schmidt MA: Differential targeting of the
E-Cadherin/β-Catenin complex by gram-positive probiotic
lactobacilli improves epithelial barrier function. Appl Environ
Microbiol. 78:1140–1147. 2012.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Zyrek AA, Cichon C, Helms S, Enders C,
Sonnenborn U and Schmidt MA: Molecular mechanisms underlying the
probiotic effects of Escherichia coli Nissle 1917 involve
ZO-2 and PKCzeta redistribution resulting in tight junction and
epithelial barrier repair. Cell Microbiol. 9:804–816.
2007.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Dai C, Zhao DH and Jiang M: VSL#3
probiotics regulate the intestinal epithelial barrier in
vivo and in vitro via the p38 and ERK signaling
pathways. Int J Mol Med. 29:202–208. 2012.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Ouwehand AC, Salminen S, Tölkkö S, Roberts
P, Ovaska J and Salminen E: Resected human colonic tissue: New
model for characterizing adhesion of lactic acid bacteria. Clin
Diagn Lab Immunol. 9:184–186. 2002.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Vélez MP, De Keersmaecker SC and
Vanderleyden J: Adherence factors of Lactobacillus in the
human gastrointestinal tract. FEMS Microbiol Lett. 276:140–148.
2007.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Buck BL, Altermann E, Svingerud T and
Klaenhammer TR: Functional analysis of putative adhesion factors in
Lactobacillus acidophilus NCFM. Appl Environ Microbiol.
71:8344–8351. 2005.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Sánchez B, Urdaci MC and Margolles A:
Extracellular proteins secreted by probiotic bacteria as mediators
of effects that promote mucosa-bacteria interactions. Microbiology.
156:3232–3242. 2010.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Juntunen M, Kirjavainen PV, Ouwehand AC,
Salminen SJ and Isolauri E: Adherence of probiotic bacteria to
human intestinal mucus in healthy infants and during rotavirus
infection. Clin Diagn Lab Immunol. 8:293–296. 2001.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Coconnier MH, Bernet MF, Chauvière G and
Servin AL: Adhering heat-killed human Lactobacillus
acidophilus, strain LB, inhibits the process of pathogenicity
of diarrhoeagenic bacteria in cultured human intestinal cells. J
Diarrhoeal Dis Res. 11:235–242. 1993.PubMed/NCBI
|
|
89
|
Greenberg B: Salmonella suppression
by known populations of bacteria in flies. J Bacteriol. 99:629–635.
1969.PubMed/NCBI
|
|
90
|
Schiffrin EJ and Blum S: Interactions
between the microbiota and the intestinal mucosa. Eur J Clin Nutr.
56 (Suppl 3):S60–S64. 2002.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Khani S, Motamedifar M, Golmoghaddam H,
Hosseini HM and Hashemizadeh Z: In vitro study of the effect of a
probiotic bacterium Lactobacillus rhamnosus against herpes
simplex virus type 1. Braz J Infect Dis. 16:129–135.
2012.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Ahmad K, Fatemeh F, Mehri N and Maryam S:
Probiotics for the treatment of pediatric Helicobacter
pylori infection: A randomized double blind clinical trial.
Iran J Pediatr. 23:79–84. 2013.PubMed/NCBI
|
|
93
|
De Keersmaecker SC, Verhoeven TL, Desair
J, Marchal K, Vanderleyden J and Nagy I: Strong antimicrobial
activity of Lactobacillus rhamnosus GG against Salmonella
typhimurium is due to accumulation of lactic acid. FEMS
Microbiol Lett. 259:89–96. 2006.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Hassan M, Kjos M, Nes IF, Diep DB and
Lotfipour F: Natural antimicrobial peptides from bacteria:
Characteristics and potential applications to fight against
antibiotic resistance. J Appl Microbiol. 113:723–736.
2012.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Bierbaum G and Sahl HG: Lantibiotics: Mode
of action, biosynthesis and bioengineering. Curr Pharm Biotechnol.
10:2–18. 2009.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Coloretti F, Carri S, Armaforte E,
Chiavari C, Grazia L and Zambonelli C: Antifungal activity of
lactobacilli isolated from salami. FEMS Microbiol Lett.
271:245–250. 2007.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Prema P, Smila D, Palavesam A and Immanuel
G: Production and characterization of an antifungal compound
(3-phenyllactic acid) produced by Lactobacillus plantarum
strain. Food Bioprocess Technol. 3:379–386. 2008.
|
|
98
|
Magnusson J and Schnürer J: Lactobacillus
coryniformis subsp. coryniformis strain Si3 produces a
broad-spectrum proteinaceous antifungal compound. Appl Environ
Microbiol. 67:1–5. 2001.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Dal Bello F, Clarke CI, Ryan LAM, Ulmer H,
Schober TJ, Ström K, Sjögren J, van Sinderen D, Schnürer J and
Arendt EK: Improvement of the quality and shelf life of wheat bread
by fermentation with the antifungal strain Lactobacillus
plantarum FST 1.7. J Cereal Sci. 45:309–318. 2007.
|
|
100
|
Ström K, Sjögren J, Broberg A and Schnürer
J: Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic
dipeptides cyclo(L-Phe-L-Pro) and cyclo(L-Phe-trans-4-OH-L-Pro) and
3-phenyllactic acid. Appl Environ Microbiol. 68:4322–4327.
2002.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Gómez-Llorente C, Muñoz S and Gil A: Role
of Toll-like receptors in the development of immunotolerance
mediated by probiotics. Proc Nutr Soc. 69:381–389. 2010.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Wells JM: Immunomodulatory mechanisms of
lactobacilli. Microb Cell Fact. 10 (Suppl 1)(S17)2011.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Vizoso Pinto MG, Rodriguez Gómez M,
Seifert S, Watzl B, Holzapfel WH and Franz CM: Lactobacilli
stimulate the innate immune response and modulate the TLR
expression of HT29 intestinal epithelial cells in vitro. Int J Food
Microbiol. 133:86–93. 2009.PubMed/NCBI View Article : Google Scholar
|
|
104
|
D'Angelo C, Reale M and Costantini E:
Microbiota and Lnd HIV infection. Nutrients. 9(615)2017.
|
|
105
|
Sharma P, Tomar SK, Goswami P, Sangwan SR
and Singh R: Antibiotic resistance among commercially available
probiotics. Food Res Int. 57:176–195. 2014.
|
|
106
|
Sorokulova IB, Pinchuk IV, Denayrolles M,
Osipova IG, Huang JM, Cutting SM and Urdaci MC: The safety of two
Bacillus probiotic strains for human use. Dig Dis Sci. 53:954–963.
2008.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Sanders ME, Akkermans LM, Haller D,
Hammerman C, Heimbach J, Hörmannsperger G, Huys G, Levy DD,
Lutgendorff F, Mack D, et al: Safety assessment of probiotics for
human use. Gut Microbes. 1:164–185. 2010.PubMed/NCBI View Article : Google Scholar
|
|
108
|
McFarland LV and Dublin S: Meta-analysis
of probiotics for the treatment of irritable bowel syndrome. World
J Gastroenterol. 14:2650–2661. 2008.PubMed/NCBI View Article : Google Scholar
|
|
109
|
Finegold SM, Sutter VL and Mathisen GE:
Normal indigenous intestinal flora. In: Human Intestinal Microflora
in Health and Disease. Hentiges DJ (ed). Academic Press, New York,
NY, 1983.
|
|
110
|
Didari T, Solki S, Mozaffari S, Nikfar S
and Abdollahi M: A systematic review of the safety of probiotics.
Expert Opin Drug Saf. 13:227–239. 2014.PubMed/NCBI View Article : Google Scholar
|
|
111
|
Hong HA, Duc H and Cutting SM: The use of
bacterial spore formers as probiotics. FEMS Microbiol Rev.
29:813–835. 2005.PubMed/NCBI View Article : Google Scholar
|
|
112
|
Cutting SM: Bacillus probiotics. Food
Microbiol. 28:214–220. 2011.PubMed/NCBI View Article : Google Scholar
|
|
113
|
Hoa NT, Baccigalupi L, Huxham A, Smertenko
A, Van PH, Ammendola S, Ricca E and Cutting AS: Characterization of
Bacillus species used for oral bacteriotherapy and
bacterioprophylaxis of gastrointestinal disorders. Appl Environ
Microbiol. 66:5241–5247. 2000.PubMed/NCBI View Article : Google Scholar
|
|
114
|
Sonenshein AL, Hoch JA and Losick R:
Bacillus subtilis and other gram-positive bacteria:
biochemistry, physiology, and molecular genetics. American Society
for Microbiology, Washington, DC, 1993.
|
|
115
|
Zhang JL, Xie QM, Ji J, Yang WH, Wu YB, Li
C, Ma JY and Bi YZ: Different combinations of probiotics improve
the production performance, egg quality, and immune response of
layer hens. Poult Sci. 91:2755–2760. 2012.PubMed/NCBI View Article : Google Scholar
|
|
116
|
van der Aa Kühle A, Skovgaard K and
Jespersen L: In vitro screening of probiotic properties of
Saccharomyces cerevisiae var. boulardii and
food-borne Saccharomyces cerevisiae strains. Int J Food
Microbiol. 101:29–39. 2005.PubMed/NCBI View Article : Google Scholar
|
|
117
|
Czerucka D, Piche T and Rampal P: Review
article: Yeast as probiotics -Saccharomyces boulardii.
Aliment Pharmacol Ther. 26:767–778. 2007.PubMed/NCBI View Article : Google Scholar
|