|
1
|
Newell ME, Babbrah A, Aravindan A, Rathnam
R, Kiernan R, Driver EM, Bowes DA and Halden RU: Prevalence rates
of neurodegenerative diseases versus human exposures to heavy
metals across the United States. Sci Total Environ.
928(172260)2024.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Adams JL, Myers TL, Waddell EM, Spear KL
and Schneider RB: Telemedicine: A valuable tool in
neurodegenerative diseases. Curr Geriatr Rep. 9:72–81.
2020.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Hansson O: Biomarkers for
neurodegenerative diseases. Nat Med. 27:954–963. 2021.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Better MA: 2023 Alzheimer's disease facts
and figures. Alzheimers Dement. 19:1598–1695. 2023.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Bhidayasiri R, Sringean J, Phumphid S,
Anan C, Thanawattano C, Deoisres S, Panyakaew P, Phokaewvarangkul
O, Maytharakcheep S, Buranasrikul V and Prasertpan T: The rise of
Parkinson's disease is a global challenge, but efforts to tackle
this must begin at a national level: A protocol for national
digital screening and ‘eat, move, sleep’ lifestyle interventions to
prevent or slow the rise of non-communicable diseases in Thailand.
Front Neurol. 15(1386608)2024.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Mead RJ, Shan N, Reiser HJ, Marshall F and
Shaw PJ: Amyotrophic lateral sclerosis: A neurodegenerative
disorder poised for successful therapeutic translation. Nat Rev
Drug Discov. 22:185–1212. 2023.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Bloem BR, Okun MS and Klein C: Parkinson's
disease. Lancet. 397:2284–2303. 2021.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Baker E, Leonenko G, Schmidt KM, Hill M,
Myers AJ, Shoai M, de Rojas I, Tesi N, Holstege H, van der Flier WM
and Pijnenburg YA: What does heritability of Alzheimer's disease
represent? PLoS One. 18(e0281440)2023.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Nalls MA, Blauwendraat C, Vallerga CL,
Heilbron K, Bandres-Ciga S, Chang D, Tan M, Kia DA, Noyce AJ, Xue A
and Bras J: Identification of novel risk loci, causal insights, and
heritable risk for Parkinson's disease: A Meta-analysis of
Genome-wide association studies. Lancet Neurol. 18:1091–1102.
2019.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Sakowski SA, Koubek EJ, Chen KS, Goutman
SA and Feldman EL: Role of the exposome in neurodegenerative
disease: Recent insights and future directions. Ann Neurol.
95:635–652. 2024.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Rekatsina M, Paladini A, Piroli A, Zis P,
Pergolizzi JV and Varrassi G: Pathophysiology and therapeutic
perspectives of oxidative stress and neurodegenerative diseases: A
narrative review. Adv Ther. 37:113–139. 2020.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Cravello L, Di Santo S, Varrassi G,
Benincasa D, Marchettini P, de Tommaso M, Shofany J, Assogna F,
Perotta D, Palmer K and Paladini A: Chronic pain in the elderly
with cognitive decline: A narrative review. Pain Ther. 8:53–65.
2019.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Aldharman SS, Al-Jabr KH, Alharbi YS,
Alnajar NK, Alkhanani JJ, Alghamdi A, Abdellatif RA, Allouzi A,
Almallah AM and Jamil SF: Implications of early diagnosis and
intervention in the management of Neurodevelopmental Delay (NDD) in
children: A systematic review and Meta-analysis. Cureus.
15(e38745)2023.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Mobed A and Hasanzadeh M: Biosensing: The
best alternative for conventional methods in detection of
Alzheimer's disease biomarkers. Int J Biol Macromol. 161:59–71.
2020.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Selvam S and Ayyavoo V: Biomarkers in
neurodegenerative diseases: A broad overview. Exploration
Neuroprotective Ther. 4:119–147. 2024.
|
|
16
|
Rastogi S, Sharma V, Bharti PS, Rani K,
Modi GP, Nikolajeff F and Kumar S: The evolving landscape of
exosomes in neurodegenerative diseases: Exosomes characteristics
and a promising role in early diagnosis. Int J Mol Sci.
22(440)2021.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Dubois B, von Arnim CA, Burnie N, Bozeat S
and Cummings J: Biomarkers in Alzheimer's disease: Role in early
and differential diagnosis and recognition of atypical variants.
Alzheimers Res Ther. 15(175)2023.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Chudzik A, Śledzianowski A and
Przybyszewski AW: Machine learning and digital biomarkers can
detect early stages of neurodegenerative diseases. Sensors.
24(1572)2024.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Dorsey ER, Papapetropoulos S, Xiong M and
Kieburtz K: The first frontier: Digital biomarkers for
neurodegenerative disorders. Digital Biomarkers. 1:6–13.
2017.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Iftikhar M, Saqib M, Zareen M and Mumtaz
H: Artificial intelligence: Revolutionizing robotic surgery. Ann
Med Surg (Lond). 86:5401–5409. 2024.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Bajwa J, Munir U, Nori A and Williams B:
Artificial intelligence in healthcare: Transforming the practice of
medicine. Future Healthc J. 8:e188–e194. 2021.PubMed/NCBI View Article : Google Scholar
|
|
22
|
García-Fonseca Á, Martin-Jimenez C,
Barreto GE, Pachón AF and González J: The emerging role of long
non-coding RNAs and microRNAs in neurodegenerative diseases: A
perspective of machine learning. Biomolecules.
11(1132)2021.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Khaliq F, Oberhauser J, Wakhloo D and
Mahajani S: Decoding degeneration: The implementation of machine
learning for clinical detection of neurodegenerative disorders.
Neural Regen Res. 18:1235–1242. 2023.PubMed/NCBI View Article : Google Scholar
|
|
24
|
DeTure MA and Dickson DW: The
neuropathological diagnosis of Alzheimer's disease. Mol
Neurodegener. 14(32)2019.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Sheppard O and Coleman M: Alzheimer's
disease: Etiology, neuropathology and pathogenesis. Exon
Publications. 19:1–21. 2020.PubMed/NCBI View Article : Google Scholar
|
|
26
|
García-Morales V, González-Acedo A,
Melguizo-Rodríguez L, Pardo-Moreno T, Costela-Ruiz VJ,
Montiel-Troya M and Ramos-Rodríguez JJ: Current understanding of
the physiopathology, diagnosis and therapeutic approach to
Alzheimer's disease. Biomedicines. 9(1910)2021.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Tiwari S, Atluri V, Kaushik A, Yndart A
and Nair M: Alzheimer's disease: Pathogenesis, diagnostics, and
therapeutics. Int J Nanomedicine. 14:5541–5554. 2019.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Riederer P, Berg D, Casadei N, Cheng F,
Classen J, Dresel C, Jost W, Krüger R, Müller T, Reichmann H, et
al: α-Synuclein in Parkinson's disease: Causal or bystander? J
Neural Transm (Vienna). 126:815–840. 2019.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Masato A, Plotegher N, Terrin F, Sandre M,
Faustini G, Thor A, Adams S, Berti G, Cogo S, De Lazzari F and
Fontana CM: DOPAL Initiates αSynuclein-dependent impaired
proteostasis and degeneration of neuronal projections in
Parkinson's disease. NPJ Parkinsons Dis. 9(42)2023.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Simpson C, Vinikoor-Imler L, Nassan FL,
Shirvan J, Lally C, Dam T and Maserejian N: Prevalence of ten LRRK2
variants in Parkinson's disease: A comprehensive review.
Parkinsonism Relat Disord. 98:103–113. 2022.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Zhou ZD, Yi LX, Wang DQ, Lim TM and Tan
EK: Role of dopamine in the pathophysiology of Parkinson's disease.
Transl Neurodegener. 12(44)2023.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Calabresi P, Mechelli A, Natale G,
Volpicelli-Daley L, Di Lazzaro G and Ghiglieri V: Alpha-synuclein
in Parkinson's disease and other synucleinopathies: From overt
neurodegeneration back to early synaptic dysfunction. Cell Death
Dis. 14(176)2023.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Zhou W and Xu R: Current insights in the
molecular genetic pathogenesis of amyotrophic lateral sclerosis.
Front Neurosci. 17(1189470)2023.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Liu J and Wang F: Role of
neuroinflammation in amyotrophic lateral sclerosis: Cellular
mechanisms and therapeutic implications. Front Immunol.
8(1005)2017.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Masrori P and Van Damme P: Amyotrophic
lateral sclerosis: A clinical review. Eur J Neurol. 27:1918–1929.
2020.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Semmler S, Gagné M, Garg P, Pickles SR,
Baudouin C, Hamon-Keromen E, Destroismaisons L, Khalfallah Y,
Chaineau M, Caron E and Bayne AN: TNF receptor-associated factor 6
interacts with ALS-linked misfolded superoxide dismutase 1 and
promotes aggregation. J Biol Chem. 295:3808–3825. 2020.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Farrawell NE and Yerbury JJ: Mutant Cu/Zn
superoxide dismutase (A4V) turnover is altered in cells containing
inclusions. Front Mol Neurosci. 14(771911)2021.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Tedesco B, Ferrari V, Cozzi M,
Chierichetti M, Casarotto E, Pramaggiore P, Mina F, Galbiati M,
Rusmini P, Crippa V and Cristofani R: The role of small heat shock
proteins in protein misfolding associated motoneuron diseases. Int
J Mol Sci. 23(11759)2022.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Maurel C, Dangoumau A, Marouillat S,
Brulard C, Chami A, Hergesheimer R, Corcia P, Blasco H, Andres CR
and Vourc'h P: Causative genes in amyotrophic lateral sclerosis and
protein degradation pathways: A link to neurodegeneration. Mol
Neurobiol. 55:6480–6499. 2018.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Bottero V, Santiago JA, Quinn JP and
Potashkin JA: Key disease mechanisms linked to amyotrophic lateral
sclerosis in spinal cord motor neurons. Front Mol Neurosci.
15(825031)2022.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Dokholyan NV, Mohs RC and Bateman RJ:
Challenges and progress in research, diagnostics, and therapeutics
in Alzheimer's disease and related dementias. Alzheimers Dement (N
Y). 8(e12330)2022.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Domínguez-Fernández C, Egiguren-Ortiz J,
Razquin J, Gómez-Galán M, De las Heras-García L, Paredes-Rodríguez
E, Astigarraga E, Miguélez C and Barreda-Gómez G: Review of
technological challenges in personalised medicine and early
diagnosis of neurodegenerative disorders. Int J Mol Sci.
24(3321)2023.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Shusharina N, Yukhnenko D, Botman S,
Sapunov V, Savinov V, Kamyshov G, Sayapin D and Voznyuk I: Modern
methods of diagnostics and treatment of neurodegenerative diseases
and depression. Diagnostics (Basel). 13(573)2023.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Anique M, Talib M, Ihsan A, Anwar I,
Zeeshan A and Ahsan N: Biomarker profiles in serum and CSF for
early diagnosis of selected neurodegenerative diseases: Serum and
CSF for early diagnosis of neurodegenerative diseases. Pakistan J
Health Sci. 5:166–70. 2024.
|
|
45
|
Kammeyer R, Chapman K, Furniss A, Hsieh E,
Fuhlbrigge R, Ogbu EA, Boackle S, Zell J, Nair KV, Borko TL, et al:
Blood-based biomarkers of neuronal and glial injury in active major
neuropsychiatric systemic lupus erythematosus. Lupus. 33:1116–1129.
2024.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Koníčková D, Menšíková K, Tučková L,
Hényková E, Strnad M, Friedecký D, Stejskal D, Matěj R and Kaňovský
P: Biomarkers of neurodegenerative diseases: Biology, taxonomy,
clinical relevance, and current research status. Biomedicines.
10(1760)2022.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Hansson O, Lehmann S, Otto M, Zetterberg H
and Lewczuk P: Advantages and disadvantages of the use of the CSF
Amyloid β (Aβ) 42/40 ratio in the diagnosis of Alzheimer's Disease.
Alzheimers Res Ther. 11(34)2019.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Feng Y, Murphy MC, Hojo E, Li F and
Roberts N: Magnetic resonance elastography in the study of
neurodegenerative diseases. J Magn Reson Imaging. 59:82–96.
2024.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Young PN, Estarellas M, Coomans E,
Srikrishna M, Beaumont H, Maass A, Venkataraman AV, Lissaman R,
Jiménez D, Betts MJ, et al: Imaging biomarkers in
neurodegeneration: Current and future practices. Alzheimers Res
Ther. 12(49)2020.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Myrou A, Barmpagiannos K, Ioakimidou A and
Savopoulos C: Molecular biomarkers in neurological diseases:
Advances in diagnosis and prognosis. Int J Mol Sci.
26(2231)2025.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Ni A and Sethi A: Alzheimer's disease
Neuroimaging Initiative: Functional genetic biomarkers of
Alzheimer's disease and gene expression from peripheral blood.
bioRxiv. Jan 18, 2021 doi: 10.1101/2021.01.15.426891.
|
|
52
|
Abbas S, Asif M, Rehman A, Alharbi M, Khan
MA and Elmitwally N: Emerging research trends in artificial
intelligence for cancer diagnostic systems: A comprehensive review.
Heliyon. 10(e36743)2024.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Alowais SA, Alghamdi SS, Alsuhebany N,
Alqahtani T, Alshaya AI, Almohareb SN, Aldairem A, Alrashed M, Bin
Saleh K, Badreldin HA, et al: Revolutionizing healthcare: The role
of artificial intelligence in clinical practice. BMC Med Educ.
23(689)2023.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Sidey-Gibbons JA and Sidey-Gibbons CJ:
Machine learning in medicine: A practical introduction. BMC Med Res
Methodol. 19:1–8. 2019.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Mirnezami R, Nicholson J and Darzi A:
Preparing for precision medicine. N Engl J Med. 366:489–491.
2012.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Ibrahim IM and Abdulazeez AM: The role of
machine learning algorithms for diagnosing diseases. Learning.
4(6)2021.
|
|
57
|
Saputra NA, Riza LS, Setiawan A and
Hamidah I: A systematic review for classification and selection of
deep learning methods. Decision Analytics J. 12(100489)2024.
|
|
58
|
Labory J, Njomgue-Fotso E and Bottini S:
Benchmarking feature selection and feature extraction methods to
improve the performances of machine-learning algorithms for patient
classification using metabolomics biomedical data. Comput Struct
Biotechnol J. 23:1274–1287. 2024.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Jia W, Sun M, Lian J and Hou S: Feature
dimensionality reduction: A review. Complex Intelligent Systems.
8:2663–2693. 2022.
|
|
60
|
Sarder MA, Maniruzzaman M and Ahammed B:
Feature selection and classification of leukemia cancer using
machine learning techniques. Machine Learning Res. 5(18)2020.
|
|
61
|
Remeseiro B and Bolon-Canedo V: A review
of feature selection methods in medical applications. Comput Biol
Med. 112(103375)2019.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Harrison CJ and Sidey-Gibbons CJ: Machine
learning in medicine: A practical introduction to natural language
processing. BMC Med Res Methodol. 21(158)2021.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Pfob A, Lu SC and Sidey-Gibbons C: Machine
learning in medicine: A practical introduction to techniques for
data pre-processing, hyperparameter tuning, and model comparison.
BMC Med Res Methodol. 22(282)2022.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Samala RK, Chan HP, Hadjiiski L and Helvie
MA: Risks of feature leakage and sample size dependencies in deep
feature extraction for breast mass classification. Medical Physics.
48:2827–2837. 2021.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Varoquaux G and Colliot O: Evaluating
machine learning models and their diagnostic value. In: Machine
Learning for Brain Disorders [Internet]. New York, NY, Humana,
2023.
|
|
66
|
Erickson BJ and Kitamura F: Magician's
corner: 9. Performance metrics for machine learning models. Radiol
Artif Intell. 3(e200126)2021.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Handelman GS, Kok HK, Chandra RV, Razavi
AH, Huang S, Brooks M, Lee MJ and Asadi H: Peering into the black
box of artificial intelligence: Evaluation metrics of machine
learning methods. Am J Roentgenol. 212:38–43. 2019.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Hicks SA, Strümke I, Thambawita V, Hammou
M, Riegler MA, Halvorsen P and Parasa S: On evaluation metrics for
medical applications of artificial intelligence. Sci Rep.
12(5979)2022.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Ledesma D, Symes S and Richards S:
Advancements within modern machine learning methodology: Impacts
and prospects in biomarker discovery. Curr Med Chem. 28:6512–6531.
2021.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Lam S, Arif M, Song X, Uhlen M and
Mardinoglu A: Machine learning analysis reveals biomarkers for the
detection of neurodegenerative diseases. medRxiv. Feb 15, 2022.
|
|
71
|
Arisi I, D'Onofrio M, Brandi R, Sonnessa
M, Campanelli A, Florio R, Sposato V, Malerba F, Cattaneo A,
Mecocci P and Bruno G: Mining clinical and laboratory data of
neurodegenerative diseases by machine learning: Transcriptomic
biomarkers. In 2018 IEEE International Conference on Bioinformatics
and Biomedicine (BIBM), IEEE, pp2735-2737, Dec 3, 2018.
|
|
72
|
Li Z, Guo W, Ding S, Chen L, Feng K, Huang
T and Cai YD: Identifying key MicroRNA signatures for
neurodegenerative diseases with machine learning methods. Front
Genet. 13(880997)2022.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Huseby CJ, Delvaux E, Brokaw DL and
Coleman PD: Blood transcript biomarkers selected by machine
learning algorithm classify neurodegenerative diseases including
Alzheimer's disease. Biomolecules. 12(1592)2022.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Ren J, Zhang B, Wei D and Zhang Z:
Identification of methylated gene biomarkers in patients with
Alzheimer's disease based on machine learning. Biomed Res Int.
2020(8348147)2020.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Abd El Hamid MM, Mabrouk MS and Omar YM:
Developing an early predictive system for identifying genetic
biomarkers associated to Alzheimer's disease using machine learning
techniques. Biomed Engineering Applications Basis Communications.
31(1950040)2019.
|
|
76
|
Kelly J, Moyeed R, Carroll C, Luo S and Li
X: Blood biomarker-based classification study for neurodegenerative
diseases. Sci Rep. 13(17191)2023.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Abdelwahab MM, Al-Karawi KA and Semary HE:
Deep learning-based prediction of Alzheimer's disease using
microarray gene expression data. Biomedicines.
11(3304)2023.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Wang Y, Wu D, Zheng M and Yang T: An
integrated bioinformatics and machine learning approach to
identifying biomarkers connecting Parkinson's disease with purine
metabolism-related genes. BMC Neurol. 25(161)2025.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Huang Y, Sun X, Jiang H, Yu S, Robins C,
Armstrong MJ, Li R, Mei Z, Shi X, Gerasimov ES and De Jager PL: A
machine learning approach to brain epigenetic analysis reveals
kinases associated with Alzheimer's disease. Nat Commun.
12(4472)2021.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Alamro H, Thafar MA, Albaradei S, Gojobori
T, Essack M and Gao X: Exploiting machine learning models to
identify novel Alzheimer's disease biomarkers and potential
targets. Sci Rep. 13(4979)2023.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Madar IH, Sultan G, Tayubi IA, Hasan AN,
Pahi B, Rai A, Sivanandan PK, Loganathan T, Begum M and Rai S:
Identification of marker genes in Alzheimer's disease using a
machine-learning model. Bioinformation. 17:348–355. 2021.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Lin RH, Wang CC and Tung CW: A machine
learning classifier for predicting stable MCI patients using gene
biomarkers. Int J Environ Res Public Healt. 19(4839)2022.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Sharma A and Dey P: A machine learning
approach to unmask novel gene signatures and prediction of
Alzheimer's disease within different brain regions. Genomics.
113:1778–1789. 2021.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Augustine J and Jereesh AS: Blood-based
gene-expression biomarkers identification for the non-invasive
diagnosis of Parkinson's disease using two-layer hybrid feature
selection. Gene. 823(146366)2022.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Sekaran K, Alsamman AM, George Priya Doss
C and Zayed H: Bioinformatics investigation on blood-based gene
expressions of Alzheimer's disease revealed ORAI2 gene biomarker
susceptibility: An explainable artificial intelligence-based
approach. Metabolic Brain Disease. 38:1297–1310. 2023.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Bhandari N, Walambe R, Kotecha K and
Kaliya M: Integrative gene expression analysis for the diagnosis of
Parkinson's disease using machine learning and explainable AI.
Comput Biol Med. 163(107140)2023.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Yu WY, Sun TH, Hsu KC, Wang CC, Chien SY,
Tsai CH and Yang YW: Comparative analysis of machine learning
algorithms for Alzheimer's disease classification using EEG signals
and genetic information. Comput Biol Med.
176(108621)2024.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Shi K, Lin W and Zhao XM: Identifying
molecular biomarkers for diseases with machine learning based on
integrative omics. IEEE/ACM Trans Comput Biol Bioinform.
18:2514–2525. 2020.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Brar A, Zhu A, Baciu C, Sharma D, Xu W,
Orchanian-Cheff A, Wang B, Reimand J, Grant R and Bhat M:
Development of diagnostic and prognostic molecular biomarkers in
hepatocellular carcinoma using machine learning: A systematic
review. Liver Cancer International. 3:141–161. 2022.
|
|
90
|
Mertins SD: Capturing biomarkers and
molecular targets in cellular landscapes from dynamic reaction
network models and machine learning. Front Oncol.
11(805592)2022.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Macyszyn L, Akbari H, Pisapia JM, Da X,
Attiah M, Pigrish V, Bi Y, Pal S, Davuluri RV, Roccograndi L and
Dahmane N: Imaging patterns predict patient survival and molecular
subtype in glioblastoma via machine learning techniques. Neuro
Oncol. 18:417–425. 2015.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Wang J, Kang Z, Liu Y, Li Z, Liu Y and Liu
J: Identification of immune cell infiltration and diagnostic
biomarkers in unstable atherosclerotic plaques by integrated
bioinformatics analysis and machine learning. Front Immunol.
13(956078)2022.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Liang Y, Lin F and Huang Y: Identification
of biomarkers associated with diagnosis of osteoarthritis patients
based on bioinformatics and machine learning. J Immunol Res.
2022(5600190)2022.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Sinkala M, Mulder N and Martin D: Machine
learning and network analyses reveal disease subtypes of pancreatic
cancer and their molecular characteristics. Sci Rep.
10(1212)2020.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Zheng H, Zhang Q, Gong Y, Liu Z and Chen
S: Identification of prognostic biomarkers for stage iii non-small
cell lung carcinoma in female nonsmokers using machine learning
arXiv: Aug 28, 2024.
|
|
96
|
Rydzewski NR, Helzer KT, Bootsma M, Shi Y,
Bakhtiar H, Sjöström M and Zhao SG: Machine learning &
molecular radiation tumor biomarkers. Semin Radiat Oncol.
33:243–251. 2023.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Bellomo G, Indaco A, Chiasserini D,
Maderna E, Paolini Paoletti F, Gaetani L, Paciotti S, Petricciuolo
M, Tagliavini F, Giaccone G and Parnetti L: Machine learning driven
profiling of cerebrospinal fluid core biomarkers in Alzheimer's
disease and other neurological disorders. Front Neurosci.
15(647783)2021.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Hallqvist J, Bartl M, Dakna M, Schade S,
Garagnani P, Bacalini MG, Pirazzini C, Bhatia K, Schreglmann S,
Xylaki M and Weber S: Plasma proteomics identify biomarkers
predicting Parkinson's disease up to 7 years before symptom onset.
Nat Commun. 15(4759)2024.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Xu A, Kouznetsova VL and Tsigelny IF:
Alzheimer's disease diagnostics using mirna biomarkers and machine
learning. J Alzheimers Dis. 86:841–859. 2022.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Kumar A, Kouznetsova VL, Kesari S and
Tsigelny IF: Parkinson's disease diagnosis using miRNA biomarkers
and deep learning. Front Biosci (Landmark Ed). 29(4)2024.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Lin CH, Chiu SI, Chen TF, Jang JS and Chiu
MJ: Classifications of neurodegenerative disorders using a
multiplex blood biomarkers-based machine learning model. Int J Mol
Sci. 21(6914)2020.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Khorsand B, Salehi S, Karimi S,
Karimipasand S, Fariborzi N, Houri H and Asri N: Investigating
Alzheimer's disease biomarkers by applying machine learning models
bioRxiv: Mar 21, 2025 doi: 10.1101/2025.03.19.643368.
|
|
103
|
Lam S, Arif M, Song X, Uhlén M and
Mardinoglu A: Machine learning analysis reveals biomarkers for the
detection of neurological diseases. Front Mol Neurosci.
15(889728)2022.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Yu X, Lai S, Chen H and Chen M:
Protein-protein interaction network with machine learning models
and multiomics data reveal potential neurodegenerative
disease-related proteins. Hum Mol Genet. 29:1378–1387.
2020.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Yang W, Xu S, Zhou M and Chan P:
Aging-related biomarkers for the diagnosis of Parkinson's disease
based on bioinformatics analysis and machine learning. Aging
(Albany NY). 16(12191)2024.PubMed/NCBI View Article : Google Scholar
|
|
106
|
Mohammed EM, Fakhrudeen AM and Alani OY:
Detection of Alzheimer's disease using deep learning models: A
systematic literature review. Informatics Med Unlocked.
50(101551)2024.
|
|
107
|
Myszczynska MA, Ojamies PN, Lacoste AM,
Neil D, Saffari A, Mead R, Hautbergue GM, Holbrook JD and
Ferraiuolo L: Applications of machine learning to diagnosis and
treatment of neurodegenerative diseases. Nat Rev Neurol.
16:440–456. 2020.PubMed/NCBI View Article : Google Scholar
|
|
108
|
Ahmed MR, Zhang Y, Feng Z, Lo B, Inan OT
and Liao H: Neuroimaging and machine learning for dementia
diagnosis: Recent advancements and future prospects. IEEE Rev
Biomed Eng. 12:19–33. 2018.PubMed/NCBI View Article : Google Scholar
|
|
109
|
Vieira S, Gong QY, Pinaya WH, Scarpazza C,
Tognin S, Crespo-Facorro B, Tordesillas-Gutierrez D, Ortiz-García
V, Setien-Suero E, Scheepers F, et al: Using machine learning and
structural neuroimaging to detect first episode psychosis:
Reconsidering the evidence. Schizophr Bull. 46:17–26.
2020.PubMed/NCBI View Article : Google Scholar
|
|
110
|
Yassin W, Nakatani H, Zhu Y, Kojima M,
Owada K, Kuwabara H, Gonoi W, Aoki Y, Takao H, Natsubori T, et al:
Machine-learning classification using neuroimaging data in
schizophrenia, autism, ultra-high risk and first-episode psychosis.
Transl Psychiatry. 10(278)2020.PubMed/NCBI View Article : Google Scholar
|
|
111
|
Salvatore C, Cerasa A, Battista P, Gilardi
MC, Quattrone A and Castiglioni I: Alzheimer's Disease Neuroimaging
Initiative. Magnetic resonance imaging biomarkers for the early
diagnosis of Alzheimer's disease: A machine learning approach.
Front Neurosci. 9(307)2015.PubMed/NCBI View Article : Google Scholar
|
|
112
|
Nanni L, Interlenghi M, Brahnam S,
Salvatore C, Papa S, Nemni R and Castiglioni I: Alzheimer's Disease
Neuroimaging Initiative. Comparison of transfer learning and
conventional machine learning applied to structural brain MRI for
the early diagnosis and prognosis of Alzheimer's disease. Front
Neurol. 11(576194)2020.PubMed/NCBI View Article : Google Scholar
|
|
113
|
Gill S, Mouches P, Hu S, Rajashekar D,
MacMaster FP, Smith EE, Forkert ND and Ismail Z: Alzheimer's
disease neuroimaging initiative. Using machine learning to predict
dementia from neuropsychiatric symptom and neuroimaging data. J
Alzheimers Dis. 75:277–288. 2020.PubMed/NCBI View Article : Google Scholar
|
|
114
|
Murugan S, Venkatesan C, Sumithra MG, Gao
XZ, Elakkiya B, Akila M and Manoharan S: DEMNET: A deep learning
model for early diagnosis of Alzheimer diseases and dementia from
MR images. Ieee Access. 9:90319–90329. 2021.
|
|
115
|
Jo T, Nho K, Risacher SL and Saykin AJ:
Alzheimer's Neuroimaging Initiative. Deep learning detection of
informative features in tau PET for Alzheimer's disease
classification. BMC Bioinformatics. 21 (Suppl
21)(S496)2020.PubMed/NCBI View Article : Google Scholar
|
|
116
|
Ramzan F, Khan MU, Rehmat A, Iqbal S, Saba
T, Rehman A and Mehmood Z: A deep learning approach for automated
diagnosis and multi-class classification of Alzheimer's disease
stages using resting-state fMRI and residual neural networks. J Med
Syst. 44(37)2019.PubMed/NCBI View Article : Google Scholar
|
|
117
|
Voter AF, Larson ME, Garrett JW and Yu JP:
Diagnostic accuracy and failure mode analysis of a deep learning
algorithm for the detection of cervical spine fractures. AJNR Am J
Neuroradiol. 42:1550–1556. 2021.PubMed/NCBI View Article : Google Scholar
|
|
118
|
Rava RA, Snyder KV, Mokin M, Waqas M,
Allman AB, Senko JL, Podgorsak AR, Bhurwani MS, Hoi Y, Siddiqui AH,
et al: Assessment of a Bayesian Vitrea CT perfusion analysis to
predict final infarct and penumbra volumes in patients with acute
ischemic stroke: A comparison with RAPID. AJNR Am J Neuroradiol.
41:206–212. 2020.PubMed/NCBI View Article : Google Scholar
|
|
119
|
Kolanu N, Silverstone EJ, Ho BH, Pham H,
Hansen A, Pauley E, Quirk AR, Sweeney SC, Center JR and Pocock NA:
Clinical utility of computer-aided diagnosis of vertebral fractures
from computed tomography images. J Bone Miner Res. 35:2307–2312.
2020.PubMed/NCBI View Article : Google Scholar
|
|
120
|
Koopman MS, Berkhemer OA, Geuskens RR,
Emmer BJ, van Walderveen MA, Jenniskens SF, van Zwam WH, van
Oostenbrugge RJ, van der Lugt A, Dippel DW, et al: Comparison of
three commonly used CT perfusion software packages in patients with
acute ischemic stroke. J Neurointerv Surg. 11:1249–1256.
2019.PubMed/NCBI View Article : Google Scholar
|
|
121
|
Christidi F, Karavasilis E, Samiotis K,
Bisdas S and Papanikolaou N: Fiber tracking: A qualitative and
quantitative comparison between four different software tools on
the reconstruction of major white matter tracts. Eur J Radiol Open.
3:153–161. 2016.PubMed/NCBI View Article : Google Scholar
|
|
122
|
Persson K, Barca ML, Cavallin L, Brækhus
A, Knapskog AB, Selbæk G and Engedal K: Comparison of automated
volumetry of the hippocampus using NeuroQuant® and
visual assessment of the medial temporal lobe in Alzheimer's
disease. Acta Radiol. 59:997–1001. 2018.PubMed/NCBI View Article : Google Scholar
|
|
123
|
Kwon C, Kang KM, Byun MS, Yi D, Song H,
Lee JY, Hwang I, Yoo RE, Yun TJ, Choi SH, et al: Assessment of mild
cognitive impairment in elderly subjects using a fully automated
brain segmentation software. Invest Magnetic Resonance Imaging.
25:164–171. 2021.
|
|
124
|
Persson K, Selbæk G, Brækhus A, Beyer M,
Barca M and Engedal K: Fully automated structural MRI of the brain
in clinical dementia workup. Acta Radiol. 58:740–747.
2017.PubMed/NCBI View Article : Google Scholar
|
|
125
|
Zaki LA, Vernooij MW, Smits M, Tolman C,
Papma JM, Visser JJ and Steketee RM: Comparing two artificial
intelligence software packages for normative brain volumetry in
memory clinic imaging. Neuroradiology. 64:1359–1366.
2022.PubMed/NCBI View Article : Google Scholar
|
|
126
|
Elkin C, Nittala S and Devabhaktuni V:
Fundamental cognitive workload assessment: A machine learning
comparative approach. In: Advances in Neuroergonomics and Cognitive
Engineering: Proceedings of the AHFE 2017 International Conference
on Neuroergonomics and Cognitive Engineering, July 17-21,. 2017,
The Westin Bonaventure Hotel, Springer International Publishing,
Los Angeles, CA, pp275-284, 2018.
|
|
127
|
Bailey JD, Baker JC, Rzeszutek MJ and
Lanovaz MJ: Machine learning for supplementing behavioral
assessment. Perspect Behav Sci. 44:605–619. 2021.PubMed/NCBI View Article : Google Scholar
|
|
128
|
Bleidorn W and Hopwood CJ: Using machine
learning to advance personality assessment and theory. Pers Soc
Psychol Rev. 23:190–203. 2019.PubMed/NCBI View Article : Google Scholar
|
|
129
|
Javed AR, Fahad LG, Farhan AA, Abbas S,
Srivastava G, Parizi RM and Khan MS: Automated cognitive health
assessment in smart homes using machine learning. Sustainable
Cities Soc. 65(102572)2021.
|
|
130
|
Chandler C, Foltz PW, Cohen AS, Holmlund
TB, Cheng J, Bernstein JC, Rosenfeld EP and Elvevåg B: Machine
learning for ambulatory applications of neuropsychological testing.
Intelligence Based Med. 1(100006)2020.
|
|
131
|
Yuan D, Hahn S, Allgaier N, Owens MM,
Chaarani B, Potter A and Garavan H: Machine learning approaches
linking brain function to behavior in the ABCD STOP task. Hum Brain
Mapp. 44:1751–1766. 2023.PubMed/NCBI View Article : Google Scholar
|
|
132
|
Ophey A, Wenzel J, Paul R, Giehl K,
Rehberg S, Eggers C, Reker P, van Eimeren T, Kalbe E and
Kambeitz-Ilankovic L: Cognitive performance and learning parameters
predict response to working memory training in Parkinson's disease.
J Surg Case Rep. 12:2235–2247. 2022.PubMed/NCBI View Article : Google Scholar
|
|
133
|
McCutcheon RA, Keefe RS, McGuire PM and
Marquand A: Deconstructing cognitive impairment in psychosis with a
machine learning approach. JAMA Psychiatry. 82:57–65.
2025.PubMed/NCBI View Article : Google Scholar
|
|
134
|
Kim SY, Park J, Choi H, Loeser M, Ryu H
and Seo K: Digital marker for early screening of mild cognitive
impairment through hand and eye movement analysis in virtual
reality using machine learning: First validation study. J Med
Internet Res. 25(e48093)2023.PubMed/NCBI View
Article : Google Scholar
|
|
135
|
Zhang Y, He X, Chan YH, Teng Q and
Rajapakse JC: Multi-modal graph neural network for early diagnosis
of Alzheimer's disease from sMRI and PET scans. Comput Biol Med.
164(107328)2023.PubMed/NCBI View Article : Google Scholar
|
|
136
|
Lee G, Nho K, Kang B, Sohn KA and Kim D:
Predicting Alzheimer's disease progression using multi-modal deep
learning approach. Sci Rep. 9(1952)2019.PubMed/NCBI View Article : Google Scholar
|
|
137
|
Liu X, Li W, Miao S, Liu F, Han K and
Bezabih TT: HAMMF: Hierarchical attention-based multi-task and
multi-modal fusion model for computer-aided diagnosis of
Alzheimer's disease. Comput Biol Med. 176(108564)2024.PubMed/NCBI View Article : Google Scholar
|
|
138
|
Wang M, Shao W, Huang S and Zhang D:
Hypergraph-regularized multimodal learning by graph diffusion for
imaging genetics based alzheimer's disease diagnosis. Med Image
Anal. 89(102883)2023.PubMed/NCBI View Article : Google Scholar
|
|
139
|
Zhu Y, Zhu X, Kim M, Yan J, Kaufer D and
Wu G: Dynamic hyper-graph inference framework for computer-assisted
diagnosis of neurodegenerative diseases. IEEE Trans Med Imaging.
38:608–616. 2018.PubMed/NCBI View Article : Google Scholar
|
|
140
|
Castellano G, Esposito A, Lella E,
Montanaro G and Vessio G: Automated detection of Alzheimer's
disease: A multi-modal approach with 3D MRI and amyloid PET. Sci
Rep. 14(5210)2024.PubMed/NCBI View Article : Google Scholar
|
|
141
|
Chatterjee I and Bansal V: LRE-MMF: A
novel multi-modal fusion algorithm for detecting neurodegeneration
in Parkinson's disease among the geriatric population. Exp
Gerontol. 197(112585)2024.PubMed/NCBI View Article : Google Scholar
|
|
142
|
Chen H, Guo H, Xing L, Chen D, Yuan T,
Zhang Y and Zhang X: Multimodal predictive classification of
Alzheimer's disease based on Attention-combined fusion network:
Integrated neuroimaging modalities and medical examination data.
IET Image Processing. 17:3153–3164. 2023.
|
|
143
|
Huang G, Li R, Bai Q and Alty J:
Multimodal learning of clinically accessible tests to aid diagnosis
of neurodegenerative disorders: A scoping review. Health Inf Sci
Syst. 11(32)2023.PubMed/NCBI View Article : Google Scholar
|