You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
![]() |
|
Amorim JA, Coppotelli G, Rolo AP, Palmeira CM, Ross JM and Sinclair DA: Mitochondrial and metabolic dysfunction in ageing and age-related diseases. Nat Rev Endocrinol. 18:243–258. 2022.PubMed/NCBI View Article : Google Scholar | |
|
Hyatt H, Deminice R, Yoshihara T and Powers SK: Mitochondrial dysfunction induces muscle atrophy during prolonged inactivity: A review of the causes and effects. Arch Biochem Biophys. 662:49–60. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Dagda RK: Role of mitochondrial dysfunction in degenerative brain diseases, an overview. Brain Sci. 8(178)2018.PubMed/NCBI View Article : Google Scholar | |
|
Kaarniranta K, Uusitalo H, Blasiak J, Felszeghy S, Kannan R, Kauppinen A, Salminen A, Sinha D and Ferrington D: Mechanisms of mitochondrial dysfunction and their impact on age-related macular degeneration. Prog Retin Eye Res. 79(100858)2020.PubMed/NCBI View Article : Google Scholar | |
|
Zilio E, Piano V and Wirth B: Mitochondrial dysfunction in spinal muscular atrophy. Int J Mol Sci. 23(10878)2022.PubMed/NCBI View Article : Google Scholar | |
|
Weiss SL, Zhang D, Bush J, Graham K, Starr J, Murray J, Tuluc F, Henrickson S, Deutschman CS, Becker L, et al: Mitochondrial dysfunction is associated with an immune paralysis phenotype in pediatric sepsis. Shock. 54:285–293. 2020.PubMed/NCBI View Article : Google Scholar | |
|
McBride MA, Owen AM, Stothers CL, Hernandez A, Luan L, Burelbach KR, Patil TK, Bohannon JK, Sherwood ER and Patil NK: The metabolic basis of immune dysfunction following sepsis and trauma. Front Immunol. 11(1043)2020.PubMed/NCBI View Article : Google Scholar | |
|
Prasun P: Mitochondrial dysfunction in metabolic syndrome. Biochim Biophys Acta Mol Basis Dis. 1866(165838)2020.PubMed/NCBI View Article : Google Scholar | |
|
Bhatti JS, Bhatti GK and Reddy PH: Mitochondrial dysfunction and oxidative stress in metabolic disorders-a step towards mitochondria based therapeutic strategies. Biochim Biophys Acta Mol Basis Dis. 1863:1066–1077. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Montgomery MK: Mitochondrial dysfunction and diabetes: Is mitochondrial transfer a friend or foe? Biology (Basel). 8(33)2019.PubMed/NCBI View Article : Google Scholar | |
|
Feichtinger RG, Sperl W, Bauer JW and Kofler B: Mitochondrial dysfunction: A neglected component of skin diseases. Exp Dermatol. 23:607–614. 2014.PubMed/NCBI View Article : Google Scholar | |
|
Mizumura K, Cloonan SM, Nakahira K, Bhashyam AR, Cervo M, Kitada T, Glass K, Owen CA, Mahmood A, Washko GR, et al: Mitophagy-dependent necroptosis contributes to the pathogenesis of COPD. J Clin Invest. 124:3987–4003. 2014.PubMed/NCBI View Article : Google Scholar | |
|
Li X, Zhang W, Cao Q, Wang Z, Zhao M, Xu L and Zhuang Q: Mitochondrial dysfunction in fibrotic diseases. Cell Death Discov. 6(80)2020.PubMed/NCBI View Article : Google Scholar | |
|
Ryter SW, Rosas IO, Owen CA, Martinez FJ, Choi ME, Lee CG, Elias JA and Choi AMK: Mitochondrial dysfunction as a pathogenic mediator of chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Ann Am Thorac Soc. 15 (Suppl 4):S266–S272. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Kandasamy J, Olave N, Ballinger SW and Ambalavanan N: Vascular endothelial mitochondrial function predicts death or pulmonary outcomes in preterm infants. Am J Respir Crit Care Med. 196:1040–1049. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Rizzuto R, De Stefani D, Raffaello A and Mammucari C: Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol. 13:566–578. 2012.PubMed/NCBI View Article : Google Scholar | |
|
Matuz-Mares D, González-Andrade M, Araiza-Villanueva MG, Vilchis-Landeros MM and Vázquez-Meza H: Mitochondrial calcium: Effects of its imbalance in disease. Antioxidants (Basel). 11(801)2022.PubMed/NCBI View Article : Google Scholar | |
|
Belosludtsev KN, Talanov EY, Starinets VS, Agafonov AV, Dubinin MV and Belosludtseva NV: Transport of Ca2+ and Ca2+-dependent permeability transition in rat liver mitochondria under the streptozotocin-induced type I diabetes. Cells. 8(1014)2019.PubMed/NCBI View Article : Google Scholar | |
|
Sundaramoorthy P, Sim JJ, Jang YS, Mishra SK, Jeong KY, Mander P, Chul OB, Shim WS, Oh SH, Nam KY and Kim HM: Modulation of intracellular calcium levels by calcium lactate affects colon cancer cell motility through calcium-dependent calpain. PLoS One. 10(e0116984)2015.PubMed/NCBI View Article : Google Scholar | |
|
Spees JL, Olson SD, Whitney MJ and Prockop DJ: Mitochondrial transfer between cells can rescue aerobic respiration. Proc Natl Acad Sci USA. 103:1283–1288. 2006.PubMed/NCBI View Article : Google Scholar | |
|
Rodriguez AM, Nakhle J, Griessinger E and Vignais ML: Intercellular mitochondria trafficking highlighting the dual role of mesenchymal stem cells as both sensors and rescuers of tissue injury. Cell Cycle. 17:712–721. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Plotnikov EY, Babenko VA, Silachev DN, Zorova LD, Khryapenkova TG, Savchenko ES, Pevzner IB and Zorov DB: Intercellular transfer of mitochondria. Biochemistry (Mosc). 80:542–548. 2015.PubMed/NCBI View Article : Google Scholar | |
|
Hayashida K, Takegawa R, Shoaib M, Aoki T, Choudhary RC, Kuschner CE, Nishikimi M, Miyara SJ, Rolston DM, Guevara S, et al: Mitochondrial transplantation therapy for ischemia reperfusion injury: A systematic review of animal and human studies. J Transl Med. 19(214)2021.PubMed/NCBI View Article : Google Scholar | |
|
Yang C, Yokomori R, Chua LH, Tan SH, Tan DQ, Miharada K, Sanda T and Suda T: Mitochondria transfer mediates stress erythropoiesis by altering the bioenergetic profiles of early erythroblasts through CD47. J Exp Med. 219(e20220685)2022.PubMed/NCBI View Article : Google Scholar | |
|
Liu D, Gao Y, Liu J, Huang Y, Yin J, Feng Y, Shi L, Meloni BP, Zhang C, Zheng M and Gao J: Intercellular mitochondrial transfer as a means of tissue revitalization. Signal Transduct Target Ther. 6(65)2021.PubMed/NCBI View Article : Google Scholar | |
|
Emani SM, Piekarski BL, Harrild D, Del Nido PJ and McCully JD: Autologous mitochondrial transplantation for dysfunction after ischemia-reperfusion injury. J Thorac Cardiovasc Surg. 154:286–289. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Guariento A, Piekarski BL, Doulamis IP, Blitzer D, Ferraro AM, Harrild DM, Zurakowski D, Del Nido PJ, McCully JD and Emani SM: Autologous mitochondrial transplantation for cardiogenic shock in pediatric patients following ischemia-reperfusion injury. J Thorac Cardiovasc Surg. 162:992–1001. 2021.PubMed/NCBI View Article : Google Scholar | |
|
Michaeloudes C, Li X, Mak JCW and Bhavsar PK: Study of mesenchymal stem cell-mediated mitochondrial transfer in in vitro models of oxidant-mediated airway epithelial and smooth muscle cell injury. Methods Mol Biol. 2269:93–105. 2021.PubMed/NCBI View Article : Google Scholar | |
|
Konari N, Nagaishi K, Kikuchi S and Fujimiya M: Mitochondria transfer from mesenchymal stem cells structurally and functionally repairs renal proximal tubular epithelial cells in diabetic nephropathy in vivo. Sci Rep. 9(5184)2019.PubMed/NCBI View Article : Google Scholar | |
|
Moschoi R, Imbert V, Nebout M, Chiche J, Mary D, Prebet T, Saland E, Castellano R, Pouyet L, Collette Y, et al: Protective mitochondrial transfer from bone marrow stromal cells to acute myeloid leukemic cells during chemotherapy. Blood. 128:253–264. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Lambrecht BN and Hammad H: The immunology of asthma. Nat Immunol. 16:45–56. 2015.PubMed/NCBI View Article : Google Scholar | |
|
Chan TK, Tan WSD, Peh HY and Wong WSF: Aeroallergens induce reactive oxygen species production and DNA damage and dampen antioxidant responses in bronchial epithelial cells. J Immunol. 199:39–47. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Zhao L, Gao J, Chen G, Huang C, Kong W, Feng Y and Zhen G: Mitochondria dysfunction in airway epithelial cells is associated with type 2-low asthma. Front Genet. 14(1186317)2023.PubMed/NCBI View Article : Google Scholar | |
|
Yao Y, Fan XL, Jiang D, Zhang Y, Li X, Xu ZB, Fang SB, Chiu S, Tse HF, Lian Q and Fu QL: Connexin 43-mediated mitochondrial transfer of iPSC-MSCs alleviates asthma inflammation. Stem Cell Reports. 11:1120–1135. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Malsin ES and Kamp DW: The mitochondria in lung fibrosis: Friend or foe? Transl Res. 202:1–23. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Takahashi M, Mizumura K, Gon Y, Shimizu T, Kozu Y, Shikano S, Iida Y, Hikichi M, Okamoto S, Tsuya K, et al: Iron-dependent mitochondrial dysfunction contributes to the pathogenesis of pulmonary fibrosis. Front Pharmacol. 12(643980)2022.PubMed/NCBI View Article : Google Scholar | |
|
Huang T, Lin R, Su Y, Sun H, Zheng X, Zhang J, Lu X, Zhao B, Jiang X, Huang L, et al: Efficient intervention for pulmonary fibrosis via mitochondrial transfer promoted by mitochondrial biogenesis. Nat Commun. 14(5781)2023.PubMed/NCBI View Article : Google Scholar | |
|
Li CL, Liu JF and Liu SF: Mitochondrial dysfunction in chronic obstructive pulmonary disease: Unraveling the molecular nexus. Biomedicines. 12(814)2024.PubMed/NCBI View Article : Google Scholar | |
|
Canton M, Sánchez-Rodríguez R, Spera I, Venegas FC, Favia M, Viola A and Castegna A: Reactive oxygen species in macrophages: Sources and targets. Front Immunol. 12(734229)2021.PubMed/NCBI View Article : Google Scholar | |
|
Aridgides DS, Mellinger DL, Armstrong DA, Hazlett HF, Dessaint JA, Hampton TH, Atkins GT, Carroll JL and Ashare A: Functional and metabolic impairment in cigarette smoke-exposed macrophages is tied to oxidative stress. Sci Rep. 9(9624)2019.PubMed/NCBI View Article : Google Scholar | |
|
Tulen CBM, Wang Y, Beentjes D, Jessen PJJ, Ninaber DK, Reynaert NL, van Schooten FJ, Opperhuizen A, Hiemstra PS and Remels AHV: Dysregulated mitochondrial metabolism upon cigarette smoke exposure in various human bronchial epithelial cell models. Dis Model Mech. 15(dmm049247)2022.PubMed/NCBI View Article : Google Scholar | |
|
Li X, Michaeloudes C, Zhang Y, Wiegman CH, Adcock IM, Lian Q, Mak JCW, Bhavsar PK and Chung KF: Mesenchymal stem cells alleviate oxidative stress-induced mitochondrial dysfunction in the airways. J Allergy Clin Immunol. 141:1634–1645.e5. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Li X, Zhang Y, Yeung SC, Liang Y, Liang X, Ding Y, Ip MS, Tse HF, Mak JC and Lian Q: Mitochondrial transfer of induced pluripotent stem cell-derived mesenchymal stem cells to airway epithelial cells attenuates cigarette smoke-induced damage. Am J Respir Cell Mol Biol. 51:455–465. 2014.PubMed/NCBI View Article : Google Scholar | |
|
Wu BB, Leung KT and Poon EN: Mitochondrial-targeted therapy for doxorubicin-induced cardiotoxicity. Int J Mol Sci. 23(1912)2022.PubMed/NCBI View Article : Google Scholar | |
|
He H, Wang L, Qiao Y, Zhou Q, Li H, Chen S, Yin D, Huang Q and He M: Doxorubicin induces endotheliotoxicity and mitochondrial dysfunction via ROS/eNOS/NO pathway. Front Pharmacol. 10(1531)2020.PubMed/NCBI View Article : Google Scholar | |
|
Tang H, Tao A, Song J, Liu Q, Wang H and Rui T: Doxorubicin-induced cardiomyocyte apoptosis: Role of mitofusin 2. Int J Biochem Cell Biol. 88:55–59. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Zhang Y, Yu Z, Jiang D, Liang X, Liao S, Zhang Z, Yue W, Li X, Chiu SM, Chai YH, et al: iPSC-MSCs with high intrinsic MIRO1 and sensitivity to TNF-α yield efficacious mitochondrial transfer to rescue anthracycline-induced cardiomyopathy. Stem Cell Reports. 7:749–763. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Jin N, Zhang M, Zhou L, Jin S, Cheng H, Li X, Shi Y, Xiang T, Zhang Z, Liu Z, et al: Mitochondria transplantation alleviates cardiomyocytes apoptosis through inhibiting AMPKα-mTOR mediated excessive autophagy. FASEB J. 38(e23655)2024.PubMed/NCBI View Article : Google Scholar | |
|
Tanaka-Esposito C, Chen Q and Lesnefsky EJ: Blockade of electron transport before ischemia protects mitochondria and decreases myocardial injury during reperfusion in aged rat hearts. Transl Res. 160:207–216. 2012.PubMed/NCBI View Article : Google Scholar | |
|
Huang J, Li R and Wang C: The role of mitochondrial quality control in cardiac ischemia/reperfusion injury. Oxid Med Cell Longev. 2021(5543452)2021.PubMed/NCBI View Article : Google Scholar | |
|
Bouhamida E, Morciano G, Perrone M, Kahsay AE, Della Sala M, Wieckowski MR, Fiorica F, Pinton P, Giorgi C and Patergnani S: The interplay of hypoxia signaling on mitochondrial dysfunction and inflammation in cardiovascular diseases and cancer: From molecular mechanisms to therapeutic approaches. Biology (Basel). 11(300)2022.PubMed/NCBI View Article : Google Scholar | |
|
Cselenyák A, Pankotai E, Horváth EM, Kiss L and Lacza Z: Mesenchymal stem cells rescue cardiomyoblasts from cell death in an in vitro ischemia model via direct cell-to-cell connections. BMC Cell Biol. 11(29)2010.PubMed/NCBI View Article : Google Scholar | |
|
Han H, Hu J, Yan Q, Zhu J, Zhu Z, Chen Y, Sun J and Zhang R: Bone marrow-derived mesenchymal stem cells rescue injured H9c2 cells via transferring intact mitochondria through tunneling nanotubes in an in vitro simulated ischemia/reperfusion model. Mol Med Rep. 13:1517–1524. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Mori D, Miyagawa S, Kawamura T, Yoshioka D, Hata H, Ueno T, oda K, Kuratani T, Oota M, Kawai K, et al: Mitochondrial transfer induced by adipose-derived mesenchymal stem cell transplantation improves cardiac function in rat models of ischemic cardiomyopathy. Cell Transplant. 32(9636897221148457)2023.PubMed/NCBI View Article : Google Scholar | |
|
Mahrouf-Yorgov M, Augeul L, Da Silva CC, Jourdan M, Rigolet M, Manin S, Ferrera R, Ovize M, Henry A, Guguin A, et al: Mesenchymal stem cells sense mitochondria released from damaged cells as danger signals to activate their rescue properties. Cell Death Differ. 24:1224–1238. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Zhang ZH, Zhu W, Ren HZ, Zhao X, Wang S, Ma HC and Shi XL: Mesenchymal stem cells increase expression of heme oxygenase-1 leading to anti-inflammatory activity in treatment of acute liver failure. Stem Cell Res Ther. 8(70)2017.PubMed/NCBI View Article : Google Scholar | |
|
Tang Q, Zheng G, Feng Z, Chen Y, Lou Y, Wang C, Zhang X, Zhang Y, Xu H, Shang P and Liu H: Trehalose ameliorates oxidative stress-mediated mitochondrial dysfunction and ER stress via selective autophagy stimulation and autophagic flux restoration in osteoarthritis development. Cell Death Dis. 8(e3081)2017.PubMed/NCBI View Article : Google Scholar | |
|
Liu H, Li Z, Cao Y, Cui Y, Yang X, Meng Z and Wang R: Effect of chondrocyte mitochondrial dysfunction on cartilage degeneration: A possible pathway for osteoarthritis pathology at the subcellular level. Mol Med Rep. 20:3308–3316. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Sanchez-Lopez E, Coras R, Torres A, Lane NE and Guma M: Synovial inflammation in osteoarthritis progression. Nat Rev Rheumatol. 18:258–275. 2022.PubMed/NCBI View Article : Google Scholar | |
|
Zheng L, Zhang Z, Sheng P and Mobasheri A: The role of metabolism in chondrocyte dysfunction and the progression of osteoarthritis. Ageing Res Rev. 66(101249)2021.PubMed/NCBI View Article : Google Scholar | |
|
Wang R, Maimaitijuma T, Ma YY, Jiao Y and Cao YP: Mitochondrial transfer from bone-marrow-derived mesenchymal stromal cells to chondrocytes protects against cartilage degenerative mitochondrial dysfunction in rats chondrocytes. Chin Med J (Engl). 134:212–218. 2020.PubMed/NCBI View Article : Google Scholar | |
|
Wu Z, Korntner SH, Mullen AM and Zeugolis DI: Collagen type II: From biosynthesis to advanced biomaterials for cartilage engineering. Biomater Biosyst. 4(100030)2021.PubMed/NCBI View Article : Google Scholar | |
|
Fahey M, Bennett M, Thomas M, Montney K, Vivancos-Koopman I, Pugliese B, Browning L, Bonassar LJ and Delco M: Mesenchymal stromal cells donate mitochondria to articular chondrocytes exposed to mitochondrial, environmental, and mechanical stress. Sci Rep. 12(21525)2022.PubMed/NCBI View Article : Google Scholar | |
|
Michelacci YM, Baccarin RYA and Rodrigues NNP: Chondrocyte homeostasis and differentiation: Transcriptional control and signaling in healthy and osteoarthritic conditions. Life (Basel). 13(1460)2023.PubMed/NCBI View Article : Google Scholar | |
|
Fearon U, Canavan M, Biniecka M and Veale DJ: Hypoxia, mitochondrial dysfunction and synovial invasiveness in rheumatoid arthritis. Nat Rev Rheumatol. 12:385–397. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Zhang X, Eliasberg CD and Rodeo SA: Mitochondrial dysfunction and potential mitochondrial protectant treatments in tendinopathy. Ann N Y Acad Sci. 1490:29–41. 2021.PubMed/NCBI View Article : Google Scholar | |
|
Zhang X, Wada S, Zhang Y, Chen D, Deng XH and Rodeo SA: Assessment of mitochondrial dysfunction in a murine model of supraspinatus tendinopathy. J Bone Joint Surg Am. 103:174–183. 2021.PubMed/NCBI View Article : Google Scholar | |
|
Liu YC, Wang HL, Huang YZ, Weng YH, Chen RS, Tsai WC, Yeh TH, Lu CS, Chen YL, Lin YW, et al: Alda-1, an activator of ALDH2, ameliorates Achilles tendinopathy in cellular and mouse models. Biochem Pharmacol. 175(113919)2020.PubMed/NCBI View Article : Google Scholar | |
|
Dex S, Alberton P, Willkomm L, Söllradl T, Bago S, Milz S, Shakibaei M, Ignatius A, Bloch W, Clausen-Schaumann H, et al: Tenomodulin is required for tendon endurance running and collagen I fibril adaptation to mechanical load. EBioMedicine. 20:240–254. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Wei B, Ji M, Lin Y, Wang S, Liu Y, Geng R, Hu X, Xu L, Li Z, Zhang W and Lu J: Mitochondrial transfer from bone mesenchymal stem cells protects against tendinopathy both in vitro and in vivo. Stem Cell Res Ther. 14(104)2023.PubMed/NCBI View Article : Google Scholar | |
|
Lee JM, Hwang JW, Kim MJ, Jung SY, Kim KS, Ahn EH, Min K and Choi YS: Mitochondrial transplantation modulates inflammation and apoptosis, alleviating tendinopathy both in vivo and in vitro. Antioxidants (Basel). 10(696)2021.PubMed/NCBI View Article : Google Scholar | |
|
Kubat GB, Bouhamida E, Ulger O, Turkel I, Pedriali G, Ramaccini D, Ekinci O, Ozerklig B, Atalay O, Patergnani S, et al: Mitochondrial dysfunction and skeletal muscle atrophy: Causes, mechanisms, and treatment strategies. Mitochondrion. 72:33–58. 2023.PubMed/NCBI View Article : Google Scholar | |
|
Hyatt HW and Powers SK: Mitochondrial dysfunction is a common denominator linking skeletal muscle wasting due to disease, aging, and prolonged inactivity. Antioxidants (Basel). 10(588)2021.PubMed/NCBI View Article : Google Scholar | |
|
Matsumoto C, Sekine H, Nahata M, Mogami S, Ohbuchi K, Fujitsuka N and Takeda H: Role of mitochondrial dysfunction in the pathogenesis of cisplatin-induced myotube atrophy. Biol Pharm Bull. 45:780–792. 2022.PubMed/NCBI View Article : Google Scholar | |
|
Shen S, Liao Q, Liu J, Pan R, Lee SMY and Lin L: Myricanol rescues dexamethasone-induced muscle dysfunction via a sirtuin 1-dependent mechanism. J Cachexia Sarcopenia Muscle. 10:429–444. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Yang B, Yang X, Sun X, Shi J, Shen Y and Chen R: IL-6 deficiency attenuates skeletal muscle atrophy by inhibiting mitochondrial ROS production through the upregulation of PGC-1 α in septic mice. Oxid Med Cell Longev. 2022(9148246)2022.PubMed/NCBI View Article : Google Scholar | |
|
Xiao Y, Karam C, Yi J, Zhang L, Li X, Yoon D, Wang H, Dhakal K, Ramlow P, Yu T, et al: ROS-related mitochondrial dysfunction in skeletal muscle of an ALS mouse model during the disease progression. Pharmacol Res. 138:25–36. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Moore TM, Lin AJ, Strumwasser AR, Cory K, Whitney K, Ho T, Ho T, Lee JL, Rucker DH, Nguyen CQ, et al: Mitochondrial dysfunction is an early consequence of partial or complete dystrophin loss in mdx mice. Front Physiol. 11(690)2020.PubMed/NCBI View Article : Google Scholar | |
|
Mohiuddin M, Choi JJ, Lee NH, Jeong H, Anderson SE, Han WM, Aliya B, Peykova TZ, Verma S, García AJ, et al: Transplantation of muscle stem cell mitochondria rejuvenates the bioenergetic function of dystrophic muscle. bioRxiv: 2020.04.17.017822, 2020. | |
|
Wang L, Jiao XF, Wu C, Li XQ, Sun HX, Shen XY, Zhang KZ, Zhao C, Liu L, Wang M, et al: Trimetazidine attenuates dexamethasone-induced muscle atrophy via inhibiting NLRP3/GSDMD pathway-mediated pyroptosis. Cell Death Discov. 7(251)2021.PubMed/NCBI View Article : Google Scholar | |
|
Kim MJ, Lee JM, Min K and Choi YS: Xenogeneic transplantation of mitochondria induces muscle regeneration in an in vivo rat model of dexamethasone-induced atrophy. J Muscle Res Cell Motil. 45:53–68. 2024.PubMed/NCBI View Article : Google Scholar | |
|
Xu S, Li Y, Chen JP, Li DZ, Jiang Q, Wu T and Zhou XZ: Oxygen glucose deprivation/re-oxygenation-induced neuronal cell death is associated with Lnc-D63785 m6A methylation and miR-422a accumulation. Cell Death Dis. 11(816)2020.PubMed/NCBI View Article : Google Scholar | |
|
Juntunen M, Hagman S, Moisan A, Narkilahti S and Miettinen S: In vitro oxygen-glucose deprivation-induced stroke models with human neuroblastoma cell- and induced pluripotent stem cell-derived neurons. Stem Cells Int. 2020(8841026)2020.PubMed/NCBI View Article : Google Scholar | |
|
Liu F, Lu J, Manaenko A, Tang J and Hu Q: Mitochondria in ischemic stroke: New insight and implications. Aging Dis. 9:924–937. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Norat P, Soldozy S, Sokolowski JD, Gorick CM, Kumar JS, Chae Y, Yağmurlu K, Prada F, Walker M, Levitt MR, et al: Mitochondrial dysfunction in neurological disorders: Exploring mitochondrial transplantation. NPJ Regen Med. 5(22)2020.PubMed/NCBI View Article : Google Scholar | |
|
Babenko VA, Silachev DN, Zorova LD, Pevzner IB, Khutornenko AA, Plotnikov EY, Sukhikh GT and Zorov DB: Improving the post-stroke therapeutic potency of mesenchymal multipotent stromal cells by cocultivation with cortical neurons: The role of crosstalk between cells. Stem Cells Transl Med. 4:1011–1020. 2015.PubMed/NCBI View Article : Google Scholar | |
|
Jian Z, Ding S, Deng H, Wang J, Yi W, Wang L, Zhu S, Gu L and Xiong X: Probenecid protects against oxygen-glucose deprivation injury in primary astrocytes by regulating inflammasome activity. Brain Res. 1643:123–129. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Babenko VA, Silachev DN, Popkov VA, Zorova LD, Pevzner IB, Plotnikov EY, Sukhikh GT and Zorov DB: Miro1 enhances mitochondria transfer from multipotent mesenchymal stem cells (MMSC) to neural cells and improves the efficacy of cell recovery. Molecules. 23(687)2018.PubMed/NCBI View Article : Google Scholar | |
|
Li J, Li H, Cai S, Bai S, Cai H and Zhang X: CD157 in bone marrow mesenchymal stem cells mediates mitochondrial production and transfer to improve neuronal apoptosis and functional recovery after spinal cord injury. Stem Cell Res Ther. 12(289)2021.PubMed/NCBI View Article : Google Scholar | |
|
Yang Y, Ye G, Zhang YL, He HW, Yu BQ, Hong YM, You W and Li X: Transfer of mitochondria from mesenchymal stem cells derived from induced pluripotent stem cells attenuates hypoxia-ischemia-induced mitochondrial dysfunction in PC12 cells. Neural Regen Res. 15:464–472. 2020.PubMed/NCBI View Article : Google Scholar | |
|
Tseng N, Lambie SC, Huynh CQ, Sanford B, Patel M, Herson PS and Ormond DR: Mitochondrial transfer from mesenchymal stem cells improves neuronal metabolism after oxidant injury in vitro: The role of Miro1. J Cereb Blood Flow Metab. 41:761–770. 2021.PubMed/NCBI View Article : Google Scholar | |
|
Alizadeh A, Dyck SM and Karimi-Abdolrezaee S: Traumatic spinal cord injury: An overview of pathophysiology, models and acute injury mechanisms. Front Neurol. 10(282)2019.PubMed/NCBI View Article : Google Scholar | |
|
Schmidt J and Quintá HR: Mitochondrial dysfunction as a target in spinal cord injury: Intimate correlation between pathological processes and therapeutic approaches. Neural Regen Res. 18:2161–2166. 2023.PubMed/NCBI View Article : Google Scholar | |
|
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al: Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell. 149:1060–1072. 2012.PubMed/NCBI View Article : Google Scholar | |
|
Rong Y, Fan J, Ji C, Wang Z, Ge X, Wang J, Ye W, Yin G, Cai W and Liu W: USP11 regulates autophagy-dependent ferroptosis after spinal cord ischemia-reperfusion injury by deubiquitinating beclin 1. Cell Death Differ. 29:1164–1175. 2022.PubMed/NCBI View Article : Google Scholar | |
|
Li D, Lu X, Xu G, Liu S, Gong Z, Lu F, Xia X, Jiang J, Wang H, Zou F and Ma X: Dihydroorotate dehydrogenase regulates ferroptosis in neurons after spinal cord injury via the P53-ALOX15 signaling pathway. CNS Neurosci Ther. 29:1923–1939. 2023.PubMed/NCBI View Article : Google Scholar | |
|
Stockwell BR: Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications. Cell. 185:2401–2421. 2022.PubMed/NCBI View Article : Google Scholar | |
|
Yao S, Pang M, Wang Y, Wang X, Lin Y, Lv Y, Xie Z, Hou J, Du C, Qiu Y, et al: Mesenchymal stem cell attenuates spinal cord injury by inhibiting mitochondrial quality control-associated neuronal ferroptosis. Redox Biol. 67(102871)2023.PubMed/NCBI View Article : Google Scholar | |
|
Jain R, Begum N, Tryphena KP, Singh SB, Srivastava S, Rai SN, Vamanu E and Khatri DK: Inter and intracellular mitochondrial transfer: Future of mitochondrial transplant therapy in Parkinson's disease. Biomed Pharmacother. 159(114268)2023.PubMed/NCBI View Article : Google Scholar | |
|
Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, Schrag AE and Lang AE: Parkinson disease. Nat Rev Dis Primers. 3(17013)2017.PubMed/NCBI View Article : Google Scholar | |
|
van der Bliek AM, Sedensky MM and Morgan PG: Cell biology of the mitochondrion. Genetics. 207:843–871. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Ahn EH, Lei K, Kang SS, Wang ZH, Liu X, Hong W, Wang YT, Edgington-Mitchell LE, Jin L and Ye K: Mitochondrial dysfunction triggers the pathogenesis of Parkinson's disease in neuronal C/EBPβ transgenic mice. Mol Psychiatry. 26:7838–7850. 2021.PubMed/NCBI View Article : Google Scholar | |
|
Xiao B, Kuruvilla J and Tan EK: Mitophagy and reactive oxygen species interplay in Parkinson's disease. NPJ Parkinsons Dis. 8(135)2022.PubMed/NCBI View Article : Google Scholar | |
|
Eo H, Yu SH, Choi Y, Kim Y, Kang YC, Lee H, Kim JH, Han K, Lee HK, Chang MY, et al: Mitochondrial transplantation exhibits neuroprotective effects and improves behavioral deficits in an animal model of Parkinson's disease. Neurotherapeutics. 21(e00355)2024.PubMed/NCBI View Article : Google Scholar | |
|
Thakur P and Nehru B: Inhibition of neuroinflammation and mitochondrial dysfunctions by carbenoxolone in the rotenone model of Parkinson's disease. Mol Neurobiol. 51:209–219. 2015.PubMed/NCBI View Article : Google Scholar | |
|
Cheng XY, Biswas S, Li J, Mao CJ, Chechneva O, Chen J, Li K, Li J, Zhang JR, Liu CF and Deng WB: Human iPSCs derived astrocytes rescue rotenone-induced mitochondrial dysfunction and dopaminergic neurodegeneration in vitro by donating functional mitochondria. Transl Neurodegener. 9(13)2020.PubMed/NCBI View Article : Google Scholar | |
|
Chiu GS, Maj MA, Rizvi S, Dantzer R, Vichaya EG, Laumet G, Kavelaars A and Heijnen CJ: Pifithrin-μ prevents cisplatin-induced chemobrain by preserving neuronal mitochondrial function. Cancer Res. 77:742–752. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Kleih M, Böpple K, Dong M, Gaißler A, Heine S, Olayioye MA, Aulitzky WE and Essmann F: Direct impact of cisplatin on mitochondria induces ROS production that dictates cell fate of ovarian cancer cells. Cell Death Dis. 10(851)2019.PubMed/NCBI View Article : Google Scholar | |
|
Boukelmoune N, Chiu GS, Kavelaars A and Heijnen CJ: Mitochondrial transfer from mesenchymal stem cells to neural stem cells protects against the neurotoxic effects of cisplatin. Acta Neuropathol Commun. 6(139)2018.PubMed/NCBI View Article : Google Scholar | |
|
Méthot S, Proulx S, Brunette I and Rochette PJ: Rescuing cellular function in Fuchs endothelial corneal dystrophy by healthy exogenous mitochondrial internalization. Sci Rep. 13(3380)2023.PubMed/NCBI View Article : Google Scholar | |
|
Jiang D, Chen FX, Zhou H, Lu YY, Tan H, Yu SJ, Yuan J, Liu H, Meng W and Jin ZB: Bioenergetic crosstalk between mesenchymal stem cells and various ocular cells through the intercellular trafficking of mitochondria. Theranostics. 10:7260–7272. 2020.PubMed/NCBI View Article : Google Scholar | |
|
Vallabh NA, Romano V and Willoughby CE: Mitochondrial dysfunction and oxidative stress in corneal disease. Mitochondrion. 36:103–113. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Numa K, Ueno M, Fujita T, Ueda K, Hiramoto N, Mukai A, Tokuda Y, Nakano M, Sotozono C, Kinoshita S and Hamuro J: Mitochondria as a Platform for dictating the cell fate of cultured human corneal endothelial cells. Invest Ophthalmol Vis Sci. 61(10)2020.PubMed/NCBI View Article : Google Scholar | |
|
Jiang D, Gao F, Zhang Y, Wong DS, Li Q, Tse HF, Xu G, Yu Z and Lian Q: Mitochondrial transfer of mesenchymal stem cells effectively protects corneal epithelial cells from mitochondrial damage. Cell Death Dis. 7(e2467)2016.PubMed/NCBI View Article : Google Scholar | |
|
Hanna SJ, McCoy-Simandle K, Leung E, Genna A, Condeelis J and Cox D: Tunneling nanotubes, a novel mode of tumor cell-macrophage communication in tumor cell invasion. J Cell Sci. 132(jcs223321)2019.PubMed/NCBI View Article : Google Scholar | |
|
Wang L, Klingeborn M, Travis AM, Hao Y, Arshavsky VY and Gospe SM III: Progressive optic atrophy in a retinal ganglion cell-specific mouse model of complex I deficiency. Sci Rep. 10(16326)2020.PubMed/NCBI View Article : Google Scholar | |
|
Yu AK, Song L, Murray KD, van der List D, Sun C, Shen Y, Xia Z and Cortopassi GA: Mitochondrial complex I deficiency leads to inflammation and retinal ganglion cell death in the Ndufs4 mouse. Hum Mol Genet. 24:2848–2860. 2015.PubMed/NCBI View Article : Google Scholar | |
|
Warwick AM, Bomze HM, Wang L, Hao Y, Stinnett SS and Gospe SM III: Hypoxia-mediated rescue of retinal ganglion cells deficient in mitochondrial complex I is independent of the hypoxia-inducible factor pathway. Sci Rep. 14(24114)2024.PubMed/NCBI View Article : Google Scholar | |
|
Jiang D, Xiong G, Feng H, Zhang Z, Chen P, Yan B, Chen L, Gandhervin K, Ma C, Li C, et al: Donation of mitochondria by iPSC-derived mesenchymal stem cells protects retinal ganglion cells against mitochondrial complex I defect-induced degeneration. Theranostics. 9:2395–2410. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Navneet S, Wilson K and Rohrer B: Muller glial cells in the macula: Their activation and cell-cell interactions in age-related macular degeneration. Invest Ophthalmol Vis Sci. 65(42)2024.PubMed/NCBI View Article : Google Scholar | |
|
Xue B, Xie Y, Xue Y, Hu N, Zhang G, Guan H and Ji M: Involvement of P2X7 receptors in retinal ganglion cell apoptosis induced by activated Müller cells. Exp Eye Res. 153:42–50. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Hu X, Zhao GL, Xu MX, Zhou H, Li F, Miao Y, Lei B, Yang XL and Wang Z: Interplay between Muller cells and microglia aggravates retinal inflammatory response in experimental glaucoma. J Neuroinflammation. 18(303)2021.PubMed/NCBI View Article : Google Scholar | |
|
Qiu AW, Bian Z, Mao PA and Liu QH: IL-17A exacerbates diabetic retinopathy by impairing Müller cell function via Act1 signaling. Exp Mol Med. 48(e280)2016.PubMed/NCBI View Article : Google Scholar | |
|
Natoli R, Fernando N, Madigan M, Chu-Tan JA, Valter K, Provis J and Rutar M: Microglia-derived IL-1β promotes chemokine expression by Müller cells and RPE in focal retinal degeneration. Mol Neurodegener. 12(31)2017.PubMed/NCBI View Article : Google Scholar | |
|
Marques E, Alves Teixeira M, Nguyen C, Terzi F and Gallazzini M: Lipocalin-2 induces mitochondrial dysfunction in renal tubular cells via mTOR pathway activation. Cell Rep. 42(113032)2023.PubMed/NCBI View Article : Google Scholar | |
|
Chen Y, Yang Y, Liu Z and He L: Adiponectin promotes repair of renal tubular epithelial cells by regulating mitochondrial biogenesis and function. Metabolism. 128(154959)2022.PubMed/NCBI View Article : Google Scholar | |
|
Ji X, Yang X, Gu X, Chu L, Sun S, Sun J, Song P, Mu Q, Wang Y, Sun X, et al: CUL3 induces mitochondrial dysfunction via MRPL12 ubiquitination in renal tubular epithelial cells. FEBS J. 290:5340–5352. 2023.PubMed/NCBI View Article : Google Scholar | |
|
Cai F, Li D, Xie Y, Wang X, Ma H, Xu H, Cheng J, Zhuang H and Hua ZC: Sulfide:quinone oxidoreductase alleviates ferroptosis in acute kidney injury via ameliorating mitochondrial dysfunction of renal tubular epithelial cells. Redox Biol. 69(102973)2024.PubMed/NCBI View Article : Google Scholar | |
|
Xiong YB, Huang WY, Ling X, Zhou S, Wang XX, Li XL and Zhou LL: Mitochondrial calcium uniporter promotes kidney aging in mice through inducing mitochondrial calcium-mediated renal tubular cell senescence. Acta Pharmacol Sin. 45:2149–2162. 2024.PubMed/NCBI View Article : Google Scholar | |
|
Wang J, Yue X, Meng C, Wang Z, Jin X, Cui X, Yang J, Shan C, Gao Z, Yang Y, et al: Acute hyperglycemia may induce renal tubular injury through mitophagy inhibition. Front Endocrinol (Lausanne). 11(536213)2020.PubMed/NCBI View Article : Google Scholar | |
|
Aluksanasuwan S, Plumworasawat S, Malaitad T, Chaiyarit S and Thongboonkerd V: High glucose induces phosphorylation and oxidation of mitochondrial proteins in renal tubular cells: A proteomics approach. Sci Rep. 10(5843)2020.PubMed/NCBI View Article : Google Scholar | |
|
Nahdi AMTA, John A and Raza H: Elucidation of molecular mechanisms of streptozotocin-induced oxidative stress, apoptosis, and mitochondrial dysfunction in Rin-5F pancreatic β-cells. Oxid Med Cell Longev. 2017(7054272)2017.PubMed/NCBI View Article : Google Scholar | |
|
Bhargava P and Schnellmann RG: Mitochondrial energetics in the kidney. Nat Rev Nephrol. 13:629–646. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Kapetanaki S, Kumawat AK, Persson K and Demirel I: TMAO suppresses megalin expression and albumin uptake in human proximal tubular cells via PI3K and ERK signaling. Int J Mol Sci. 23(8856)2022.PubMed/NCBI View Article : Google Scholar | |
|
Peruchetti DB, Silva-Aguiar RP, Siqueira GM, Dias WB and Caruso-Neves C: High glucose reduces megalin-mediated albumin endocytosis in renal proximal tubule cells through protein kinase B O-GlcNAcylation. J Biol Chem. 293:11388–11400. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Kupriyanova Y, Zaharia OP, Bobrov P, Karusheva Y, Burkart V, Szendroedi J, Hwang JH and Roden M: GDS group. Early changes in hepatic energy metabolism and lipid content in recent-onset type 1 and 2 diabetes mellitus. J Hepatol. 74:1028–1037. 2021.PubMed/NCBI View Article : Google Scholar | |
|
Tilg H, Moschen AR and Roden M: NAFLD and diabetes mellitus. Nat Rev Gastroenterol Hepatol. 14:32–42. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Nassir F and Ibdah JA: Role of mitochondria in nonalcoholic fatty liver disease. Int J Mol Sci. 15:8713–8742. 2014.PubMed/NCBI View Article : Google Scholar | |
|
Zheng P, Ma W, Gu Y, Wu H, Bian Z, Liu N, Yang D and Chen X: High-fat diet causes mitochondrial damage and downregulation of mitofusin-2 and optic atrophy-1 in multiple organs. J Clin Biochem Nutr. 73:61–76. 2023.PubMed/NCBI View Article : Google Scholar | |
|
Bi Y, Guo X, Zhang M, Zhu K, Shi C, Fan B, Wu Y, Yang Z and Ji G: Bone marrow derived-mesenchymal stem cell improves diabetes-associated fatty liver via mitochondria transformation in mice. Stem Cell Res Ther. 12(602)2021.PubMed/NCBI View Article : Google Scholar | |
|
Hsu MJ, Karkossa I, Schäfer I, Christ M, Kühne H, Schubert K, Rolle-Kampczyk UE, Kalkhof S, Nickel S, Seibel P, et al: Mitochondrial transfer by human mesenchymal stromal cells ameliorates hepatocyte lipid load in a mouse model of NASH. Biomedicines. 8(350)2020.PubMed/NCBI View Article : Google Scholar | |
|
Gaspers LD, Pierobon N and Thomas AP: Intercellular calcium waves integrate hormonal control of glucose output in the intact liver. J Physiol. 597:2867–2885. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Barreto SG, Habtezion A, Gukovskaya A, Lugea A, Jeon C, Yadav D, Hegyi P, Venglovecz V, Sutton R and Pandol SJ: Critical thresholds: key to unlocking the door to the prevention and specific treatments for acute pancreatitis. Gut. 70:194–203. 2021.PubMed/NCBI View Article : Google Scholar | |
|
Liu W, Ren Y, Wang T, Wang M, Xu Y, Zhang J, Bi J, Wu Z, Zhang Y and Wu R: Blocking CIRP protects against acute pancreatitis by improving mitochondrial function and suppressing pyroptosis in acinar cells. Cell Death Discov. 10(156)2024.PubMed/NCBI View Article : Google Scholar | |
|
Mukherjee R, Mareninova OA, Odinokova IV, Huang W, Murphy J, Chvanov M, Javed MA, Wen L, Booth DM, Cane MC, et al: Mechanism of mitochondrial permeability transition pore induction and damage in the pancreas: Inhibition prevents acute pancreatitis by protecting production of ATP. Gut. 65:1333–1346. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Hu Z, Wang D, Gong J, Li Y, Ma Z, Luo T, Jia X, Shi Y and Song Z: MSCs deliver hypoxia-treated mitochondria reprogramming acinar metabolism to alleviate severe acute pancreatitis injury. Adv Sci (Weinh). 10(e2207691)2023.PubMed/NCBI View Article : Google Scholar | |
|
Shapiro AM, Pokrywczynska M and Ricordi C: Clinical pancreatic islet transplantation. Nat Rev Endocrinol. 13:268–277. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Kin T, Senior P, O'Gorman D, Richer B, Salam A and Shapiro AMJ: Risk factors for islet loss during culture prior to transplantation. Transpl Int. 21:1029–1035. 2008.PubMed/NCBI View Article : Google Scholar | |
|
Jimenez-Sánchez C, Brun T and Maechler P: Mitochondrial carriers regulating insulin secretion profiled in human islets upon metabolic stress. Biomolecules. 10(1543)2020.PubMed/NCBI View Article : Google Scholar | |
|
Zhang K, Bao R, Huang F, Yang K, Ding Y, Lauterboeck L, Yoshida M, Long Q and Yang Q: ATP synthase inhibitory factor subunit 1 regulates islet β-cell function via repression of mitochondrial homeostasis. Lab Invest. 102:69–79. 2022.PubMed/NCBI View Article : Google Scholar | |
|
Rackham CL, Hubber EL, Czajka A, Malik AN, King AJF and Jones PM: Optimizing beta cell function through mesenchymal stromal cell-mediated mitochondria transfer. Stem Cells. 38:574–584. 2020.PubMed/NCBI View Article : Google Scholar | |
|
Shoop WK, Lape J, Trum M, Powell A, Sevigny E, Mischler A, Bacman SR, Fontanesi F, Smith J, Jantz D, et al: Efficient elimination of MELAS-associated m.3243G mutant mitochondrial DNA by an engineered mitoARCUS nuclease. Nat Metab. 5:2169–2183. 2023.PubMed/NCBI View Article : Google Scholar | |
|
Ikeda T, Osaka H, Shimbo H, Tajika M, Yamazaki M, Ueda A, Murayama K and Yamagata T: Mitochondrial DNA 3243A>T mutation in a patient with MELAS syndrome. Hum Genome Var. 5(25)2018.PubMed/NCBI View Article : Google Scholar | |
|
El-Hattab AW, Adesina AM, Jones J and Scaglia F: MELAS syndrome: Clinical manifestations, pathogenesis, and treatment options. Mol Genet Metab. 116:4–12. 2015.PubMed/NCBI View Article : Google Scholar | |
|
Lin TK, Chen SD, Chuang YC, Lan MY, Chuang JH, Wang PW, Hsu TY, Wang FS, Tsai MH, Huang ST, et al: Mitochondrial transfer of wharton's jelly mesenchymal stem cells eliminates mutation burden and rescues mitochondrial bioenergetics in rotenone-stressed MELAS fibroblasts. Oxid Med Cell Longev. 2019(9537504)2019.PubMed/NCBI View Article : Google Scholar | |
|
Liu L, Yang J, Otani Y, Shiga T, Yamaguchi A, Oda Y, Hattori M, Goto T, Ishibashi S, Kawashima-Sonoyama Y, et al: MELAS-derived neurons functionally improve by mitochondrial transfer from highly purified mesenchymal stem cells (REC). Int J Mol Sci. 24(17186)2023.PubMed/NCBI View Article : Google Scholar | |
|
Tuppen HA, Blakely EL, Turnbull DM and Taylor RW: Mitochondrial DNA mutations and human disease. Biochim Biophys Acta. 1797:113–128. 2010.PubMed/NCBI View Article : Google Scholar | |
|
Chuang YC, Liou CW, Chen SD, Wang PW, Chuang JH, Tiao MM, Hsu TY, Lin HY and Lin TK: Mitochondrial transfer from wharton's jelly mesenchymal stem cell to MERRF cybrid reduces oxidative stress and improves mitochondrial bioenergetics. Oxid Med Cell Longev. 2017(5691215)2017.PubMed/NCBI View Article : Google Scholar | |
|
Capristo M, Del Dotto V, Tropeano CV, Fiorini C, Caporali L, La Morgia C, Valentino ML, Montopoli M, Carelli V and Maresca A: Rapamycin rescues mitochondrial dysfunction in cells carrying the m.8344A > G mutation in the mitochondrial tRNALys. Mol Med. 28(90)2022.PubMed/NCBI View Article : Google Scholar | |
|
Jacoby E, Blumkin M, Anikster Y, Varda-Bloom N, Pansheen J, Bar Yoseph O, Gruber N, Lahav E, Besser MJ, Schachter J, et al: First-in-human mitochondrial augmentation of hematopoietic stem cells in pearson syndrome. Blood. 132(1024)2018. | |
|
Jacoby E, Bar-Yosef O, Gruber N, Lahav E, Varda-Bloom N, Bolkier Y, Bar D, Blumkin MB, Barak S, Eisenstein E, et al: Mitochondrial augmentation of hematopoietic stem cells in children with single large-scale mitochondrial DNA deletion syndromes. Sci Transl Med. 14(eabo3724)2022.PubMed/NCBI View Article : Google Scholar | |
|
Fu Y, Ni J and Chen J, Ma G, Zhao M, Zhu S, Shi T, Zhu J, Huang Z, Zhang J and Chen J: Dual-functionalized MSCs that express CX3CR1 and IL-25 exhibit enhanced therapeutic effects on inflammatory bowel disease. Mol Ther. 28:1214–1228. 2020.PubMed/NCBI View Article : Google Scholar | |
|
Van Nguyen TT, Vu NB and Van Pham P: Mesenchymal stem cell transplantation for ischemic diseases: Mechanisms and challenges. Tissue Eng Regen Med. 18:587–611. 2021.PubMed/NCBI View Article : Google Scholar | |
|
Zhu XY, Lerman A and Lerman LO: Concise review: Mesenchymal stem cell treatment for ischemic kidney disease. Stem Cells. 31:1731–1736. 2013.PubMed/NCBI View Article : Google Scholar | |
|
Baldari S, Di Rocco G, Piccoli M, Pozzobon M, Muraca M and Toietta G: Challenges and strategies for improving the regenerative effects of mesenchymal stromal cell-based therapies. Int J Mol Sci. 18(2087)2017.PubMed/NCBI View Article : Google Scholar | |
|
Hu C and Li L: Preconditioning influences mesenchymal stem cell properties in vitro and in vivo. J Cell Mol Med. 22:1428–1442. 2018.PubMed/NCBI View Article : Google Scholar | |
|
Li CJ, Chen PK, Sun LY and Pang CY: Enhancement of mitochondrial transfer by antioxidants in human mesenchymal stem cells. Oxid Med Cell Longev. 2017(8510805)2017.PubMed/NCBI View Article : Google Scholar | |
|
Lee DS and Kim JE: PDI-mediated S-nitrosylation of DRP1 facilitates DRP1-S616 phosphorylation and mitochondrial fission in CA1 neurons. Cell Death Dis. 9(869)2018.PubMed/NCBI View Article : Google Scholar | |
|
Yao X, Ma Y, Zhou W, Liao Y, Jiang Z, Lin J, He Q, Wu H, Wei W, Wang X, et al: In-cytoplasm mitochondrial transplantation for mesenchymal stem cells engineering and tissue regeneration. Bioeng Transl Med. 7(e10250)2021.PubMed/NCBI View Article : Google Scholar | |
|
Guo Y, Chi X, Wang Y, Heng BC, Wei Y, Zhang X, Zhao H, Yin Y and Deng X: Mitochondria transfer enhances proliferation, migration, and osteogenic differentiation of bone marrow mesenchymal stem cell and promotes bone defect healing. Stem Cell Res Ther. 11(245)2020.PubMed/NCBI View Article : Google Scholar | |
|
Lin RZ, Im GB, Luo AC, Zhu Y, Hong X, Neumeyer J, Tang HW, Perrimon N and Melero-Martin JM: Mitochondrial transfer mediates endothelial cell engraftment through mitophagy. Nature. 629:660–668. 2024.PubMed/NCBI View Article : Google Scholar | |
|
Akhter W, Nakhle J, Vaillant L, Garcin G, Le Saout C, Simon M, Crozet C, Djouad F, Jorgensen C, Vignais ML and Hernandez J: Transfer of mesenchymal stem cell mitochondria to CD4+ T cells contributes to repress Th1 differentiation by downregulating T-bet expression. Stem Cell Res Ther. 14(12)2023.PubMed/NCBI View Article : Google Scholar | |
|
Court AC, Le-Gatt A, Luz-Crawford P, Parra E, Aliaga-Tobar V, Bátiz LF, Contreras RA, Ortúzar MI, Kurte M, Elizondo-Vega R, et al: Mitochondrial transfer from MSCs to T cells induces Treg differentiation and restricts inflammatory response. EMBO Rep. 21(e48052)2020.PubMed/NCBI View Article : Google Scholar | |
|
Romano M, Tung SL, Smyth LA and Lombardi G: Treg therapy in transplantation: A general overview. Transpl Int. 30:745–753. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Li LZ, Zhang Z and Bhoj VG: Conventional T cell therapies pave the way for novel Treg therapeutics. Cell Immunol. 359(104234)2021.PubMed/NCBI View Article : Google Scholar | |
|
Piekarska K, Urban-Wójciuk Z, Kurkowiak M, Pelikant-Małecka I, Schumacher A, Sakowska J, Spodnik JH, Arcimowicz Ł, Zielińska H, Tymoniuk B, et al: Mesenchymal stem cells transfer mitochondria to allogeneic Tregs in an HLA-dependent manner improving their immunosuppressive activity. Nat Commun. 13(856)2022.PubMed/NCBI View Article : Google Scholar | |
|
Espinosa-Carrasco G, Le Saout C, Fontanaud P, Stratmann T, Mollard P, Schaeffer M and Hernandez J: CD4+ T helper cells play a key role in maintaining diabetogenic CD8+ T cell function in the pancreas. Front Immunol. 8(2001)2018.PubMed/NCBI View Article : Google Scholar | |
|
Luz-Crawford P, Hernandez J, Djouad F, Luque-Campos N, Caicedo A, Carrère-Kremer S, Brondello JM, Vignais ML, Pène J and Jorgensen C: Mesenchymal stem cell repression of Th17 cells is triggered by mitochondrial transfer. Stem Cell Res Ther. 10(232)2019.PubMed/NCBI View Article : Google Scholar | |
|
Lazarevic V, Glimcher LH and Lord GM: T-bet: A bridge between innate and adaptive immunity. Nat Rev Immunol. 13:777–789. 2013.PubMed/NCBI View Article : Google Scholar : Ji L, Chen Y, Wang H, Zhang W, He L, Wu J and Liu Y: Overexpression of Sirt6 promotes M2 macrophage transformation, alleviating renal injury in diabetic nephropathy. Int J Oncol 55: 103-115, 2019. | |
|
Xu L, Yan X, Zhao Y, Wang J, Liu B, Yu S, Fu J, Liu Y and Su J: Macrophage polarization mediated by mitochondrial dysfunction induces adipose tissue inflammation in obesity. Int J Mol Sci. 23(9252)2022.PubMed/NCBI View Article : Google Scholar | |
|
Ran L, Zhang S, Wang G, Zhao P, Sun J, Zhou J, Gan H, Jeon R, Li Q, Herrmann J and Wang F: Mitochondrial pyruvate carrier-mediated metabolism is dispensable for the classical activation of macrophages. Nat Metab. 5:804–820. 2023.PubMed/NCBI View Article : Google Scholar | |
|
De Santa F, Vitiello L, Torcinaro A and Ferraro E: The role of metabolic remodeling in macrophage polarization and its effect on skeletal muscle regeneration. Antioxid Redox Signal. 30:1553–1598. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Yuan Y, Chen Y, Peng T, Li L, Zhu W, Liu F, Luo R, Cheng J, Liu J and Lu Y: Mitochondrial ROS-induced lysosomal dysfunction impairs autophagic flux and contributes to M1 macrophage polarization in a diabetic condition. Clin Sci (Lond). 133:1759–1777. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Yuan Y, Yuan L, Li L, Liu F, Liu J, Chen Y, Cheng J and Lu Y: Mitochondrial transfer from mesenchymal stem cells to macrophages restricts inflammation and alleviates kidney injury in diabetic nephropathy mice via PGC-1α activation. Stem Cells. 39:913–928. 2021.PubMed/NCBI View Article : Google Scholar | |
|
Hussell T and Bell TJ: Alveolar macrophages: Plasticity in a tissue-specific context. Nat Rev Immunol. 14:81–93. 2014.PubMed/NCBI View Article : Google Scholar | |
|
Jackson MV, Morrison TJ, Doherty DF, McAuley DF, Matthay MA, Kissenpfennig A, O'Kane CM and Krasnodembskaya AD: Mitochondrial transfer via tunneling nanotubes is an important mechanism by which mesenchymal stem cells enhance macrophage phagocytosis in the in vitro and in vivo models of ARDS. Stem Cells. 34:2210–2223. 2016.PubMed/NCBI View Article : Google Scholar | |
|
Jackson MV and Krasnodembskaya AD: Analysis of mitochondrial transfer in direct Co-cultures of human monocyte-derived macrophages (MDM) and mesenchymal stem cells (MSC). Bio Protoc. 7(e2255)2017.PubMed/NCBI View Article : Google Scholar | |
|
Phinney DG, Di Giuseppe M, Njah J, Sala E, Shiva S, St Croix CM, Stolz DB, Watkins SC, Di YP, Leikauf GD, et al: Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs. Nat Commun. 6(8472)2015.PubMed/NCBI View Article : Google Scholar | |
|
Xia L, Zhang C, Lv N, Liang Z, Ma T, Cheng H, Xia Y and Shi L: AdMSC-derived exosomes alleviate acute lung injury via transferring mitochondrial component to improve homeostasis of alveolar macrophages. Theranostics. 12:2928–2947. 2022.PubMed/NCBI View Article : Google Scholar | |
|
West AP, Khoury-Hanold W, Staron M, Tal MC, Pineda CM, Lang SM, Bestwick M, Duguay BA, Raimundo N, MacDuff DA, et al: Mitochondrial DNA stress primes the antiviral innate immune response. Nature. 520:553–557. 2015.PubMed/NCBI View Article : Google Scholar | |
|
Morrison TJ, Jackson MV, Cunningham EK, Kissenpfennig A, McAuley DF, O'Kane CM and Krasnodembskaya AD: Mesenchymal stromal cells modulate macrophages in clinically relevant lung injury models by extracellular vesicle mitochondrial transfer. Am J Respir Crit Care Med. 196:1275–1286. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Kang MH, Kim YJ and Lee JH: Mitochondria in reproduction. Clin Exp Reprod Med. 50:1–11. 2023.PubMed/NCBI View Article : Google Scholar | |
|
Dadarwal D, Pfeifer L, Cervantes M, Adams GP and Singh J: Effect of maternal age on ATP content and distribution of mitochondria in bovine oocytes. PLoS One. 19(e0302444)2024.PubMed/NCBI View Article : Google Scholar | |
|
Zhao J and Li Y: Adenosine triphosphate content in human unfertilized oocytes, undivided zygotes and embryos unsuitable for transfer or cryopreservation. J Int Med Res. 40:734–739. 2012.PubMed/NCBI View Article : Google Scholar | |
|
May-Panloup P, Chrétien MF, Jacques C, Vasseur C, Malthièry Y and Reynier P: Low oocyte mitochondrial DNA content in ovarian insufficiency. Hum Reprod. 20:593–597. 2005.PubMed/NCBI View Article : Google Scholar | |
|
Zhang D, Keilty D, Zhang ZF and Chian RC: Mitochondria in oocyte aging: Current understanding. Facts Views Vis Obgyn. 9:29–38. 2017.PubMed/NCBI | |
|
Cozzolino M, Marin D and Sisti G: New frontiers in IVF: mtDNA and autologous germline mitochondrial energy transfer. Reprod Biol Endocrinol. 17(55)2019.PubMed/NCBI View Article : Google Scholar | |
|
Takeda K: Functional consequences of mitochondrial mismatch in reconstituted embryos and offspring. J Reprod Dev. 65:485–489. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Tang S, Yang N, Yu M, Wang S, Hu X, Ni H and Cai W: Noninvasive autologous mitochondria transport improves the quality and developmental potential of oocytes from aged mice. F S Sci. 3:310–321. 2022.PubMed/NCBI View Article : Google Scholar | |
|
Wang ZB, Hao JX, Meng TG, Guo L, Dong MZ, Fan LH, Ouyang YC, Wang G, Sun QY, Ou XH and Yao YQ: Transfer of autologous mitochondria from adipose tissue-derived stem cells rescues oocyte quality and infertility in aged mice. Aging (Albany NY). 9:2480–2488. 2017.PubMed/NCBI View Article : Google Scholar | |
|
Kankanam Gamage US, Hashimoto S, Miyamoto Y, Nakano T, Yamanaka M, Koike A, Satoh M and Morimoto Y: Mitochondria transfer from adipose stem cells improves the developmental potential of cryopreserved oocytes. Biomolecules. 12(1008)2022.PubMed/NCBI View Article : Google Scholar | |
|
Zhang Q, Hao JX, Liu BW, Ouyang YC, Guo JN, Dong MZ, Wang ZB, Gao F and Yao YQ: Supplementation of mitochondria from endometrial mesenchymal stem cells improves oocyte quality in aged mice. Cell Prolif. 56(e13372)2023.PubMed/NCBI View Article : Google Scholar | |
|
Zhang C, Tao L, Yue Y, Ren L, Zhang Z, Wang X, Tian J and An L: Mitochondrial transfer from induced pluripotent stem cells rescues developmental potential of in vitro fertilized embryos from aging females†. Biol Reprod. 104:1114–1125. 2021.PubMed/NCBI View Article : Google Scholar | |
|
Tilly J and Woods D: Compositions and methods for autologous germline mitochondrial energy transfer. United States Patent Number. 8,642,329, 2014. | |
|
Fakih MH, Shmoury ME, Szeptycki J, Cruz DBD, Lux C, Verjee S, Burgess CM, Cohn GM and Casper RF: The AUGMENTSM treatment: Physician reported outcomes of the initial global patient experience. JFIV Reprod Med Genet. 3:1–7. 2015. | |
|
Oktay K, Baltaci V, Sonmezer M, Turan V, Unsal E, Baltaci A, Aktuna S and Moy F: Oogonial precursor cell-derived autologous mitochondria injection to improve outcomes in women with multiple IVF failures due to low oocyte quality: A clinical translation. Reprod Sci. 22:1612–1617. 2015.PubMed/NCBI View Article : Google Scholar | |
|
Jiang Z, Shi C, Han H, Fu M, Zhu H, Han T, Fei J, Huang Y, Jin Z, He J, et al: Autologous non-invasively derived stem cells mitochondria transfer shows therapeutic advantages in human embryo quality rescue. Biol Res. 56(60)2023.PubMed/NCBI View Article : Google Scholar | |
|
Morimoto Y, Gamage USK, Yamochi T, Saeki N, Morimoto N, Yamanaka M, Koike A, Miyamoto Y, Tanaka K, Fukuda A, et al: Mitochondrial transfer into human oocytes improved embryo quality and clinical outcomes in recurrent pregnancy failure cases. Int J Mol Sci. 24(2738)2023.PubMed/NCBI View Article : Google Scholar | |
|
Acquistapace A, Bru T, Lesault PF, Figeac F, Coudert AE, le Coz O, Christov C, Baudin X, Auber F, Yiou R, et al: Human mesenchymal stem cells reprogram adult cardiomyocytes toward a progenitor-like state through partial cell fusion and mitochondria transfer. Stem Cells. 29:812–824. 2011.PubMed/NCBI View Article : Google Scholar | |
|
Jiao H, Jiang D, Hu X, Du W, Ji L, Yang Y, Li X, Sho T, Wang X, Li Y, et al: Mitocytosis, a migrasome-mediated mitochondrial quality-control process. Cell. 184:2896–2910.e13. 2021.PubMed/NCBI View Article : Google Scholar | |
|
Sadeghsoltani F, Avci ÇB, Hassanpour P, Haiaty S, Rahmati M, Mota A, Rahbarghazi R, Nemati M, Mahdipour M, Talebi M, et al: Autophagy modulation effect on homotypic transfer of intracellular components via tunneling nanotubes in mesenchymal stem cells. Stem Cell Res Ther. 15(189)2024.PubMed/NCBI View Article : Google Scholar | |
|
Dai L, Wu Z, Yin L, Cheng L, Zhou Q and Ding F: Exogenous functional mitochondria derived from bone mesenchymal stem cells that respond to ROS can rescue neural cells following ischemic stroke. J Inflamm Res. 17:3383–3395. 2024.PubMed/NCBI View Article : Google Scholar | |
|
Mistry JJ, Marlein CR, Moore JA, Hellmich C, Wojtowicz EE, Smith JGW, Macaulay I, Sun Y, Morfakis A, Patterson A, et al: ROS-mediated PI3K activation drives mitochondrial transfer from stromal cells to hematopoietic stem cells in response to infection. Proc Natl Acad Sci USA. 116:24610–24619. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Li Y, Wang Y, Yang W, Wu Z, Ma D, Sun J, Tao H, Ye Q, Liu J, Ma Z, et al: ROS-responsive exogenous functional mitochondria can rescue neural cells post-ischemic stroke. Front Cell Dev Biol. 11(1207748)2023.PubMed/NCBI View Article : Google Scholar | |
|
Saito K, Zhang Q, Yang H, Yamatani K, Ai T, Ruvolo V, Baran N, Cai T, Ma H, Jacamo R, et al: Exogenous mitochondrial transfer and endogenous mitochondrial fission facilitate AML resistance to OxPhos inhibition. Blood Adv. 5:4233–4255. 2021.PubMed/NCBI View Article : Google Scholar | |
|
Ahmad T, Mukherjee S, Pattnaik B, Kumar M, Singh S, Kumar M, Rehman R, Tiwari BK, Jha KA, Barhanpurkar AP, et al: Miro1 regulates intercellular mitochondrial transport & enhances mesenchymal stem cell rescue efficacy. EMBO J. 33:994–1010. 2014.PubMed/NCBI View Article : Google Scholar | |
|
Novak J, Nahacka Z, Oliveira GL, Brisudova P, Dubisova M, Dvorakova S, Miklovicova S, Dalecka M, Puttrich V, Grycova L, et al: The adaptor protein Miro1 modulates horizontal transfer of mitochondria in mouse melanoma models. Cell Rep. 44(115154)2025.PubMed/NCBI View Article : Google Scholar | |
|
Barutta F, Corbetta B, Bellini S, Gambino R, Bruno S, Kimura S, Hase K, Ohno H and Gruden G: Protective effect of mesenchymal stromal cells in diabetic nephropathy: The In vitro and In vivo role of the M-Sec-tunneling nanotubes. Clin Sci (Lond). 138:1537–1559. 2024.PubMed/NCBI View Article : Google Scholar | |
|
Barutta F, Kimura S, Hase K, Bellini S, Corbetta B, Corbelli A, Fiordaliso F, Barreca A, Papotti MG, Ghiggeri GM, et al: Protective role of the M-Sec-tunneling nanotube system in podocytes. J Am Soc Nephrol. 32:1114–1130. 2021.PubMed/NCBI View Article : Google Scholar | |
|
Kastl L, Sauer SW, Ruppert T, Beissbarth T, Becker MS, Süss D, Krammer PH and Gülow K: TNF-α mediates mitochondrial uncoupling and enhances ROS-dependent cell migration via NF-κB activation in liver cells. FEBS Lett. 588:175–183. 2014.PubMed/NCBI View Article : Google Scholar | |
|
Wang K, Zhou L, Mao H, Liu J, Chen Z and Zhang L: Intercellular mitochondrial transfer alleviates pyroptosis in dental pulp damage. Cell Prolif. 56(e13442)2023.PubMed/NCBI View Article : Google Scholar | |
|
Kimura S, Yamashita M, Yamakami-Kimura M, Sato Y, Yamagata A, Kobashigawa Y, Inagaki F, Amada T, Hase K, Iwanaga T, et al: Distinct roles for the N- and C-terminal regions of M-Sec in plasma membrane deformation during tunneling nanotube formation. Sci Rep. 6(33548)2016.PubMed/NCBI View Article : Google Scholar | |
|
Gao C, Dai Y, Spezza PA, Boasiako P, Tang A, Rasquinha G, Zhong H, Shao B, Liu Y, Shi PA, et al: Megakaryocytes transfer mitochondria to bone marrow mesenchymal stromal cells to lower platelet activation. J Clin Invest. 135(e189801)2025.PubMed/NCBI View Article : Google Scholar | |
|
Irwin RM, Thomas MA, Fahey MJ, Mayán MD, Smyth JW and Delco ML: Connexin 43 regulates intercellular mitochondrial transfer from human mesenchymal stromal cells to chondrocytes. Stem Cell Res Ther. 15(359)2024.PubMed/NCBI View Article : Google Scholar | |
|
Huang T, Zhang T, Jiang X, Li A, Su Y, Bian Q, Wu H, Lin R, Li N, Cao H, et al: Iron oxide nanoparticles augment the intercellular mitochondrial transfer-mediated therapy. Sci Adv. 7(eabj0534)2021.PubMed/NCBI View Article : Google Scholar | |
|
Qiao X, Huang N, Meng W, Liu Y, Li J, Li C, Wang W, Lai Y, Zhao Y, Ma Z, et al: Beyond mitochondrial transfer, cell fusion rescues metabolic dysfunction and boosts malignancy in adenoid cystic carcinoma. Cell Rep. 43(114652)2024.PubMed/NCBI View Article : Google Scholar | |
|
Powell AE, Anderson EC, Davies PS, Silk AD, Pelz C, Impey S and Wong MH: Fusion between intestinal epithelial cells and macrophages in a cancer context results in nuclear reprogramming. Cancer Res. 71:1497–1505. 2011.PubMed/NCBI View Article : Google Scholar | |
|
Nahacka Z, Novak J, Zobalova R and Neuzil J: Miro proteins and their role in mitochondrial transfer in cancer and beyond. Front Cell Dev Biol. 10(937753)2022.PubMed/NCBI View Article : Google Scholar | |
|
Zhang H, Yu X, Ye J, Li H, Hu J, Tan Y, Fang Y, Akbay E, Yu F, Weng C, et al: Systematic investigation of mitochondrial transfer between cancer cells and T cells at single-cell resolution. Cancer Cell. 41:1788–1802.e10. 2023.PubMed/NCBI View Article : Google Scholar | |
|
Goliwas KF, Libring S, Berestesky E, Gholizadeh S, Schwager SC, Frost AR, Gaborski TR, Zhang J and Reinhart-King CA: Mitochondrial transfer from cancer-associated fibroblasts increases migration in aggressive breast cancer. J Cell Sci. 136(jcs260419)2023.PubMed/NCBI View Article : Google Scholar | |
|
Xie Q, Zeng J, Zheng Y, Li T, Ren J, Chen K, Zhang Q, Xie R, Xu F and Zhu J: Mitochondrial transplantation attenuates cerebral ischemia-reperfusion injury: Possible involvement of mitochondrial component separation. Oxid Med Cell Longev. 2021(1006636)2021.PubMed/NCBI View Article : Google Scholar | |
|
Peruzzotti-Jametti L, Bernstock JD, Willis CM, Manferrari G, Rogall R, Fernandez-Vizarra E, Williamson JC, Braga A, van den Bosch A, Leonardi T, et al: Neural stem cells traffic functional mitochondria via extracellular vesicles. PLoS Biol. 19(e3001166)2021.PubMed/NCBI View Article : Google Scholar | |
|
Zheng D, Zhou H, Wang H, Zhu Y, Wu Y, Li Q, Li T and Liu L: Mesenchymal stem cell-derived microvesicles improve intestinal barrier function by restoring mitochondrial dynamic balance in sepsis rats. Stem Cell Res Ther. 12(299)2021.PubMed/NCBI View Article : Google Scholar | |
|
Cowan DB, Yao R, Thedsanamoorthy JK, Zurakowski D, del Nido PJ and McCully JD: Transit and integration of extracellular mitochondria in human heart cells. Sci Rep. 7(17450)2017.PubMed/NCBI View Article : Google Scholar | |
|
Fu A: Mitotherapy as a novel therapeutic strategy for mitochondrial diseases. Curr Mol Pharmacol. 13:41–49. 2020.PubMed/NCBI View Article : Google Scholar | |
|
Chen J, Zhong J, Wang LL and Chen YY: Mitochondrial transfer in cardiovascular disease: From mechanisms to therapeutic implications. Front Cardiovasc Med. 8(771298)2021.PubMed/NCBI View Article : Google Scholar | |
|
Wang ZH, Chen L, Li W, Chen L and Wang YP: Mitochondria transfer and transplantation in human health and diseases. Mitochondrion. 65:80–87. 2022.PubMed/NCBI View Article : Google Scholar | |
|
Walker M, Levitt MR, Federico EM, Miralles FJ, Levy SH, Lynne Prijoles K, Winter A, Swicord JK and Sancak Y: Autologous mitochondrial transplant for acute cerebral ischemia: Phase 1 trial results and review. J Cereb Blood Flow Metab: Dec 4, 2024 (Epub ahead of print). | |
|
Nakai R, Varnum S, Field RL, Shi H, Giwa R, Jia W, Krysa SJ, Cohen EF, Borcherding N, Saneto RP, et al: Mitochondria transfer-based therapies reduce the morbidity and mortality of Leigh syndrome. Nat Metab. 6:1886–1896. 2024.PubMed/NCBI View Article : Google Scholar | |
|
Li C, Cheung MKH, Han S, Zhang Z, Chen L, Chen J, Zeng H and Qiu J: Mesenchymal stem cells and their mitochondrial transfer: A double-edged sword. Biosci Rep. 39(BSR20182417)2019.PubMed/NCBI View Article : Google Scholar | |
|
Hosseinian S, Ali Pour P and Kheradvar A: Prospects of mitochondrial transplantation in clinical medicine: Aspirations and challenges. Mitochondrion. 65:33–44. 2022.PubMed/NCBI View Article : Google Scholar | |
|
Caicedo A, Aponte PM, Cabrera F, Hidalgo C and Khoury M: Artificial mitochondria transfer: Current challenges, advances, and future applications. Stem Cells Int. 2017(7610414)2017.PubMed/NCBI View Article : Google Scholar | |
|
Ishikawa K, Toyama-Sorimachi N, Nakada K, Morimoto M, Imanishi H, Yoshizaki M, Sasawatari S, Niikura M, Takenaga K, Yonekawa H and Hayashi J: The innate immune system in host mice targets cells with allogenic mitochondrial DNA. J Exp Med. 207:2297–2305. 2010.PubMed/NCBI View Article : Google Scholar | |
|
Deuse T, Hu X, Agbor-Enoh S, Koch M, Spitzer MH, Gravina A, Alawi M, Marishta A, Peters B, Kosaloglu-Yalcin Z, et al: De novo mutations in mitochondrial DNA of iPSCs produce immunogenic neoepitopes in mice and humans. Nat Biotechnol. 37:1137–1144. 2019.PubMed/NCBI View Article : Google Scholar | |
|
Klopstock T, Klopstock B and Prokisch H: Mitochondrial replacement approaches: Challenges for clinical implementation. Genome Med. 8(126)2016.PubMed/NCBI View Article : Google Scholar | |
|
Yamada Y, Ito M, Arai M, Hibino M, Tsujioka T and Harashima H: Challenges in promoting mitochondrial transplantation therapy. Int J Mol Sci. 21(6365)2020.PubMed/NCBI View Article : Google Scholar | |
|
Yuan J, Chen F, Jiang D, Xu Z, Zhang H and Jin ZB: ROCK inhibitor enhances mitochondrial transfer via tunneling nanotubes in retinal pigment epithelium. Theranostics. 14:5762–5777. 2024.PubMed/NCBI View Article : Google Scholar | |
|
Chi A, Yang B, Dai H, Li X, Mo J, Gao Y, Chen Z, Feng X, Ma M, Li Y, et al: Stem Leydig cells support macrophage immunological homeostasis through mitochondrial transfer in mice. Nat Commun. 15(2120)2024.PubMed/NCBI View Article : Google Scholar | |
|
Játiva S, Calle P, Torrico S, Muñoz Á, García M, Martinez I, Sola A and Hotter G: Mitochondrial transplantation enhances phagocytic function and decreases lipid accumulation in foam cell macrophages. Biomedicines. 10(329)2022.PubMed/NCBI View Article : Google Scholar |