Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
World Academy of Sciences Journal
Join Editorial Board Propose a Special Issue
Print ISSN: 2632-2900 Online ISSN: 2632-2919
Journal Cover
January-February 2026 Volume 8 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-February 2026 Volume 8 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Mesenchymal stem cells and the rescue of mitochondrial damage in different disease models (Review)

  • Authors:
    • Canh Minh Tran
    • Van T.t. Nguyen
  • View Affiliations / Copyright

    Affiliations: VNUHCM‑US Stem Cell Institute, University of Science, Vietnam National University, Ho Chi Minh City 70000, Vietnam
    Copyright: © Tran et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY 4.0].
  • Article Number: 4
    |
    Published online on: November 24, 2025
       https://doi.org/10.3892/wasj.2025.419
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Mitochondrial transplantation is based on the fundamental principle of mitochondrial transfer, through which recipient cells take up exogenous mitochondria, thereby restoring cellular function. Several studies have demonstrated that isolated mitochondria can effectively improve cellular function in various diseases characterized by mitochondrial dysfunction as a key factor in pathological progression. The success of mitochondrial therapy depends on the source of donor cells, the quality and quantity of mitochondria, and their competency and compatibility with recipient cells. Mesenchymal stem cells (MSCs) are highly proliferative and possess the potential to differentiate into various cell types, a process requiring competent mitochondria to supply energy and essential building blocks for cellular activities. Consequently, MSC‑derived mitochondria exhibit high plasticity and functional capability, rendering them promising candidates for mitochondrial transplantation therapy. The present review discusses the role of mitochondria in health and disease progression. The present review also summarizes current evidence from the literature, highlighting the emerging role of MSCs as a valuable source for mitochondrial therapy in both in vitro and in vivo pathological models. Given the diverse sources available for MSC isolation, mitochondrial therapy, particularly when combined with stem cell technology, represents a potential avenue for future research in therapeutic and pharmacological development.
View Figures

Figure 1

Mechanisms of mitochondrial transfer
in the (A) microenvironment and (B) artificial mitochondrial
transplantation. (A) Mitochondrial transfer in the microenvironment
is facilitated via multiple mechanisms. TNTs form a channel for
mitochondria trafficking between cells at certain distances. Cells
in close contact can exchange mitochondria via gap junctions on the
cell membrane or even fuse their membranes (cell fusion) to allow
mitochondrial transfer. Mitochondria can be released via
extracellular vesicles or dispersed freely in the microenvironment
and taken up by other cells. (B) Mitochondrial transplantation
technologies include forced centrifugation, in which centrifugation
force increases the mitochondria-membrane contact and induces
penetration through the membrane. Magnetomitotransfer enhances
penetration by magnetic force. Penetrating peptides wrapping around
mitochondria allow mitochondrial transition through the cell
membrane. Droplet microfluidics creates isolated spaces, allowing
close contact between cells and isolated mitochondria, thereby
enhancing the chances of mitochondrial intake. TNT, tunneling
nanotube.

Figure 2

MSC sources for mitochondrial therapy
and the associated recipient cells/tissues. Mitochondria were
isolated from selected sources of MSCs and transferred/transplanted
into different cell types and tissues. The effectiveness of
mitochondrial therapy has been examined in various pathological
models. MSCs, mesenchymal stem cells.

Figure 3

Mechanisms of MSC mitochondrial
transfer rescue effects. Injured cells release damaged mitochondria
or their components into the surrounding microenvironment as a
distress signal. MSCs respond to these stress signals by activating
the mitochondrial transfer mechanism via the upregulation of PGC1-α
and the expression of HO-1. The expression of Miro1, TNFαip2 and
Cx43 is also upregulated in MSCs to facilitate the transfer of
healthy mitochondria to rescue stressed cells from damage. MSCs,
mesenchymal stem cells; ROS, reactive oxygen species; PGC1-α,
proliferator-activated receptor gamma coactivator-1-α; HO-1, heme
oxygenase 1; Miro1, mitochondrial Rho GTPase 1; TNFαip2,
TNF-α-induced protein 2; Cx43, connexin43.

Figure 4

Regenerative mechanism in
mitochondrial therapy using MSCs. Cells or tissues receiving
mitochondria from MSCs exhibit improvement and restoration in
several aspects. The supplementation with healthy mitochondria from
MSCs can directly replace defective mtDNA and improve metabolism
and fitness, supporting ATP generation and ROS reduction. As
mitochondrial biogenesis improves in recipient cells, cell survival
is significantly enhanced, particularly in vivo, thereby
restoring cell and tissue function. Cells that received donated
mitochondria from MSCs showed enhanced differentiation and
proliferation, simultaneously reducing apoptosis. Mitochondria
supplementation also helps to regulate the immune response and
cytokine secretion, resulting in positive outcomes. The degradation
of internalized mitochondria further activates mitophagy and
autophagy in recipient cells, thereby indirectly regulating
cellular homeostasis and improving cell function. MSCs, mesenchymal
stem cells; mtDNA, mitochondrial DNA; ROS, reactive oxygen
species.
View References

1 

Amorim JA, Coppotelli G, Rolo AP, Palmeira CM, Ross JM and Sinclair DA: Mitochondrial and metabolic dysfunction in ageing and age-related diseases. Nat Rev Endocrinol. 18:243–258. 2022.PubMed/NCBI View Article : Google Scholar

2 

Hyatt H, Deminice R, Yoshihara T and Powers SK: Mitochondrial dysfunction induces muscle atrophy during prolonged inactivity: A review of the causes and effects. Arch Biochem Biophys. 662:49–60. 2019.PubMed/NCBI View Article : Google Scholar

3 

Dagda RK: Role of mitochondrial dysfunction in degenerative brain diseases, an overview. Brain Sci. 8(178)2018.PubMed/NCBI View Article : Google Scholar

4 

Kaarniranta K, Uusitalo H, Blasiak J, Felszeghy S, Kannan R, Kauppinen A, Salminen A, Sinha D and Ferrington D: Mechanisms of mitochondrial dysfunction and their impact on age-related macular degeneration. Prog Retin Eye Res. 79(100858)2020.PubMed/NCBI View Article : Google Scholar

5 

Zilio E, Piano V and Wirth B: Mitochondrial dysfunction in spinal muscular atrophy. Int J Mol Sci. 23(10878)2022.PubMed/NCBI View Article : Google Scholar

6 

Weiss SL, Zhang D, Bush J, Graham K, Starr J, Murray J, Tuluc F, Henrickson S, Deutschman CS, Becker L, et al: Mitochondrial dysfunction is associated with an immune paralysis phenotype in pediatric sepsis. Shock. 54:285–293. 2020.PubMed/NCBI View Article : Google Scholar

7 

McBride MA, Owen AM, Stothers CL, Hernandez A, Luan L, Burelbach KR, Patil TK, Bohannon JK, Sherwood ER and Patil NK: The metabolic basis of immune dysfunction following sepsis and trauma. Front Immunol. 11(1043)2020.PubMed/NCBI View Article : Google Scholar

8 

Prasun P: Mitochondrial dysfunction in metabolic syndrome. Biochim Biophys Acta Mol Basis Dis. 1866(165838)2020.PubMed/NCBI View Article : Google Scholar

9 

Bhatti JS, Bhatti GK and Reddy PH: Mitochondrial dysfunction and oxidative stress in metabolic disorders-a step towards mitochondria based therapeutic strategies. Biochim Biophys Acta Mol Basis Dis. 1863:1066–1077. 2017.PubMed/NCBI View Article : Google Scholar

10 

Montgomery MK: Mitochondrial dysfunction and diabetes: Is mitochondrial transfer a friend or foe? Biology (Basel). 8(33)2019.PubMed/NCBI View Article : Google Scholar

11 

Feichtinger RG, Sperl W, Bauer JW and Kofler B: Mitochondrial dysfunction: A neglected component of skin diseases. Exp Dermatol. 23:607–614. 2014.PubMed/NCBI View Article : Google Scholar

12 

Mizumura K, Cloonan SM, Nakahira K, Bhashyam AR, Cervo M, Kitada T, Glass K, Owen CA, Mahmood A, Washko GR, et al: Mitophagy-dependent necroptosis contributes to the pathogenesis of COPD. J Clin Invest. 124:3987–4003. 2014.PubMed/NCBI View Article : Google Scholar

13 

Li X, Zhang W, Cao Q, Wang Z, Zhao M, Xu L and Zhuang Q: Mitochondrial dysfunction in fibrotic diseases. Cell Death Discov. 6(80)2020.PubMed/NCBI View Article : Google Scholar

14 

Ryter SW, Rosas IO, Owen CA, Martinez FJ, Choi ME, Lee CG, Elias JA and Choi AMK: Mitochondrial dysfunction as a pathogenic mediator of chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Ann Am Thorac Soc. 15 (Suppl 4):S266–S272. 2018.PubMed/NCBI View Article : Google Scholar

15 

Kandasamy J, Olave N, Ballinger SW and Ambalavanan N: Vascular endothelial mitochondrial function predicts death or pulmonary outcomes in preterm infants. Am J Respir Crit Care Med. 196:1040–1049. 2017.PubMed/NCBI View Article : Google Scholar

16 

Rizzuto R, De Stefani D, Raffaello A and Mammucari C: Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol. 13:566–578. 2012.PubMed/NCBI View Article : Google Scholar

17 

Matuz-Mares D, González-Andrade M, Araiza-Villanueva MG, Vilchis-Landeros MM and Vázquez-Meza H: Mitochondrial calcium: Effects of its imbalance in disease. Antioxidants (Basel). 11(801)2022.PubMed/NCBI View Article : Google Scholar

18 

Belosludtsev KN, Talanov EY, Starinets VS, Agafonov AV, Dubinin MV and Belosludtseva NV: Transport of Ca2+ and Ca2+-dependent permeability transition in rat liver mitochondria under the streptozotocin-induced type I diabetes. Cells. 8(1014)2019.PubMed/NCBI View Article : Google Scholar

19 

Sundaramoorthy P, Sim JJ, Jang YS, Mishra SK, Jeong KY, Mander P, Chul OB, Shim WS, Oh SH, Nam KY and Kim HM: Modulation of intracellular calcium levels by calcium lactate affects colon cancer cell motility through calcium-dependent calpain. PLoS One. 10(e0116984)2015.PubMed/NCBI View Article : Google Scholar

20 

Spees JL, Olson SD, Whitney MJ and Prockop DJ: Mitochondrial transfer between cells can rescue aerobic respiration. Proc Natl Acad Sci USA. 103:1283–1288. 2006.PubMed/NCBI View Article : Google Scholar

21 

Rodriguez AM, Nakhle J, Griessinger E and Vignais ML: Intercellular mitochondria trafficking highlighting the dual role of mesenchymal stem cells as both sensors and rescuers of tissue injury. Cell Cycle. 17:712–721. 2018.PubMed/NCBI View Article : Google Scholar

22 

Plotnikov EY, Babenko VA, Silachev DN, Zorova LD, Khryapenkova TG, Savchenko ES, Pevzner IB and Zorov DB: Intercellular transfer of mitochondria. Biochemistry (Mosc). 80:542–548. 2015.PubMed/NCBI View Article : Google Scholar

23 

Hayashida K, Takegawa R, Shoaib M, Aoki T, Choudhary RC, Kuschner CE, Nishikimi M, Miyara SJ, Rolston DM, Guevara S, et al: Mitochondrial transplantation therapy for ischemia reperfusion injury: A systematic review of animal and human studies. J Transl Med. 19(214)2021.PubMed/NCBI View Article : Google Scholar

24 

Yang C, Yokomori R, Chua LH, Tan SH, Tan DQ, Miharada K, Sanda T and Suda T: Mitochondria transfer mediates stress erythropoiesis by altering the bioenergetic profiles of early erythroblasts through CD47. J Exp Med. 219(e20220685)2022.PubMed/NCBI View Article : Google Scholar

25 

Liu D, Gao Y, Liu J, Huang Y, Yin J, Feng Y, Shi L, Meloni BP, Zhang C, Zheng M and Gao J: Intercellular mitochondrial transfer as a means of tissue revitalization. Signal Transduct Target Ther. 6(65)2021.PubMed/NCBI View Article : Google Scholar

26 

Emani SM, Piekarski BL, Harrild D, Del Nido PJ and McCully JD: Autologous mitochondrial transplantation for dysfunction after ischemia-reperfusion injury. J Thorac Cardiovasc Surg. 154:286–289. 2017.PubMed/NCBI View Article : Google Scholar

27 

Guariento A, Piekarski BL, Doulamis IP, Blitzer D, Ferraro AM, Harrild DM, Zurakowski D, Del Nido PJ, McCully JD and Emani SM: Autologous mitochondrial transplantation for cardiogenic shock in pediatric patients following ischemia-reperfusion injury. J Thorac Cardiovasc Surg. 162:992–1001. 2021.PubMed/NCBI View Article : Google Scholar

28 

Michaeloudes C, Li X, Mak JCW and Bhavsar PK: Study of mesenchymal stem cell-mediated mitochondrial transfer in in vitro models of oxidant-mediated airway epithelial and smooth muscle cell injury. Methods Mol Biol. 2269:93–105. 2021.PubMed/NCBI View Article : Google Scholar

29 

Konari N, Nagaishi K, Kikuchi S and Fujimiya M: Mitochondria transfer from mesenchymal stem cells structurally and functionally repairs renal proximal tubular epithelial cells in diabetic nephropathy in vivo. Sci Rep. 9(5184)2019.PubMed/NCBI View Article : Google Scholar

30 

Moschoi R, Imbert V, Nebout M, Chiche J, Mary D, Prebet T, Saland E, Castellano R, Pouyet L, Collette Y, et al: Protective mitochondrial transfer from bone marrow stromal cells to acute myeloid leukemic cells during chemotherapy. Blood. 128:253–264. 2016.PubMed/NCBI View Article : Google Scholar

31 

Lambrecht BN and Hammad H: The immunology of asthma. Nat Immunol. 16:45–56. 2015.PubMed/NCBI View Article : Google Scholar

32 

Chan TK, Tan WSD, Peh HY and Wong WSF: Aeroallergens induce reactive oxygen species production and DNA damage and dampen antioxidant responses in bronchial epithelial cells. J Immunol. 199:39–47. 2017.PubMed/NCBI View Article : Google Scholar

33 

Zhao L, Gao J, Chen G, Huang C, Kong W, Feng Y and Zhen G: Mitochondria dysfunction in airway epithelial cells is associated with type 2-low asthma. Front Genet. 14(1186317)2023.PubMed/NCBI View Article : Google Scholar

34 

Yao Y, Fan XL, Jiang D, Zhang Y, Li X, Xu ZB, Fang SB, Chiu S, Tse HF, Lian Q and Fu QL: Connexin 43-mediated mitochondrial transfer of iPSC-MSCs alleviates asthma inflammation. Stem Cell Reports. 11:1120–1135. 2018.PubMed/NCBI View Article : Google Scholar

35 

Malsin ES and Kamp DW: The mitochondria in lung fibrosis: Friend or foe? Transl Res. 202:1–23. 2018.PubMed/NCBI View Article : Google Scholar

36 

Takahashi M, Mizumura K, Gon Y, Shimizu T, Kozu Y, Shikano S, Iida Y, Hikichi M, Okamoto S, Tsuya K, et al: Iron-dependent mitochondrial dysfunction contributes to the pathogenesis of pulmonary fibrosis. Front Pharmacol. 12(643980)2022.PubMed/NCBI View Article : Google Scholar

37 

Huang T, Lin R, Su Y, Sun H, Zheng X, Zhang J, Lu X, Zhao B, Jiang X, Huang L, et al: Efficient intervention for pulmonary fibrosis via mitochondrial transfer promoted by mitochondrial biogenesis. Nat Commun. 14(5781)2023.PubMed/NCBI View Article : Google Scholar

38 

Li CL, Liu JF and Liu SF: Mitochondrial dysfunction in chronic obstructive pulmonary disease: Unraveling the molecular nexus. Biomedicines. 12(814)2024.PubMed/NCBI View Article : Google Scholar

39 

Canton M, Sánchez-Rodríguez R, Spera I, Venegas FC, Favia M, Viola A and Castegna A: Reactive oxygen species in macrophages: Sources and targets. Front Immunol. 12(734229)2021.PubMed/NCBI View Article : Google Scholar

40 

Aridgides DS, Mellinger DL, Armstrong DA, Hazlett HF, Dessaint JA, Hampton TH, Atkins GT, Carroll JL and Ashare A: Functional and metabolic impairment in cigarette smoke-exposed macrophages is tied to oxidative stress. Sci Rep. 9(9624)2019.PubMed/NCBI View Article : Google Scholar

41 

Tulen CBM, Wang Y, Beentjes D, Jessen PJJ, Ninaber DK, Reynaert NL, van Schooten FJ, Opperhuizen A, Hiemstra PS and Remels AHV: Dysregulated mitochondrial metabolism upon cigarette smoke exposure in various human bronchial epithelial cell models. Dis Model Mech. 15(dmm049247)2022.PubMed/NCBI View Article : Google Scholar

42 

Li X, Michaeloudes C, Zhang Y, Wiegman CH, Adcock IM, Lian Q, Mak JCW, Bhavsar PK and Chung KF: Mesenchymal stem cells alleviate oxidative stress-induced mitochondrial dysfunction in the airways. J Allergy Clin Immunol. 141:1634–1645.e5. 2018.PubMed/NCBI View Article : Google Scholar

43 

Li X, Zhang Y, Yeung SC, Liang Y, Liang X, Ding Y, Ip MS, Tse HF, Mak JC and Lian Q: Mitochondrial transfer of induced pluripotent stem cell-derived mesenchymal stem cells to airway epithelial cells attenuates cigarette smoke-induced damage. Am J Respir Cell Mol Biol. 51:455–465. 2014.PubMed/NCBI View Article : Google Scholar

44 

Wu BB, Leung KT and Poon EN: Mitochondrial-targeted therapy for doxorubicin-induced cardiotoxicity. Int J Mol Sci. 23(1912)2022.PubMed/NCBI View Article : Google Scholar

45 

He H, Wang L, Qiao Y, Zhou Q, Li H, Chen S, Yin D, Huang Q and He M: Doxorubicin induces endotheliotoxicity and mitochondrial dysfunction via ROS/eNOS/NO pathway. Front Pharmacol. 10(1531)2020.PubMed/NCBI View Article : Google Scholar

46 

Tang H, Tao A, Song J, Liu Q, Wang H and Rui T: Doxorubicin-induced cardiomyocyte apoptosis: Role of mitofusin 2. Int J Biochem Cell Biol. 88:55–59. 2017.PubMed/NCBI View Article : Google Scholar

47 

Zhang Y, Yu Z, Jiang D, Liang X, Liao S, Zhang Z, Yue W, Li X, Chiu SM, Chai YH, et al: iPSC-MSCs with high intrinsic MIRO1 and sensitivity to TNF-α yield efficacious mitochondrial transfer to rescue anthracycline-induced cardiomyopathy. Stem Cell Reports. 7:749–763. 2016.PubMed/NCBI View Article : Google Scholar

48 

Jin N, Zhang M, Zhou L, Jin S, Cheng H, Li X, Shi Y, Xiang T, Zhang Z, Liu Z, et al: Mitochondria transplantation alleviates cardiomyocytes apoptosis through inhibiting AMPKα-mTOR mediated excessive autophagy. FASEB J. 38(e23655)2024.PubMed/NCBI View Article : Google Scholar

49 

Tanaka-Esposito C, Chen Q and Lesnefsky EJ: Blockade of electron transport before ischemia protects mitochondria and decreases myocardial injury during reperfusion in aged rat hearts. Transl Res. 160:207–216. 2012.PubMed/NCBI View Article : Google Scholar

50 

Huang J, Li R and Wang C: The role of mitochondrial quality control in cardiac ischemia/reperfusion injury. Oxid Med Cell Longev. 2021(5543452)2021.PubMed/NCBI View Article : Google Scholar

51 

Bouhamida E, Morciano G, Perrone M, Kahsay AE, Della Sala M, Wieckowski MR, Fiorica F, Pinton P, Giorgi C and Patergnani S: The interplay of hypoxia signaling on mitochondrial dysfunction and inflammation in cardiovascular diseases and cancer: From molecular mechanisms to therapeutic approaches. Biology (Basel). 11(300)2022.PubMed/NCBI View Article : Google Scholar

52 

Cselenyák A, Pankotai E, Horváth EM, Kiss L and Lacza Z: Mesenchymal stem cells rescue cardiomyoblasts from cell death in an in vitro ischemia model via direct cell-to-cell connections. BMC Cell Biol. 11(29)2010.PubMed/NCBI View Article : Google Scholar

53 

Han H, Hu J, Yan Q, Zhu J, Zhu Z, Chen Y, Sun J and Zhang R: Bone marrow-derived mesenchymal stem cells rescue injured H9c2 cells via transferring intact mitochondria through tunneling nanotubes in an in vitro simulated ischemia/reperfusion model. Mol Med Rep. 13:1517–1524. 2016.PubMed/NCBI View Article : Google Scholar

54 

Mori D, Miyagawa S, Kawamura T, Yoshioka D, Hata H, Ueno T, oda K, Kuratani T, Oota M, Kawai K, et al: Mitochondrial transfer induced by adipose-derived mesenchymal stem cell transplantation improves cardiac function in rat models of ischemic cardiomyopathy. Cell Transplant. 32(9636897221148457)2023.PubMed/NCBI View Article : Google Scholar

55 

Mahrouf-Yorgov M, Augeul L, Da Silva CC, Jourdan M, Rigolet M, Manin S, Ferrera R, Ovize M, Henry A, Guguin A, et al: Mesenchymal stem cells sense mitochondria released from damaged cells as danger signals to activate their rescue properties. Cell Death Differ. 24:1224–1238. 2017.PubMed/NCBI View Article : Google Scholar

56 

Zhang ZH, Zhu W, Ren HZ, Zhao X, Wang S, Ma HC and Shi XL: Mesenchymal stem cells increase expression of heme oxygenase-1 leading to anti-inflammatory activity in treatment of acute liver failure. Stem Cell Res Ther. 8(70)2017.PubMed/NCBI View Article : Google Scholar

57 

Tang Q, Zheng G, Feng Z, Chen Y, Lou Y, Wang C, Zhang X, Zhang Y, Xu H, Shang P and Liu H: Trehalose ameliorates oxidative stress-mediated mitochondrial dysfunction and ER stress via selective autophagy stimulation and autophagic flux restoration in osteoarthritis development. Cell Death Dis. 8(e3081)2017.PubMed/NCBI View Article : Google Scholar

58 

Liu H, Li Z, Cao Y, Cui Y, Yang X, Meng Z and Wang R: Effect of chondrocyte mitochondrial dysfunction on cartilage degeneration: A possible pathway for osteoarthritis pathology at the subcellular level. Mol Med Rep. 20:3308–3316. 2019.PubMed/NCBI View Article : Google Scholar

59 

Sanchez-Lopez E, Coras R, Torres A, Lane NE and Guma M: Synovial inflammation in osteoarthritis progression. Nat Rev Rheumatol. 18:258–275. 2022.PubMed/NCBI View Article : Google Scholar

60 

Zheng L, Zhang Z, Sheng P and Mobasheri A: The role of metabolism in chondrocyte dysfunction and the progression of osteoarthritis. Ageing Res Rev. 66(101249)2021.PubMed/NCBI View Article : Google Scholar

61 

Wang R, Maimaitijuma T, Ma YY, Jiao Y and Cao YP: Mitochondrial transfer from bone-marrow-derived mesenchymal stromal cells to chondrocytes protects against cartilage degenerative mitochondrial dysfunction in rats chondrocytes. Chin Med J (Engl). 134:212–218. 2020.PubMed/NCBI View Article : Google Scholar

62 

Wu Z, Korntner SH, Mullen AM and Zeugolis DI: Collagen type II: From biosynthesis to advanced biomaterials for cartilage engineering. Biomater Biosyst. 4(100030)2021.PubMed/NCBI View Article : Google Scholar

63 

Fahey M, Bennett M, Thomas M, Montney K, Vivancos-Koopman I, Pugliese B, Browning L, Bonassar LJ and Delco M: Mesenchymal stromal cells donate mitochondria to articular chondrocytes exposed to mitochondrial, environmental, and mechanical stress. Sci Rep. 12(21525)2022.PubMed/NCBI View Article : Google Scholar

64 

Michelacci YM, Baccarin RYA and Rodrigues NNP: Chondrocyte homeostasis and differentiation: Transcriptional control and signaling in healthy and osteoarthritic conditions. Life (Basel). 13(1460)2023.PubMed/NCBI View Article : Google Scholar

65 

Fearon U, Canavan M, Biniecka M and Veale DJ: Hypoxia, mitochondrial dysfunction and synovial invasiveness in rheumatoid arthritis. Nat Rev Rheumatol. 12:385–397. 2016.PubMed/NCBI View Article : Google Scholar

66 

Zhang X, Eliasberg CD and Rodeo SA: Mitochondrial dysfunction and potential mitochondrial protectant treatments in tendinopathy. Ann N Y Acad Sci. 1490:29–41. 2021.PubMed/NCBI View Article : Google Scholar

67 

Zhang X, Wada S, Zhang Y, Chen D, Deng XH and Rodeo SA: Assessment of mitochondrial dysfunction in a murine model of supraspinatus tendinopathy. J Bone Joint Surg Am. 103:174–183. 2021.PubMed/NCBI View Article : Google Scholar

68 

Liu YC, Wang HL, Huang YZ, Weng YH, Chen RS, Tsai WC, Yeh TH, Lu CS, Chen YL, Lin YW, et al: Alda-1, an activator of ALDH2, ameliorates Achilles tendinopathy in cellular and mouse models. Biochem Pharmacol. 175(113919)2020.PubMed/NCBI View Article : Google Scholar

69 

Dex S, Alberton P, Willkomm L, Söllradl T, Bago S, Milz S, Shakibaei M, Ignatius A, Bloch W, Clausen-Schaumann H, et al: Tenomodulin is required for tendon endurance running and collagen I fibril adaptation to mechanical load. EBioMedicine. 20:240–254. 2017.PubMed/NCBI View Article : Google Scholar

70 

Wei B, Ji M, Lin Y, Wang S, Liu Y, Geng R, Hu X, Xu L, Li Z, Zhang W and Lu J: Mitochondrial transfer from bone mesenchymal stem cells protects against tendinopathy both in vitro and in vivo. Stem Cell Res Ther. 14(104)2023.PubMed/NCBI View Article : Google Scholar

71 

Lee JM, Hwang JW, Kim MJ, Jung SY, Kim KS, Ahn EH, Min K and Choi YS: Mitochondrial transplantation modulates inflammation and apoptosis, alleviating tendinopathy both in vivo and in vitro. Antioxidants (Basel). 10(696)2021.PubMed/NCBI View Article : Google Scholar

72 

Kubat GB, Bouhamida E, Ulger O, Turkel I, Pedriali G, Ramaccini D, Ekinci O, Ozerklig B, Atalay O, Patergnani S, et al: Mitochondrial dysfunction and skeletal muscle atrophy: Causes, mechanisms, and treatment strategies. Mitochondrion. 72:33–58. 2023.PubMed/NCBI View Article : Google Scholar

73 

Hyatt HW and Powers SK: Mitochondrial dysfunction is a common denominator linking skeletal muscle wasting due to disease, aging, and prolonged inactivity. Antioxidants (Basel). 10(588)2021.PubMed/NCBI View Article : Google Scholar

74 

Matsumoto C, Sekine H, Nahata M, Mogami S, Ohbuchi K, Fujitsuka N and Takeda H: Role of mitochondrial dysfunction in the pathogenesis of cisplatin-induced myotube atrophy. Biol Pharm Bull. 45:780–792. 2022.PubMed/NCBI View Article : Google Scholar

75 

Shen S, Liao Q, Liu J, Pan R, Lee SMY and Lin L: Myricanol rescues dexamethasone-induced muscle dysfunction via a sirtuin 1-dependent mechanism. J Cachexia Sarcopenia Muscle. 10:429–444. 2019.PubMed/NCBI View Article : Google Scholar

76 

Yang B, Yang X, Sun X, Shi J, Shen Y and Chen R: IL-6 deficiency attenuates skeletal muscle atrophy by inhibiting mitochondrial ROS production through the upregulation of PGC-1 α in septic mice. Oxid Med Cell Longev. 2022(9148246)2022.PubMed/NCBI View Article : Google Scholar

77 

Xiao Y, Karam C, Yi J, Zhang L, Li X, Yoon D, Wang H, Dhakal K, Ramlow P, Yu T, et al: ROS-related mitochondrial dysfunction in skeletal muscle of an ALS mouse model during the disease progression. Pharmacol Res. 138:25–36. 2018.PubMed/NCBI View Article : Google Scholar

78 

Moore TM, Lin AJ, Strumwasser AR, Cory K, Whitney K, Ho T, Ho T, Lee JL, Rucker DH, Nguyen CQ, et al: Mitochondrial dysfunction is an early consequence of partial or complete dystrophin loss in mdx mice. Front Physiol. 11(690)2020.PubMed/NCBI View Article : Google Scholar

79 

Mohiuddin M, Choi JJ, Lee NH, Jeong H, Anderson SE, Han WM, Aliya B, Peykova TZ, Verma S, García AJ, et al: Transplantation of muscle stem cell mitochondria rejuvenates the bioenergetic function of dystrophic muscle. bioRxiv: 2020.04.17.017822, 2020.

80 

Wang L, Jiao XF, Wu C, Li XQ, Sun HX, Shen XY, Zhang KZ, Zhao C, Liu L, Wang M, et al: Trimetazidine attenuates dexamethasone-induced muscle atrophy via inhibiting NLRP3/GSDMD pathway-mediated pyroptosis. Cell Death Discov. 7(251)2021.PubMed/NCBI View Article : Google Scholar

81 

Kim MJ, Lee JM, Min K and Choi YS: Xenogeneic transplantation of mitochondria induces muscle regeneration in an in vivo rat model of dexamethasone-induced atrophy. J Muscle Res Cell Motil. 45:53–68. 2024.PubMed/NCBI View Article : Google Scholar

82 

Xu S, Li Y, Chen JP, Li DZ, Jiang Q, Wu T and Zhou XZ: Oxygen glucose deprivation/re-oxygenation-induced neuronal cell death is associated with Lnc-D63785 m6A methylation and miR-422a accumulation. Cell Death Dis. 11(816)2020.PubMed/NCBI View Article : Google Scholar

83 

Juntunen M, Hagman S, Moisan A, Narkilahti S and Miettinen S: In vitro oxygen-glucose deprivation-induced stroke models with human neuroblastoma cell- and induced pluripotent stem cell-derived neurons. Stem Cells Int. 2020(8841026)2020.PubMed/NCBI View Article : Google Scholar

84 

Liu F, Lu J, Manaenko A, Tang J and Hu Q: Mitochondria in ischemic stroke: New insight and implications. Aging Dis. 9:924–937. 2018.PubMed/NCBI View Article : Google Scholar

85 

Norat P, Soldozy S, Sokolowski JD, Gorick CM, Kumar JS, Chae Y, Yağmurlu K, Prada F, Walker M, Levitt MR, et al: Mitochondrial dysfunction in neurological disorders: Exploring mitochondrial transplantation. NPJ Regen Med. 5(22)2020.PubMed/NCBI View Article : Google Scholar

86 

Babenko VA, Silachev DN, Zorova LD, Pevzner IB, Khutornenko AA, Plotnikov EY, Sukhikh GT and Zorov DB: Improving the post-stroke therapeutic potency of mesenchymal multipotent stromal cells by cocultivation with cortical neurons: The role of crosstalk between cells. Stem Cells Transl Med. 4:1011–1020. 2015.PubMed/NCBI View Article : Google Scholar

87 

Jian Z, Ding S, Deng H, Wang J, Yi W, Wang L, Zhu S, Gu L and Xiong X: Probenecid protects against oxygen-glucose deprivation injury in primary astrocytes by regulating inflammasome activity. Brain Res. 1643:123–129. 2016.PubMed/NCBI View Article : Google Scholar

88 

Babenko VA, Silachev DN, Popkov VA, Zorova LD, Pevzner IB, Plotnikov EY, Sukhikh GT and Zorov DB: Miro1 enhances mitochondria transfer from multipotent mesenchymal stem cells (MMSC) to neural cells and improves the efficacy of cell recovery. Molecules. 23(687)2018.PubMed/NCBI View Article : Google Scholar

89 

Li J, Li H, Cai S, Bai S, Cai H and Zhang X: CD157 in bone marrow mesenchymal stem cells mediates mitochondrial production and transfer to improve neuronal apoptosis and functional recovery after spinal cord injury. Stem Cell Res Ther. 12(289)2021.PubMed/NCBI View Article : Google Scholar

90 

Yang Y, Ye G, Zhang YL, He HW, Yu BQ, Hong YM, You W and Li X: Transfer of mitochondria from mesenchymal stem cells derived from induced pluripotent stem cells attenuates hypoxia-ischemia-induced mitochondrial dysfunction in PC12 cells. Neural Regen Res. 15:464–472. 2020.PubMed/NCBI View Article : Google Scholar

91 

Tseng N, Lambie SC, Huynh CQ, Sanford B, Patel M, Herson PS and Ormond DR: Mitochondrial transfer from mesenchymal stem cells improves neuronal metabolism after oxidant injury in vitro: The role of Miro1. J Cereb Blood Flow Metab. 41:761–770. 2021.PubMed/NCBI View Article : Google Scholar

92 

Alizadeh A, Dyck SM and Karimi-Abdolrezaee S: Traumatic spinal cord injury: An overview of pathophysiology, models and acute injury mechanisms. Front Neurol. 10(282)2019.PubMed/NCBI View Article : Google Scholar

93 

Schmidt J and Quintá HR: Mitochondrial dysfunction as a target in spinal cord injury: Intimate correlation between pathological processes and therapeutic approaches. Neural Regen Res. 18:2161–2166. 2023.PubMed/NCBI View Article : Google Scholar

94 

Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al: Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell. 149:1060–1072. 2012.PubMed/NCBI View Article : Google Scholar

95 

Rong Y, Fan J, Ji C, Wang Z, Ge X, Wang J, Ye W, Yin G, Cai W and Liu W: USP11 regulates autophagy-dependent ferroptosis after spinal cord ischemia-reperfusion injury by deubiquitinating beclin 1. Cell Death Differ. 29:1164–1175. 2022.PubMed/NCBI View Article : Google Scholar

96 

Li D, Lu X, Xu G, Liu S, Gong Z, Lu F, Xia X, Jiang J, Wang H, Zou F and Ma X: Dihydroorotate dehydrogenase regulates ferroptosis in neurons after spinal cord injury via the P53-ALOX15 signaling pathway. CNS Neurosci Ther. 29:1923–1939. 2023.PubMed/NCBI View Article : Google Scholar

97 

Stockwell BR: Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications. Cell. 185:2401–2421. 2022.PubMed/NCBI View Article : Google Scholar

98 

Yao S, Pang M, Wang Y, Wang X, Lin Y, Lv Y, Xie Z, Hou J, Du C, Qiu Y, et al: Mesenchymal stem cell attenuates spinal cord injury by inhibiting mitochondrial quality control-associated neuronal ferroptosis. Redox Biol. 67(102871)2023.PubMed/NCBI View Article : Google Scholar

99 

Jain R, Begum N, Tryphena KP, Singh SB, Srivastava S, Rai SN, Vamanu E and Khatri DK: Inter and intracellular mitochondrial transfer: Future of mitochondrial transplant therapy in Parkinson's disease. Biomed Pharmacother. 159(114268)2023.PubMed/NCBI View Article : Google Scholar

100 

Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, Schrag AE and Lang AE: Parkinson disease. Nat Rev Dis Primers. 3(17013)2017.PubMed/NCBI View Article : Google Scholar

101 

van der Bliek AM, Sedensky MM and Morgan PG: Cell biology of the mitochondrion. Genetics. 207:843–871. 2017.PubMed/NCBI View Article : Google Scholar

102 

Ahn EH, Lei K, Kang SS, Wang ZH, Liu X, Hong W, Wang YT, Edgington-Mitchell LE, Jin L and Ye K: Mitochondrial dysfunction triggers the pathogenesis of Parkinson's disease in neuronal C/EBPβ transgenic mice. Mol Psychiatry. 26:7838–7850. 2021.PubMed/NCBI View Article : Google Scholar

103 

Xiao B, Kuruvilla J and Tan EK: Mitophagy and reactive oxygen species interplay in Parkinson's disease. NPJ Parkinsons Dis. 8(135)2022.PubMed/NCBI View Article : Google Scholar

104 

Eo H, Yu SH, Choi Y, Kim Y, Kang YC, Lee H, Kim JH, Han K, Lee HK, Chang MY, et al: Mitochondrial transplantation exhibits neuroprotective effects and improves behavioral deficits in an animal model of Parkinson's disease. Neurotherapeutics. 21(e00355)2024.PubMed/NCBI View Article : Google Scholar

105 

Thakur P and Nehru B: Inhibition of neuroinflammation and mitochondrial dysfunctions by carbenoxolone in the rotenone model of Parkinson's disease. Mol Neurobiol. 51:209–219. 2015.PubMed/NCBI View Article : Google Scholar

106 

Cheng XY, Biswas S, Li J, Mao CJ, Chechneva O, Chen J, Li K, Li J, Zhang JR, Liu CF and Deng WB: Human iPSCs derived astrocytes rescue rotenone-induced mitochondrial dysfunction and dopaminergic neurodegeneration in vitro by donating functional mitochondria. Transl Neurodegener. 9(13)2020.PubMed/NCBI View Article : Google Scholar

107 

Chiu GS, Maj MA, Rizvi S, Dantzer R, Vichaya EG, Laumet G, Kavelaars A and Heijnen CJ: Pifithrin-μ prevents cisplatin-induced chemobrain by preserving neuronal mitochondrial function. Cancer Res. 77:742–752. 2017.PubMed/NCBI View Article : Google Scholar

108 

Kleih M, Böpple K, Dong M, Gaißler A, Heine S, Olayioye MA, Aulitzky WE and Essmann F: Direct impact of cisplatin on mitochondria induces ROS production that dictates cell fate of ovarian cancer cells. Cell Death Dis. 10(851)2019.PubMed/NCBI View Article : Google Scholar

109 

Boukelmoune N, Chiu GS, Kavelaars A and Heijnen CJ: Mitochondrial transfer from mesenchymal stem cells to neural stem cells protects against the neurotoxic effects of cisplatin. Acta Neuropathol Commun. 6(139)2018.PubMed/NCBI View Article : Google Scholar

110 

Méthot S, Proulx S, Brunette I and Rochette PJ: Rescuing cellular function in Fuchs endothelial corneal dystrophy by healthy exogenous mitochondrial internalization. Sci Rep. 13(3380)2023.PubMed/NCBI View Article : Google Scholar

111 

Jiang D, Chen FX, Zhou H, Lu YY, Tan H, Yu SJ, Yuan J, Liu H, Meng W and Jin ZB: Bioenergetic crosstalk between mesenchymal stem cells and various ocular cells through the intercellular trafficking of mitochondria. Theranostics. 10:7260–7272. 2020.PubMed/NCBI View Article : Google Scholar

112 

Vallabh NA, Romano V and Willoughby CE: Mitochondrial dysfunction and oxidative stress in corneal disease. Mitochondrion. 36:103–113. 2017.PubMed/NCBI View Article : Google Scholar

113 

Numa K, Ueno M, Fujita T, Ueda K, Hiramoto N, Mukai A, Tokuda Y, Nakano M, Sotozono C, Kinoshita S and Hamuro J: Mitochondria as a Platform for dictating the cell fate of cultured human corneal endothelial cells. Invest Ophthalmol Vis Sci. 61(10)2020.PubMed/NCBI View Article : Google Scholar

114 

Jiang D, Gao F, Zhang Y, Wong DS, Li Q, Tse HF, Xu G, Yu Z and Lian Q: Mitochondrial transfer of mesenchymal stem cells effectively protects corneal epithelial cells from mitochondrial damage. Cell Death Dis. 7(e2467)2016.PubMed/NCBI View Article : Google Scholar

115 

Hanna SJ, McCoy-Simandle K, Leung E, Genna A, Condeelis J and Cox D: Tunneling nanotubes, a novel mode of tumor cell-macrophage communication in tumor cell invasion. J Cell Sci. 132(jcs223321)2019.PubMed/NCBI View Article : Google Scholar

116 

Wang L, Klingeborn M, Travis AM, Hao Y, Arshavsky VY and Gospe SM III: Progressive optic atrophy in a retinal ganglion cell-specific mouse model of complex I deficiency. Sci Rep. 10(16326)2020.PubMed/NCBI View Article : Google Scholar

117 

Yu AK, Song L, Murray KD, van der List D, Sun C, Shen Y, Xia Z and Cortopassi GA: Mitochondrial complex I deficiency leads to inflammation and retinal ganglion cell death in the Ndufs4 mouse. Hum Mol Genet. 24:2848–2860. 2015.PubMed/NCBI View Article : Google Scholar

118 

Warwick AM, Bomze HM, Wang L, Hao Y, Stinnett SS and Gospe SM III: Hypoxia-mediated rescue of retinal ganglion cells deficient in mitochondrial complex I is independent of the hypoxia-inducible factor pathway. Sci Rep. 14(24114)2024.PubMed/NCBI View Article : Google Scholar

119 

Jiang D, Xiong G, Feng H, Zhang Z, Chen P, Yan B, Chen L, Gandhervin K, Ma C, Li C, et al: Donation of mitochondria by iPSC-derived mesenchymal stem cells protects retinal ganglion cells against mitochondrial complex I defect-induced degeneration. Theranostics. 9:2395–2410. 2019.PubMed/NCBI View Article : Google Scholar

120 

Navneet S, Wilson K and Rohrer B: Muller glial cells in the macula: Their activation and cell-cell interactions in age-related macular degeneration. Invest Ophthalmol Vis Sci. 65(42)2024.PubMed/NCBI View Article : Google Scholar

121 

Xue B, Xie Y, Xue Y, Hu N, Zhang G, Guan H and Ji M: Involvement of P2X7 receptors in retinal ganglion cell apoptosis induced by activated Müller cells. Exp Eye Res. 153:42–50. 2016.PubMed/NCBI View Article : Google Scholar

122 

Hu X, Zhao GL, Xu MX, Zhou H, Li F, Miao Y, Lei B, Yang XL and Wang Z: Interplay between Muller cells and microglia aggravates retinal inflammatory response in experimental glaucoma. J Neuroinflammation. 18(303)2021.PubMed/NCBI View Article : Google Scholar

123 

Qiu AW, Bian Z, Mao PA and Liu QH: IL-17A exacerbates diabetic retinopathy by impairing Müller cell function via Act1 signaling. Exp Mol Med. 48(e280)2016.PubMed/NCBI View Article : Google Scholar

124 

Natoli R, Fernando N, Madigan M, Chu-Tan JA, Valter K, Provis J and Rutar M: Microglia-derived IL-1β promotes chemokine expression by Müller cells and RPE in focal retinal degeneration. Mol Neurodegener. 12(31)2017.PubMed/NCBI View Article : Google Scholar

125 

Marques E, Alves Teixeira M, Nguyen C, Terzi F and Gallazzini M: Lipocalin-2 induces mitochondrial dysfunction in renal tubular cells via mTOR pathway activation. Cell Rep. 42(113032)2023.PubMed/NCBI View Article : Google Scholar

126 

Chen Y, Yang Y, Liu Z and He L: Adiponectin promotes repair of renal tubular epithelial cells by regulating mitochondrial biogenesis and function. Metabolism. 128(154959)2022.PubMed/NCBI View Article : Google Scholar

127 

Ji X, Yang X, Gu X, Chu L, Sun S, Sun J, Song P, Mu Q, Wang Y, Sun X, et al: CUL3 induces mitochondrial dysfunction via MRPL12 ubiquitination in renal tubular epithelial cells. FEBS J. 290:5340–5352. 2023.PubMed/NCBI View Article : Google Scholar

128 

Cai F, Li D, Xie Y, Wang X, Ma H, Xu H, Cheng J, Zhuang H and Hua ZC: Sulfide:quinone oxidoreductase alleviates ferroptosis in acute kidney injury via ameliorating mitochondrial dysfunction of renal tubular epithelial cells. Redox Biol. 69(102973)2024.PubMed/NCBI View Article : Google Scholar

129 

Xiong YB, Huang WY, Ling X, Zhou S, Wang XX, Li XL and Zhou LL: Mitochondrial calcium uniporter promotes kidney aging in mice through inducing mitochondrial calcium-mediated renal tubular cell senescence. Acta Pharmacol Sin. 45:2149–2162. 2024.PubMed/NCBI View Article : Google Scholar

130 

Wang J, Yue X, Meng C, Wang Z, Jin X, Cui X, Yang J, Shan C, Gao Z, Yang Y, et al: Acute hyperglycemia may induce renal tubular injury through mitophagy inhibition. Front Endocrinol (Lausanne). 11(536213)2020.PubMed/NCBI View Article : Google Scholar

131 

Aluksanasuwan S, Plumworasawat S, Malaitad T, Chaiyarit S and Thongboonkerd V: High glucose induces phosphorylation and oxidation of mitochondrial proteins in renal tubular cells: A proteomics approach. Sci Rep. 10(5843)2020.PubMed/NCBI View Article : Google Scholar

132 

Nahdi AMTA, John A and Raza H: Elucidation of molecular mechanisms of streptozotocin-induced oxidative stress, apoptosis, and mitochondrial dysfunction in Rin-5F pancreatic β-cells. Oxid Med Cell Longev. 2017(7054272)2017.PubMed/NCBI View Article : Google Scholar

133 

Bhargava P and Schnellmann RG: Mitochondrial energetics in the kidney. Nat Rev Nephrol. 13:629–646. 2017.PubMed/NCBI View Article : Google Scholar

134 

Kapetanaki S, Kumawat AK, Persson K and Demirel I: TMAO suppresses megalin expression and albumin uptake in human proximal tubular cells via PI3K and ERK signaling. Int J Mol Sci. 23(8856)2022.PubMed/NCBI View Article : Google Scholar

135 

Peruchetti DB, Silva-Aguiar RP, Siqueira GM, Dias WB and Caruso-Neves C: High glucose reduces megalin-mediated albumin endocytosis in renal proximal tubule cells through protein kinase B O-GlcNAcylation. J Biol Chem. 293:11388–11400. 2018.PubMed/NCBI View Article : Google Scholar

136 

Kupriyanova Y, Zaharia OP, Bobrov P, Karusheva Y, Burkart V, Szendroedi J, Hwang JH and Roden M: GDS group. Early changes in hepatic energy metabolism and lipid content in recent-onset type 1 and 2 diabetes mellitus. J Hepatol. 74:1028–1037. 2021.PubMed/NCBI View Article : Google Scholar

137 

Tilg H, Moschen AR and Roden M: NAFLD and diabetes mellitus. Nat Rev Gastroenterol Hepatol. 14:32–42. 2017.PubMed/NCBI View Article : Google Scholar

138 

Nassir F and Ibdah JA: Role of mitochondria in nonalcoholic fatty liver disease. Int J Mol Sci. 15:8713–8742. 2014.PubMed/NCBI View Article : Google Scholar

139 

Zheng P, Ma W, Gu Y, Wu H, Bian Z, Liu N, Yang D and Chen X: High-fat diet causes mitochondrial damage and downregulation of mitofusin-2 and optic atrophy-1 in multiple organs. J Clin Biochem Nutr. 73:61–76. 2023.PubMed/NCBI View Article : Google Scholar

140 

Bi Y, Guo X, Zhang M, Zhu K, Shi C, Fan B, Wu Y, Yang Z and Ji G: Bone marrow derived-mesenchymal stem cell improves diabetes-associated fatty liver via mitochondria transformation in mice. Stem Cell Res Ther. 12(602)2021.PubMed/NCBI View Article : Google Scholar

141 

Hsu MJ, Karkossa I, Schäfer I, Christ M, Kühne H, Schubert K, Rolle-Kampczyk UE, Kalkhof S, Nickel S, Seibel P, et al: Mitochondrial transfer by human mesenchymal stromal cells ameliorates hepatocyte lipid load in a mouse model of NASH. Biomedicines. 8(350)2020.PubMed/NCBI View Article : Google Scholar

142 

Gaspers LD, Pierobon N and Thomas AP: Intercellular calcium waves integrate hormonal control of glucose output in the intact liver. J Physiol. 597:2867–2885. 2019.PubMed/NCBI View Article : Google Scholar

143 

Barreto SG, Habtezion A, Gukovskaya A, Lugea A, Jeon C, Yadav D, Hegyi P, Venglovecz V, Sutton R and Pandol SJ: Critical thresholds: key to unlocking the door to the prevention and specific treatments for acute pancreatitis. Gut. 70:194–203. 2021.PubMed/NCBI View Article : Google Scholar

144 

Liu W, Ren Y, Wang T, Wang M, Xu Y, Zhang J, Bi J, Wu Z, Zhang Y and Wu R: Blocking CIRP protects against acute pancreatitis by improving mitochondrial function and suppressing pyroptosis in acinar cells. Cell Death Discov. 10(156)2024.PubMed/NCBI View Article : Google Scholar

145 

Mukherjee R, Mareninova OA, Odinokova IV, Huang W, Murphy J, Chvanov M, Javed MA, Wen L, Booth DM, Cane MC, et al: Mechanism of mitochondrial permeability transition pore induction and damage in the pancreas: Inhibition prevents acute pancreatitis by protecting production of ATP. Gut. 65:1333–1346. 2016.PubMed/NCBI View Article : Google Scholar

146 

Hu Z, Wang D, Gong J, Li Y, Ma Z, Luo T, Jia X, Shi Y and Song Z: MSCs deliver hypoxia-treated mitochondria reprogramming acinar metabolism to alleviate severe acute pancreatitis injury. Adv Sci (Weinh). 10(e2207691)2023.PubMed/NCBI View Article : Google Scholar

147 

Shapiro AM, Pokrywczynska M and Ricordi C: Clinical pancreatic islet transplantation. Nat Rev Endocrinol. 13:268–277. 2017.PubMed/NCBI View Article : Google Scholar

148 

Kin T, Senior P, O'Gorman D, Richer B, Salam A and Shapiro AMJ: Risk factors for islet loss during culture prior to transplantation. Transpl Int. 21:1029–1035. 2008.PubMed/NCBI View Article : Google Scholar

149 

Jimenez-Sánchez C, Brun T and Maechler P: Mitochondrial carriers regulating insulin secretion profiled in human islets upon metabolic stress. Biomolecules. 10(1543)2020.PubMed/NCBI View Article : Google Scholar

150 

Zhang K, Bao R, Huang F, Yang K, Ding Y, Lauterboeck L, Yoshida M, Long Q and Yang Q: ATP synthase inhibitory factor subunit 1 regulates islet β-cell function via repression of mitochondrial homeostasis. Lab Invest. 102:69–79. 2022.PubMed/NCBI View Article : Google Scholar

151 

Rackham CL, Hubber EL, Czajka A, Malik AN, King AJF and Jones PM: Optimizing beta cell function through mesenchymal stromal cell-mediated mitochondria transfer. Stem Cells. 38:574–584. 2020.PubMed/NCBI View Article : Google Scholar

152 

Shoop WK, Lape J, Trum M, Powell A, Sevigny E, Mischler A, Bacman SR, Fontanesi F, Smith J, Jantz D, et al: Efficient elimination of MELAS-associated m.3243G mutant mitochondrial DNA by an engineered mitoARCUS nuclease. Nat Metab. 5:2169–2183. 2023.PubMed/NCBI View Article : Google Scholar

153 

Ikeda T, Osaka H, Shimbo H, Tajika M, Yamazaki M, Ueda A, Murayama K and Yamagata T: Mitochondrial DNA 3243A>T mutation in a patient with MELAS syndrome. Hum Genome Var. 5(25)2018.PubMed/NCBI View Article : Google Scholar

154 

El-Hattab AW, Adesina AM, Jones J and Scaglia F: MELAS syndrome: Clinical manifestations, pathogenesis, and treatment options. Mol Genet Metab. 116:4–12. 2015.PubMed/NCBI View Article : Google Scholar

155 

Lin TK, Chen SD, Chuang YC, Lan MY, Chuang JH, Wang PW, Hsu TY, Wang FS, Tsai MH, Huang ST, et al: Mitochondrial transfer of wharton's jelly mesenchymal stem cells eliminates mutation burden and rescues mitochondrial bioenergetics in rotenone-stressed MELAS fibroblasts. Oxid Med Cell Longev. 2019(9537504)2019.PubMed/NCBI View Article : Google Scholar

156 

Liu L, Yang J, Otani Y, Shiga T, Yamaguchi A, Oda Y, Hattori M, Goto T, Ishibashi S, Kawashima-Sonoyama Y, et al: MELAS-derived neurons functionally improve by mitochondrial transfer from highly purified mesenchymal stem cells (REC). Int J Mol Sci. 24(17186)2023.PubMed/NCBI View Article : Google Scholar

157 

Tuppen HA, Blakely EL, Turnbull DM and Taylor RW: Mitochondrial DNA mutations and human disease. Biochim Biophys Acta. 1797:113–128. 2010.PubMed/NCBI View Article : Google Scholar

158 

Chuang YC, Liou CW, Chen SD, Wang PW, Chuang JH, Tiao MM, Hsu TY, Lin HY and Lin TK: Mitochondrial transfer from wharton's jelly mesenchymal stem cell to MERRF cybrid reduces oxidative stress and improves mitochondrial bioenergetics. Oxid Med Cell Longev. 2017(5691215)2017.PubMed/NCBI View Article : Google Scholar

159 

Capristo M, Del Dotto V, Tropeano CV, Fiorini C, Caporali L, La Morgia C, Valentino ML, Montopoli M, Carelli V and Maresca A: Rapamycin rescues mitochondrial dysfunction in cells carrying the m.8344A > G mutation in the mitochondrial tRNALys. Mol Med. 28(90)2022.PubMed/NCBI View Article : Google Scholar

160 

Jacoby E, Blumkin M, Anikster Y, Varda-Bloom N, Pansheen J, Bar Yoseph O, Gruber N, Lahav E, Besser MJ, Schachter J, et al: First-in-human mitochondrial augmentation of hematopoietic stem cells in pearson syndrome. Blood. 132(1024)2018.

161 

Jacoby E, Bar-Yosef O, Gruber N, Lahav E, Varda-Bloom N, Bolkier Y, Bar D, Blumkin MB, Barak S, Eisenstein E, et al: Mitochondrial augmentation of hematopoietic stem cells in children with single large-scale mitochondrial DNA deletion syndromes. Sci Transl Med. 14(eabo3724)2022.PubMed/NCBI View Article : Google Scholar

162 

Fu Y, Ni J and Chen J, Ma G, Zhao M, Zhu S, Shi T, Zhu J, Huang Z, Zhang J and Chen J: Dual-functionalized MSCs that express CX3CR1 and IL-25 exhibit enhanced therapeutic effects on inflammatory bowel disease. Mol Ther. 28:1214–1228. 2020.PubMed/NCBI View Article : Google Scholar

163 

Van Nguyen TT, Vu NB and Van Pham P: Mesenchymal stem cell transplantation for ischemic diseases: Mechanisms and challenges. Tissue Eng Regen Med. 18:587–611. 2021.PubMed/NCBI View Article : Google Scholar

164 

Zhu XY, Lerman A and Lerman LO: Concise review: Mesenchymal stem cell treatment for ischemic kidney disease. Stem Cells. 31:1731–1736. 2013.PubMed/NCBI View Article : Google Scholar

165 

Baldari S, Di Rocco G, Piccoli M, Pozzobon M, Muraca M and Toietta G: Challenges and strategies for improving the regenerative effects of mesenchymal stromal cell-based therapies. Int J Mol Sci. 18(2087)2017.PubMed/NCBI View Article : Google Scholar

166 

Hu C and Li L: Preconditioning influences mesenchymal stem cell properties in vitro and in vivo. J Cell Mol Med. 22:1428–1442. 2018.PubMed/NCBI View Article : Google Scholar

167 

Li CJ, Chen PK, Sun LY and Pang CY: Enhancement of mitochondrial transfer by antioxidants in human mesenchymal stem cells. Oxid Med Cell Longev. 2017(8510805)2017.PubMed/NCBI View Article : Google Scholar

168 

Lee DS and Kim JE: PDI-mediated S-nitrosylation of DRP1 facilitates DRP1-S616 phosphorylation and mitochondrial fission in CA1 neurons. Cell Death Dis. 9(869)2018.PubMed/NCBI View Article : Google Scholar

169 

Yao X, Ma Y, Zhou W, Liao Y, Jiang Z, Lin J, He Q, Wu H, Wei W, Wang X, et al: In-cytoplasm mitochondrial transplantation for mesenchymal stem cells engineering and tissue regeneration. Bioeng Transl Med. 7(e10250)2021.PubMed/NCBI View Article : Google Scholar

170 

Guo Y, Chi X, Wang Y, Heng BC, Wei Y, Zhang X, Zhao H, Yin Y and Deng X: Mitochondria transfer enhances proliferation, migration, and osteogenic differentiation of bone marrow mesenchymal stem cell and promotes bone defect healing. Stem Cell Res Ther. 11(245)2020.PubMed/NCBI View Article : Google Scholar

171 

Lin RZ, Im GB, Luo AC, Zhu Y, Hong X, Neumeyer J, Tang HW, Perrimon N and Melero-Martin JM: Mitochondrial transfer mediates endothelial cell engraftment through mitophagy. Nature. 629:660–668. 2024.PubMed/NCBI View Article : Google Scholar

172 

Akhter W, Nakhle J, Vaillant L, Garcin G, Le Saout C, Simon M, Crozet C, Djouad F, Jorgensen C, Vignais ML and Hernandez J: Transfer of mesenchymal stem cell mitochondria to CD4+ T cells contributes to repress Th1 differentiation by downregulating T-bet expression. Stem Cell Res Ther. 14(12)2023.PubMed/NCBI View Article : Google Scholar

173 

Court AC, Le-Gatt A, Luz-Crawford P, Parra E, Aliaga-Tobar V, Bátiz LF, Contreras RA, Ortúzar MI, Kurte M, Elizondo-Vega R, et al: Mitochondrial transfer from MSCs to T cells induces Treg differentiation and restricts inflammatory response. EMBO Rep. 21(e48052)2020.PubMed/NCBI View Article : Google Scholar

174 

Romano M, Tung SL, Smyth LA and Lombardi G: Treg therapy in transplantation: A general overview. Transpl Int. 30:745–753. 2017.PubMed/NCBI View Article : Google Scholar

175 

Li LZ, Zhang Z and Bhoj VG: Conventional T cell therapies pave the way for novel Treg therapeutics. Cell Immunol. 359(104234)2021.PubMed/NCBI View Article : Google Scholar

176 

Piekarska K, Urban-Wójciuk Z, Kurkowiak M, Pelikant-Małecka I, Schumacher A, Sakowska J, Spodnik JH, Arcimowicz Ł, Zielińska H, Tymoniuk B, et al: Mesenchymal stem cells transfer mitochondria to allogeneic Tregs in an HLA-dependent manner improving their immunosuppressive activity. Nat Commun. 13(856)2022.PubMed/NCBI View Article : Google Scholar

177 

Espinosa-Carrasco G, Le Saout C, Fontanaud P, Stratmann T, Mollard P, Schaeffer M and Hernandez J: CD4+ T helper cells play a key role in maintaining diabetogenic CD8+ T cell function in the pancreas. Front Immunol. 8(2001)2018.PubMed/NCBI View Article : Google Scholar

178 

Luz-Crawford P, Hernandez J, Djouad F, Luque-Campos N, Caicedo A, Carrère-Kremer S, Brondello JM, Vignais ML, Pène J and Jorgensen C: Mesenchymal stem cell repression of Th17 cells is triggered by mitochondrial transfer. Stem Cell Res Ther. 10(232)2019.PubMed/NCBI View Article : Google Scholar

179 

Lazarevic V, Glimcher LH and Lord GM: T-bet: A bridge between innate and adaptive immunity. Nat Rev Immunol. 13:777–789. 2013.PubMed/NCBI View Article : Google Scholar : Ji L, Chen Y, Wang H, Zhang W, He L, Wu J and Liu Y: Overexpression of Sirt6 promotes M2 macrophage transformation, alleviating renal injury in diabetic nephropathy. Int J Oncol 55: 103-115, 2019.

180 

Xu L, Yan X, Zhao Y, Wang J, Liu B, Yu S, Fu J, Liu Y and Su J: Macrophage polarization mediated by mitochondrial dysfunction induces adipose tissue inflammation in obesity. Int J Mol Sci. 23(9252)2022.PubMed/NCBI View Article : Google Scholar

181 

Ran L, Zhang S, Wang G, Zhao P, Sun J, Zhou J, Gan H, Jeon R, Li Q, Herrmann J and Wang F: Mitochondrial pyruvate carrier-mediated metabolism is dispensable for the classical activation of macrophages. Nat Metab. 5:804–820. 2023.PubMed/NCBI View Article : Google Scholar

182 

De Santa F, Vitiello L, Torcinaro A and Ferraro E: The role of metabolic remodeling in macrophage polarization and its effect on skeletal muscle regeneration. Antioxid Redox Signal. 30:1553–1598. 2019.PubMed/NCBI View Article : Google Scholar

183 

Yuan Y, Chen Y, Peng T, Li L, Zhu W, Liu F, Luo R, Cheng J, Liu J and Lu Y: Mitochondrial ROS-induced lysosomal dysfunction impairs autophagic flux and contributes to M1 macrophage polarization in a diabetic condition. Clin Sci (Lond). 133:1759–1777. 2019.PubMed/NCBI View Article : Google Scholar

184 

Yuan Y, Yuan L, Li L, Liu F, Liu J, Chen Y, Cheng J and Lu Y: Mitochondrial transfer from mesenchymal stem cells to macrophages restricts inflammation and alleviates kidney injury in diabetic nephropathy mice via PGC-1α activation. Stem Cells. 39:913–928. 2021.PubMed/NCBI View Article : Google Scholar

185 

Hussell T and Bell TJ: Alveolar macrophages: Plasticity in a tissue-specific context. Nat Rev Immunol. 14:81–93. 2014.PubMed/NCBI View Article : Google Scholar

186 

Jackson MV, Morrison TJ, Doherty DF, McAuley DF, Matthay MA, Kissenpfennig A, O'Kane CM and Krasnodembskaya AD: Mitochondrial transfer via tunneling nanotubes is an important mechanism by which mesenchymal stem cells enhance macrophage phagocytosis in the in vitro and in vivo models of ARDS. Stem Cells. 34:2210–2223. 2016.PubMed/NCBI View Article : Google Scholar

187 

Jackson MV and Krasnodembskaya AD: Analysis of mitochondrial transfer in direct Co-cultures of human monocyte-derived macrophages (MDM) and mesenchymal stem cells (MSC). Bio Protoc. 7(e2255)2017.PubMed/NCBI View Article : Google Scholar

188 

Phinney DG, Di Giuseppe M, Njah J, Sala E, Shiva S, St Croix CM, Stolz DB, Watkins SC, Di YP, Leikauf GD, et al: Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs. Nat Commun. 6(8472)2015.PubMed/NCBI View Article : Google Scholar

189 

Xia L, Zhang C, Lv N, Liang Z, Ma T, Cheng H, Xia Y and Shi L: AdMSC-derived exosomes alleviate acute lung injury via transferring mitochondrial component to improve homeostasis of alveolar macrophages. Theranostics. 12:2928–2947. 2022.PubMed/NCBI View Article : Google Scholar

190 

West AP, Khoury-Hanold W, Staron M, Tal MC, Pineda CM, Lang SM, Bestwick M, Duguay BA, Raimundo N, MacDuff DA, et al: Mitochondrial DNA stress primes the antiviral innate immune response. Nature. 520:553–557. 2015.PubMed/NCBI View Article : Google Scholar

191 

Morrison TJ, Jackson MV, Cunningham EK, Kissenpfennig A, McAuley DF, O'Kane CM and Krasnodembskaya AD: Mesenchymal stromal cells modulate macrophages in clinically relevant lung injury models by extracellular vesicle mitochondrial transfer. Am J Respir Crit Care Med. 196:1275–1286. 2017.PubMed/NCBI View Article : Google Scholar

192 

Kang MH, Kim YJ and Lee JH: Mitochondria in reproduction. Clin Exp Reprod Med. 50:1–11. 2023.PubMed/NCBI View Article : Google Scholar

193 

Dadarwal D, Pfeifer L, Cervantes M, Adams GP and Singh J: Effect of maternal age on ATP content and distribution of mitochondria in bovine oocytes. PLoS One. 19(e0302444)2024.PubMed/NCBI View Article : Google Scholar

194 

Zhao J and Li Y: Adenosine triphosphate content in human unfertilized oocytes, undivided zygotes and embryos unsuitable for transfer or cryopreservation. J Int Med Res. 40:734–739. 2012.PubMed/NCBI View Article : Google Scholar

195 

May-Panloup P, Chrétien MF, Jacques C, Vasseur C, Malthièry Y and Reynier P: Low oocyte mitochondrial DNA content in ovarian insufficiency. Hum Reprod. 20:593–597. 2005.PubMed/NCBI View Article : Google Scholar

196 

Zhang D, Keilty D, Zhang ZF and Chian RC: Mitochondria in oocyte aging: Current understanding. Facts Views Vis Obgyn. 9:29–38. 2017.PubMed/NCBI

197 

Cozzolino M, Marin D and Sisti G: New frontiers in IVF: mtDNA and autologous germline mitochondrial energy transfer. Reprod Biol Endocrinol. 17(55)2019.PubMed/NCBI View Article : Google Scholar

198 

Takeda K: Functional consequences of mitochondrial mismatch in reconstituted embryos and offspring. J Reprod Dev. 65:485–489. 2019.PubMed/NCBI View Article : Google Scholar

199 

Tang S, Yang N, Yu M, Wang S, Hu X, Ni H and Cai W: Noninvasive autologous mitochondria transport improves the quality and developmental potential of oocytes from aged mice. F S Sci. 3:310–321. 2022.PubMed/NCBI View Article : Google Scholar

200 

Wang ZB, Hao JX, Meng TG, Guo L, Dong MZ, Fan LH, Ouyang YC, Wang G, Sun QY, Ou XH and Yao YQ: Transfer of autologous mitochondria from adipose tissue-derived stem cells rescues oocyte quality and infertility in aged mice. Aging (Albany NY). 9:2480–2488. 2017.PubMed/NCBI View Article : Google Scholar

201 

Kankanam Gamage US, Hashimoto S, Miyamoto Y, Nakano T, Yamanaka M, Koike A, Satoh M and Morimoto Y: Mitochondria transfer from adipose stem cells improves the developmental potential of cryopreserved oocytes. Biomolecules. 12(1008)2022.PubMed/NCBI View Article : Google Scholar

202 

Zhang Q, Hao JX, Liu BW, Ouyang YC, Guo JN, Dong MZ, Wang ZB, Gao F and Yao YQ: Supplementation of mitochondria from endometrial mesenchymal stem cells improves oocyte quality in aged mice. Cell Prolif. 56(e13372)2023.PubMed/NCBI View Article : Google Scholar

203 

Zhang C, Tao L, Yue Y, Ren L, Zhang Z, Wang X, Tian J and An L: Mitochondrial transfer from induced pluripotent stem cells rescues developmental potential of in vitro fertilized embryos from aging females†. Biol Reprod. 104:1114–1125. 2021.PubMed/NCBI View Article : Google Scholar

204 

Tilly J and Woods D: Compositions and methods for autologous germline mitochondrial energy transfer. United States Patent Number. 8,642,329, 2014.

205 

Fakih MH, Shmoury ME, Szeptycki J, Cruz DBD, Lux C, Verjee S, Burgess CM, Cohn GM and Casper RF: The AUGMENTSM treatment: Physician reported outcomes of the initial global patient experience. JFIV Reprod Med Genet. 3:1–7. 2015.

206 

Oktay K, Baltaci V, Sonmezer M, Turan V, Unsal E, Baltaci A, Aktuna S and Moy F: Oogonial precursor cell-derived autologous mitochondria injection to improve outcomes in women with multiple IVF failures due to low oocyte quality: A clinical translation. Reprod Sci. 22:1612–1617. 2015.PubMed/NCBI View Article : Google Scholar

207 

Jiang Z, Shi C, Han H, Fu M, Zhu H, Han T, Fei J, Huang Y, Jin Z, He J, et al: Autologous non-invasively derived stem cells mitochondria transfer shows therapeutic advantages in human embryo quality rescue. Biol Res. 56(60)2023.PubMed/NCBI View Article : Google Scholar

208 

Morimoto Y, Gamage USK, Yamochi T, Saeki N, Morimoto N, Yamanaka M, Koike A, Miyamoto Y, Tanaka K, Fukuda A, et al: Mitochondrial transfer into human oocytes improved embryo quality and clinical outcomes in recurrent pregnancy failure cases. Int J Mol Sci. 24(2738)2023.PubMed/NCBI View Article : Google Scholar

209 

Acquistapace A, Bru T, Lesault PF, Figeac F, Coudert AE, le Coz O, Christov C, Baudin X, Auber F, Yiou R, et al: Human mesenchymal stem cells reprogram adult cardiomyocytes toward a progenitor-like state through partial cell fusion and mitochondria transfer. Stem Cells. 29:812–824. 2011.PubMed/NCBI View Article : Google Scholar

210 

Jiao H, Jiang D, Hu X, Du W, Ji L, Yang Y, Li X, Sho T, Wang X, Li Y, et al: Mitocytosis, a migrasome-mediated mitochondrial quality-control process. Cell. 184:2896–2910.e13. 2021.PubMed/NCBI View Article : Google Scholar

211 

Sadeghsoltani F, Avci ÇB, Hassanpour P, Haiaty S, Rahmati M, Mota A, Rahbarghazi R, Nemati M, Mahdipour M, Talebi M, et al: Autophagy modulation effect on homotypic transfer of intracellular components via tunneling nanotubes in mesenchymal stem cells. Stem Cell Res Ther. 15(189)2024.PubMed/NCBI View Article : Google Scholar

212 

Dai L, Wu Z, Yin L, Cheng L, Zhou Q and Ding F: Exogenous functional mitochondria derived from bone mesenchymal stem cells that respond to ROS can rescue neural cells following ischemic stroke. J Inflamm Res. 17:3383–3395. 2024.PubMed/NCBI View Article : Google Scholar

213 

Mistry JJ, Marlein CR, Moore JA, Hellmich C, Wojtowicz EE, Smith JGW, Macaulay I, Sun Y, Morfakis A, Patterson A, et al: ROS-mediated PI3K activation drives mitochondrial transfer from stromal cells to hematopoietic stem cells in response to infection. Proc Natl Acad Sci USA. 116:24610–24619. 2019.PubMed/NCBI View Article : Google Scholar

214 

Li Y, Wang Y, Yang W, Wu Z, Ma D, Sun J, Tao H, Ye Q, Liu J, Ma Z, et al: ROS-responsive exogenous functional mitochondria can rescue neural cells post-ischemic stroke. Front Cell Dev Biol. 11(1207748)2023.PubMed/NCBI View Article : Google Scholar

215 

Saito K, Zhang Q, Yang H, Yamatani K, Ai T, Ruvolo V, Baran N, Cai T, Ma H, Jacamo R, et al: Exogenous mitochondrial transfer and endogenous mitochondrial fission facilitate AML resistance to OxPhos inhibition. Blood Adv. 5:4233–4255. 2021.PubMed/NCBI View Article : Google Scholar

216 

Ahmad T, Mukherjee S, Pattnaik B, Kumar M, Singh S, Kumar M, Rehman R, Tiwari BK, Jha KA, Barhanpurkar AP, et al: Miro1 regulates intercellular mitochondrial transport & enhances mesenchymal stem cell rescue efficacy. EMBO J. 33:994–1010. 2014.PubMed/NCBI View Article : Google Scholar

217 

Novak J, Nahacka Z, Oliveira GL, Brisudova P, Dubisova M, Dvorakova S, Miklovicova S, Dalecka M, Puttrich V, Grycova L, et al: The adaptor protein Miro1 modulates horizontal transfer of mitochondria in mouse melanoma models. Cell Rep. 44(115154)2025.PubMed/NCBI View Article : Google Scholar

218 

Barutta F, Corbetta B, Bellini S, Gambino R, Bruno S, Kimura S, Hase K, Ohno H and Gruden G: Protective effect of mesenchymal stromal cells in diabetic nephropathy: The In vitro and In vivo role of the M-Sec-tunneling nanotubes. Clin Sci (Lond). 138:1537–1559. 2024.PubMed/NCBI View Article : Google Scholar

219 

Barutta F, Kimura S, Hase K, Bellini S, Corbetta B, Corbelli A, Fiordaliso F, Barreca A, Papotti MG, Ghiggeri GM, et al: Protective role of the M-Sec-tunneling nanotube system in podocytes. J Am Soc Nephrol. 32:1114–1130. 2021.PubMed/NCBI View Article : Google Scholar

220 

Kastl L, Sauer SW, Ruppert T, Beissbarth T, Becker MS, Süss D, Krammer PH and Gülow K: TNF-α mediates mitochondrial uncoupling and enhances ROS-dependent cell migration via NF-κB activation in liver cells. FEBS Lett. 588:175–183. 2014.PubMed/NCBI View Article : Google Scholar

221 

Wang K, Zhou L, Mao H, Liu J, Chen Z and Zhang L: Intercellular mitochondrial transfer alleviates pyroptosis in dental pulp damage. Cell Prolif. 56(e13442)2023.PubMed/NCBI View Article : Google Scholar

222 

Kimura S, Yamashita M, Yamakami-Kimura M, Sato Y, Yamagata A, Kobashigawa Y, Inagaki F, Amada T, Hase K, Iwanaga T, et al: Distinct roles for the N- and C-terminal regions of M-Sec in plasma membrane deformation during tunneling nanotube formation. Sci Rep. 6(33548)2016.PubMed/NCBI View Article : Google Scholar

223 

Gao C, Dai Y, Spezza PA, Boasiako P, Tang A, Rasquinha G, Zhong H, Shao B, Liu Y, Shi PA, et al: Megakaryocytes transfer mitochondria to bone marrow mesenchymal stromal cells to lower platelet activation. J Clin Invest. 135(e189801)2025.PubMed/NCBI View Article : Google Scholar

224 

Irwin RM, Thomas MA, Fahey MJ, Mayán MD, Smyth JW and Delco ML: Connexin 43 regulates intercellular mitochondrial transfer from human mesenchymal stromal cells to chondrocytes. Stem Cell Res Ther. 15(359)2024.PubMed/NCBI View Article : Google Scholar

225 

Huang T, Zhang T, Jiang X, Li A, Su Y, Bian Q, Wu H, Lin R, Li N, Cao H, et al: Iron oxide nanoparticles augment the intercellular mitochondrial transfer-mediated therapy. Sci Adv. 7(eabj0534)2021.PubMed/NCBI View Article : Google Scholar

226 

Qiao X, Huang N, Meng W, Liu Y, Li J, Li C, Wang W, Lai Y, Zhao Y, Ma Z, et al: Beyond mitochondrial transfer, cell fusion rescues metabolic dysfunction and boosts malignancy in adenoid cystic carcinoma. Cell Rep. 43(114652)2024.PubMed/NCBI View Article : Google Scholar

227 

Powell AE, Anderson EC, Davies PS, Silk AD, Pelz C, Impey S and Wong MH: Fusion between intestinal epithelial cells and macrophages in a cancer context results in nuclear reprogramming. Cancer Res. 71:1497–1505. 2011.PubMed/NCBI View Article : Google Scholar

228 

Nahacka Z, Novak J, Zobalova R and Neuzil J: Miro proteins and their role in mitochondrial transfer in cancer and beyond. Front Cell Dev Biol. 10(937753)2022.PubMed/NCBI View Article : Google Scholar

229 

Zhang H, Yu X, Ye J, Li H, Hu J, Tan Y, Fang Y, Akbay E, Yu F, Weng C, et al: Systematic investigation of mitochondrial transfer between cancer cells and T cells at single-cell resolution. Cancer Cell. 41:1788–1802.e10. 2023.PubMed/NCBI View Article : Google Scholar

230 

Goliwas KF, Libring S, Berestesky E, Gholizadeh S, Schwager SC, Frost AR, Gaborski TR, Zhang J and Reinhart-King CA: Mitochondrial transfer from cancer-associated fibroblasts increases migration in aggressive breast cancer. J Cell Sci. 136(jcs260419)2023.PubMed/NCBI View Article : Google Scholar

231 

Xie Q, Zeng J, Zheng Y, Li T, Ren J, Chen K, Zhang Q, Xie R, Xu F and Zhu J: Mitochondrial transplantation attenuates cerebral ischemia-reperfusion injury: Possible involvement of mitochondrial component separation. Oxid Med Cell Longev. 2021(1006636)2021.PubMed/NCBI View Article : Google Scholar

232 

Peruzzotti-Jametti L, Bernstock JD, Willis CM, Manferrari G, Rogall R, Fernandez-Vizarra E, Williamson JC, Braga A, van den Bosch A, Leonardi T, et al: Neural stem cells traffic functional mitochondria via extracellular vesicles. PLoS Biol. 19(e3001166)2021.PubMed/NCBI View Article : Google Scholar

233 

Zheng D, Zhou H, Wang H, Zhu Y, Wu Y, Li Q, Li T and Liu L: Mesenchymal stem cell-derived microvesicles improve intestinal barrier function by restoring mitochondrial dynamic balance in sepsis rats. Stem Cell Res Ther. 12(299)2021.PubMed/NCBI View Article : Google Scholar

234 

Cowan DB, Yao R, Thedsanamoorthy JK, Zurakowski D, del Nido PJ and McCully JD: Transit and integration of extracellular mitochondria in human heart cells. Sci Rep. 7(17450)2017.PubMed/NCBI View Article : Google Scholar

235 

Fu A: Mitotherapy as a novel therapeutic strategy for mitochondrial diseases. Curr Mol Pharmacol. 13:41–49. 2020.PubMed/NCBI View Article : Google Scholar

236 

Chen J, Zhong J, Wang LL and Chen YY: Mitochondrial transfer in cardiovascular disease: From mechanisms to therapeutic implications. Front Cardiovasc Med. 8(771298)2021.PubMed/NCBI View Article : Google Scholar

237 

Wang ZH, Chen L, Li W, Chen L and Wang YP: Mitochondria transfer and transplantation in human health and diseases. Mitochondrion. 65:80–87. 2022.PubMed/NCBI View Article : Google Scholar

238 

Walker M, Levitt MR, Federico EM, Miralles FJ, Levy SH, Lynne Prijoles K, Winter A, Swicord JK and Sancak Y: Autologous mitochondrial transplant for acute cerebral ischemia: Phase 1 trial results and review. J Cereb Blood Flow Metab: Dec 4, 2024 (Epub ahead of print).

239 

Nakai R, Varnum S, Field RL, Shi H, Giwa R, Jia W, Krysa SJ, Cohen EF, Borcherding N, Saneto RP, et al: Mitochondria transfer-based therapies reduce the morbidity and mortality of Leigh syndrome. Nat Metab. 6:1886–1896. 2024.PubMed/NCBI View Article : Google Scholar

240 

Li C, Cheung MKH, Han S, Zhang Z, Chen L, Chen J, Zeng H and Qiu J: Mesenchymal stem cells and their mitochondrial transfer: A double-edged sword. Biosci Rep. 39(BSR20182417)2019.PubMed/NCBI View Article : Google Scholar

241 

Hosseinian S, Ali Pour P and Kheradvar A: Prospects of mitochondrial transplantation in clinical medicine: Aspirations and challenges. Mitochondrion. 65:33–44. 2022.PubMed/NCBI View Article : Google Scholar

242 

Caicedo A, Aponte PM, Cabrera F, Hidalgo C and Khoury M: Artificial mitochondria transfer: Current challenges, advances, and future applications. Stem Cells Int. 2017(7610414)2017.PubMed/NCBI View Article : Google Scholar

243 

Ishikawa K, Toyama-Sorimachi N, Nakada K, Morimoto M, Imanishi H, Yoshizaki M, Sasawatari S, Niikura M, Takenaga K, Yonekawa H and Hayashi J: The innate immune system in host mice targets cells with allogenic mitochondrial DNA. J Exp Med. 207:2297–2305. 2010.PubMed/NCBI View Article : Google Scholar

244 

Deuse T, Hu X, Agbor-Enoh S, Koch M, Spitzer MH, Gravina A, Alawi M, Marishta A, Peters B, Kosaloglu-Yalcin Z, et al: De novo mutations in mitochondrial DNA of iPSCs produce immunogenic neoepitopes in mice and humans. Nat Biotechnol. 37:1137–1144. 2019.PubMed/NCBI View Article : Google Scholar

245 

Klopstock T, Klopstock B and Prokisch H: Mitochondrial replacement approaches: Challenges for clinical implementation. Genome Med. 8(126)2016.PubMed/NCBI View Article : Google Scholar

246 

Yamada Y, Ito M, Arai M, Hibino M, Tsujioka T and Harashima H: Challenges in promoting mitochondrial transplantation therapy. Int J Mol Sci. 21(6365)2020.PubMed/NCBI View Article : Google Scholar

247 

Yuan J, Chen F, Jiang D, Xu Z, Zhang H and Jin ZB: ROCK inhibitor enhances mitochondrial transfer via tunneling nanotubes in retinal pigment epithelium. Theranostics. 14:5762–5777. 2024.PubMed/NCBI View Article : Google Scholar

248 

Chi A, Yang B, Dai H, Li X, Mo J, Gao Y, Chen Z, Feng X, Ma M, Li Y, et al: Stem Leydig cells support macrophage immunological homeostasis through mitochondrial transfer in mice. Nat Commun. 15(2120)2024.PubMed/NCBI View Article : Google Scholar

249 

Játiva S, Calle P, Torrico S, Muñoz Á, García M, Martinez I, Sola A and Hotter G: Mitochondrial transplantation enhances phagocytic function and decreases lipid accumulation in foam cell macrophages. Biomedicines. 10(329)2022.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
Copy and paste a formatted citation
Spandidos Publications style
Tran CM and Nguyen VT: Mesenchymal stem cells and the rescue of mitochondrial damage in different disease models (Review). World Acad Sci J 8: 4, 2026.
APA
Tran, C.M., & Nguyen, V.T. (2026). Mesenchymal stem cells and the rescue of mitochondrial damage in different disease models (Review). World Academy of Sciences Journal, 8, 4. https://doi.org/10.3892/wasj.2025.419
MLA
Tran, C. M., Nguyen, V. T."Mesenchymal stem cells and the rescue of mitochondrial damage in different disease models (Review)". World Academy of Sciences Journal 8.1 (2026): 4.
Chicago
Tran, C. M., Nguyen, V. T."Mesenchymal stem cells and the rescue of mitochondrial damage in different disease models (Review)". World Academy of Sciences Journal 8, no. 1 (2026): 4. https://doi.org/10.3892/wasj.2025.419
Copy and paste a formatted citation
x
Spandidos Publications style
Tran CM and Nguyen VT: Mesenchymal stem cells and the rescue of mitochondrial damage in different disease models (Review). World Acad Sci J 8: 4, 2026.
APA
Tran, C.M., & Nguyen, V.T. (2026). Mesenchymal stem cells and the rescue of mitochondrial damage in different disease models (Review). World Academy of Sciences Journal, 8, 4. https://doi.org/10.3892/wasj.2025.419
MLA
Tran, C. M., Nguyen, V. T."Mesenchymal stem cells and the rescue of mitochondrial damage in different disease models (Review)". World Academy of Sciences Journal 8.1 (2026): 4.
Chicago
Tran, C. M., Nguyen, V. T."Mesenchymal stem cells and the rescue of mitochondrial damage in different disease models (Review)". World Academy of Sciences Journal 8, no. 1 (2026): 4. https://doi.org/10.3892/wasj.2025.419
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team