Open Access

PPARγ activation reduces ischemia/reperfusion‑induced metastasis in a murine model of hepatocellular carcinoma

  • Authors:
    • Yi Liu
    • Zhao Liu
    • Yuxin Chen
    • Kesen Xu
    • Jiahong Dong
  • View Affiliations

  • Published online on: December 11, 2015     https://doi.org/10.3892/etm.2015.2934
  • Pages: 387-396
  • Copyright: © Liu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Ischemia/reperfusion (I/R) injury during liver resection or transplantation for the treatment of hepatocellular carcinoma (HCC) may increase the risk of metastasis. Peroxisome proliferator‑activated receptor‑γ (PPARγ) activation has been observed to exert a protective effect against hepatic I/R injury. However, whether PPARγ activation exerts a protective effect against I/R‑associated liver metastasis remains unknown. Therefore, the present study aimed to investigate the effects of the PPAR agonist rosiglitazone and the specific PPARγ antagonist GW9662 on tumor metastasis following hepatic I/R. An experimental mouse model of hepatic I/R‑induced HCC metastasis was designed in order to determine the effects of I/R on tumor metastasis in the liver. Four groups were established: Sham, control (I/R), rosiglitazone (Ro) and rosiglitazone with GW9662 (Ro + GW) groups. In the latter two groups, the treatments were administered intravenously 1 h prior to the induction of ischemia. Tumor load was measured 12 days after the procedure. Furthermore, tissue analyses were conducted to determine the expression levels of alanine aminotransferase, myeloperoxidase (MPO), matrix metalloproteinase (MMP)‑9, vascular cell adhesion molecule (VCAM)‑1, nuclear factor (NF)‑κB and PPARγ. Rosiglitazone pretreatment appeared to significantly mitigate hepatic I/R injury, as indicated by serological and histological analysis. The levels of VCAM‑1, MPO and MMP‑9 expression in the Ro group were significantly reduced at 8 h following ischemia compared with those in the control and Ro + GW groups. In addition, rosiglitazone inhibited the I/R‑induced activation of NF‑κB, and GW9662 attenuated the inhibitory effect. To the best of our knowledge, the present study is the first to report on the expression and the functional roles of PPARγ in I/R‑associated metastasis. Short‑term treatment of mice with rosiglitazone, a potent PPARγ agonist, confers protective effects against hepatic I/R‑associated metastasis. Thus, PPARγ may be a potential therapeutic target for the protection of the liver against I/R‑associated metastasis.

References

1 

Fu SY, Lau WY, Li AJ, Yang Y, Pan ZY, Sun YM, Lai EC, Zhou WP and Wu MC: Liver resection under total vascular exclusion with or without preceding Pringle manoeuvre. Br J Surg. 97:50–55. 2010. View Article : Google Scholar : PubMed/NCBI

2 

Makuuchi M, Takayama T, Kubota K, Kimura W, Midorikawa Y, Miyagawa S and Kawasaki S: Hepatic resection for hepatocellular carcinoma - Japanese experience. Hepatogastroenterology. 45(Suppl 3): 1267–1274. 1998.PubMed/NCBI

3 

Llovet JM and Bruix J: Systematic review of randomized trials for unresectable hepatocellular carcinoma: Chemoembolization improves survival. Hepatology. 37:429–442. 2003. View Article : Google Scholar : PubMed/NCBI

4 

Tsuchiya Y, Sawada S, Yoshioka I, Ohashi Y, Matsuo M, Harimaya Y, Tsukada K and Saiki I: Increased surgical stress promotes tumor metastasis. Surgery. 133:547–555. 2003. View Article : Google Scholar : PubMed/NCBI

5 

Uotani H, Yamashita I, Nagata T, Kishimoto H, Kashii Y and Tsukada K: Induction of E-selectin after partial hepatectomy promotes metastases to liver in mice. J Surg Res. 96:197–203. 2001. View Article : Google Scholar : PubMed/NCBI

6 

Kooby DA, Stockman J, Ben-Porat L, Gonen M, Jarnagin WR, Dematteo RP, Tuorto S, Wuest D, Blumgart LH and Fong Y: Influence of transfusions on perioperative and long-term outcome in patients following hepatic resection for colorectal metastases. Ann Surg. 237:860–869; discussion 869–870. 2003. View Article : Google Scholar

7 

Jarrar D, Chaudry IH and Wang P: Organ dysfunction following hemorrhage and sepsis, Mechanisms and therapeutic approaches (Review). Int J Mol Med. 4:575–583. 1999.PubMed/NCBI

8 

Selzner M and Clavien PA: Failure of regeneration of the steatotic rat liver: Disruption at two different levels in the regeneration pathway. Hepatology. 31:35–42. 2000. View Article : Google Scholar : PubMed/NCBI

9 

Jaeschke H, Bautista AP, Spolarics Z and Spitzer JJ: Superoxide generation by Kupffer cells and priming of neutrophils during reperfusion after hepatic ischemia. Free Radic Res Commun. 15:277–284. 1991. View Article : Google Scholar : PubMed/NCBI

10 

Higashiyama A, Watanabe H, Okumura K and Yagita H: Involvement of tumor necrosis factor alpha and very late activation antigen 4/vascular cell adhesion molecule 1 interaction in surgical-stress-enhanced experimental metastasis. Cancer Immunol Immunother. 42:231–236. 1996. View Article : Google Scholar : PubMed/NCBI

11 

Nicoud IB, Jones CM, Pierce JM, Earl TM, Matrisian LM, Chari RS and Gorden DL: Warm hepatic ischemia-reperfusion promotes growth of colorectal carcinoma micrometastases in mouse liver via matrix metalloproteinase-9 induction. Cancer Res. 67:2720–2728. 2007. View Article : Google Scholar : PubMed/NCBI

12 

Miles FL and Pruitt FL: vanG olen KL and Cooper CR: Stepping out of the flow: Capillary extravasation in cancer metastasis. Clin Exp Metastasis. 25:305–324. 2008. View Article : Google Scholar : PubMed/NCBI

13 

Da Costa ML, Redmond HP, Finnegan N, Flynn M and Bouchier-Hayes D: Laparotomy and laparoscopy differentially accelerate experimental flank tumour growth. Br J Surg. 85:1439–1442. 1998. View Article : Google Scholar : PubMed/NCBI

14 

Konstantopoulos K and Thomas SN: Cancer cells in transit: The vascular interactions of tumor cells. Annu Rev Biomed Eng. 11:177–202. 2009. View Article : Google Scholar : PubMed/NCBI

15 

Abdelrahman M, Sivarajah A and Thiemermann C: Beneficial effects of PPAR-gamma ligands in ischemia-reperfusion injury, inflammation and shock. Cardiovasc Res. 65:772–781. 2005. View Article : Google Scholar : PubMed/NCBI

16 

Cuzzocrea S: Peroxisome proliferator-activated receptors gamma ligands and ischemia and reperfusion injury. Vascul Pharmacol. 41:187–195. 2004. View Article : Google Scholar : PubMed/NCBI

17 

Kuboki S, Shin T, Huber N, Eismann T, Galloway E, Schuster R, Blanchard J, Zingarelli B and Lentsch AB: Peroxisome proliferator-activated receptor-gamma protects against hepatic ischemia/reperfusion injury in mice. Hepatology. 47:215–224. 2008. View Article : Google Scholar : PubMed/NCBI

18 

Kohn EC: Invasion and metastasis: B iology and clinical potential. Pharmacol Ther. 52:235–244. 1991. View Article : Google Scholar : PubMed/NCBI

19 

Tantivejkul K, Kalikin LM and Pienta KJ: Dynamic process of prostate cancer metastasis to bone. J Cell Biochem. 91:706–717. 2004. View Article : Google Scholar : PubMed/NCBI

20 

van der Bilt JD, Kranenburg O, Nijkamp MW, Smakman N, Veenendaal LM, Te Velde EA, Voest EE, van Diest PJ and Borel Rinkes IH: Ischemia/reperfusion accelerates the outgrowth of hepatic micrometastases in a highly standardized murine model. Hepatology. 42:165–175. 2005. View Article : Google Scholar : PubMed/NCBI

21 

Herron GS, Banda MJ, Clark EJ, Gavrilovic J and Werb Z: Secretion of metalloproteinases by stimulated capillary endothelial cells. Histopathology. J Biol Chem. 261:2814–2818. 1986.PubMed/NCBI

22 

Tamagawa K, Horiuchi T, Uchinami M, Doi K, Yoshida M, Nakamura T, Sasaki H, Taniguchi M and Tanaka K: Hepatic ischemia-reperfusion increases vascular endothelial growth factor and cancer growth in rats. J Surg Res. 148:158–163. 2008. View Article : Google Scholar : PubMed/NCBI

23 

Akahori1 T, Sho M, Hamada K, Suzaki Y, Kuzumoto Y, Nomi T, Nakamura S, Enomoto K, Kanehiro H and Nakajima Y: Importance of peroxisome proliferator-activated receptor γ in hepatic ischemia/reperfusion injury in mice. J Hepatol. 47:784–792. 2007. View Article : Google Scholar : PubMed/NCBI

24 

Yu J, Qiao L, Zimmermann L, Ebert MP, Zhang H, Lin W, Röcken C, Malfertheiner P and Farrell GC: Troglitazone inhibits tumor growth in hepatocellular carcinoma in vitro and in vivo. Hepatology. 43:134–143. 2006. View Article : Google Scholar : PubMed/NCBI

25 

Liang S and Dong C: Integrin VLA-4 enhances sialyl-Lewisx/a-negative melanoma adhesion to and extravasation through the endothelium under low flow conditions. Am J Physiol Cell Physiol. 295:C701–C707. 2008. View Article : Google Scholar : PubMed/NCBI

26 

Conrad R, Remberger M, Cederlund K, Hentschke P, Sundberg B, Ringdén O and Barkholt L: Inflammatory cytokines predominate in cases of tumor regression after hematopoietic stem cell transplantation for solid cancer. Biol Blood Marrow Transplant. 12:346–354. 2006. View Article : Google Scholar : PubMed/NCBI

27 

Hirai T, Matsumoto H, Yamashita K, Urakami A, Iki K, Yamamura M and Tsunoda T: Surgical oncotaxis - excessive surgical stress and postoperative complications contribute to enhancing tumor metastasis, resulting in a poor prognosis for cancer patients. Ann Thorac Cardiovasc Surg. 11:4–6. 2005.PubMed/NCBI

28 

McGary EC, Lev DC and Bar-Eli M: Cellular adhesion pathways and metastatic potential of human melanoma. Cancer Biol Ther. 1:459–465. 2002. View Article : Google Scholar : PubMed/NCBI

29 

Mendoza L, Carrascal T, De Luca M, Fuentes AM, Salado C, Blanco J and Vidal-Vanaclocha F: Hydrogen peroxide mediates vascular cell adhesion molecule-1 expression from interleukin-18-activated hepatic sinusoidal endothelium Implications for circulating cancer cell arrest in the murine liver. Hepatology. 34:298–310. 2001. View Article : Google Scholar : PubMed/NCBI

30 

Mendoza L, Valcárcel M, Carrascal T, Egilegor E, Salado C, Sim BK and Vidal-Vanaclocha F: Inhibition of cytokine-induced microvascular arrest of tumor cells by recombinant endostatin prevents experimental hepatic melanoma metastasis. Cancer Res. 64:304–310. 2004. View Article : Google Scholar : PubMed/NCBI

31 

Grommes C, Landreth GE, Sastre M, Beck M, Feinstein DL, Jacobs AH, Schlegel U and Heneka MT: Inhibition of in vivo glioma growth and invasion by peroxisome proliferator-activated receptor gamma agonist treatment. Mol Pharmacol. 70:1524–1533. 2006. View Article : Google Scholar : PubMed/NCBI

32 

Nishikawa M, Tamada A, Hyoudou K, Umeyama Y, Takahashi Y, Kobayashi Y, Kumai H, Ishida E, Staud F, Yabe Y, et al: Inhibition of experimental hepatic metastasis by targeted delivery of catalase in mice. Clin Exp Metastasis. 21:213–221. 2004. View Article : Google Scholar : PubMed/NCBI

33 

Janani P, Sivakumari K, Geetha A, Yuvaraj S and Parthasarathy C: Bacoside A downregulates matrix metalloproteinases 2 and 9 in DEN-induced hepatocellular carcinoma. Cell Biochem Funct. 28:164–169. 2010. View Article : Google Scholar : PubMed/NCBI

34 

Yoshida M, Horiuchi T, Uchinami M, Tabo T, Kimura N, Yokomachi J, Doi K, Nakamura T, Tamagawa K and Tanaka K: Intermittent hepatic ischemia-reperfusion minimizes liver metastasis in rats. J Surg Res. 111:255–260. 2003. View Article : Google Scholar : PubMed/NCBI

35 

Doi K, Horiuchi T, Uchinami M, Tabo T, Kimura N, Yokomachi J, Yoshida M and Tanaka K: Hepatic ischemia-reperfusion promotes liver metastasis of colon cancer. J Surg Res. 105:243–247. 2002. View Article : Google Scholar : PubMed/NCBI

36 

Nozawa H, Chiu C and Hanahan D: Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proc Natl Acad Sci USA. 103:12493–12498. 2006. View Article : Google Scholar : PubMed/NCBI

37 

Orr FW and Warner DJ: Effects of systemic complement activation and neutrophil-mediated pulmonary injury on the retention and metastasis of circulating cancer cells in mouse lungs. Lab Invest. 62:331–338. 1990.PubMed/NCBI

38 

Wu QD, Wang JH, Condron C, Bouchier-Hayes D and Redmond HP: Human neutrophils facilitate tumor cell transendothelial migration. Am J Physiol Cell Physiol. 280:C814–C822. 2001.PubMed/NCBI

39 

Rogers AB and Fox JG: Inflammation and Cancer. Histopathology. Am J Physiol Gastrointest Liver Physiol. 286:G361–G366. 2004.PubMed/NCBI

40 

Elsharkawy AM and Mann DA: Nuclear factor-kappaB and the hepatic inflammation-fibrosis-cancer axis. Hepatology. 46:590–597. 2007. View Article : Google Scholar : PubMed/NCBI

41 

Vainer GW, Pikarsky E and Ben-Neriah Y: Contradictory functions of NF-kappaB in liver physiology and cancer. Cancer Lett. 267:182–188. 2008. View Article : Google Scholar : PubMed/NCBI

42 

Baud V and Karin M: Is NF-kappaB a good target for cancer therapy? Hopes and pitfalls. Nat Rev Drug Discov. 8:33–40. 2009. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

February 2016
Volume 11 Issue 2

Print ISSN: 1792-0981
Online ISSN:1792-1015

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Liu, Y., Liu, Z., Chen, Y., Xu, K., & Dong, J. (2016). PPARγ activation reduces ischemia/reperfusion‑induced metastasis in a murine model of hepatocellular carcinoma. Experimental and Therapeutic Medicine, 11, 387-396. https://doi.org/10.3892/etm.2015.2934
MLA
Liu, Y., Liu, Z., Chen, Y., Xu, K., Dong, J."PPARγ activation reduces ischemia/reperfusion‑induced metastasis in a murine model of hepatocellular carcinoma". Experimental and Therapeutic Medicine 11.2 (2016): 387-396.
Chicago
Liu, Y., Liu, Z., Chen, Y., Xu, K., Dong, J."PPARγ activation reduces ischemia/reperfusion‑induced metastasis in a murine model of hepatocellular carcinoma". Experimental and Therapeutic Medicine 11, no. 2 (2016): 387-396. https://doi.org/10.3892/etm.2015.2934