Open Access

SCF increases cardiac stem cell migration through PI3K/AKT and MMP‑2/‑9 signaling

  • Authors:
    • Junli Guo
    • Wei Jie
    • Zhihua Shen
    • Mengsen Li
    • Youling Lan
    • Yueqiong Kong
    • Shaoli Guo
    • Tianfa Li
    • Shaojiang Zheng
  • View Affiliations

  • Published online on: May 7, 2014     https://doi.org/10.3892/ijmm.2014.1773
  • Pages: 112-118
  • Copyright: © Guo et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY_NC 3.0].

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The transplantation of cardiac stem cells (CSCs) is thought to be responsible for improving the performance of injured heart induced by myocardial infarction (MI). However, the mechanisms involved in the migration of activated CSCs post‑MI remain to be clarified. In this study, CSCs were isolated from rat hearts and a cellular migration assay was performed using a 24‑well Transwell system. Stem cell factor (SCF) induced CSC migration in a concentration‑dependent manner, which could be blocked with an SCF antibody as well as a PI3K/AKT inhibitor, LY294002. Moreover, SCF induced the expression and activity of matrix metalloproteinase (MMP)‑2 and MMP‑9 in a concentration‑ and time‑dependent manner, as measured by quantitative RT‑PCR, western blot analysis and gelatin zymography. Results of western blot analysis revealed phosphorylated AKT was markedly increased in SCF‑treated CSCs and that inhibition of SCF/c‑Kit signaling or phospho‑AKT activity significantly attenuated the SCF‑induced expression of MMP‑2 and MMP‑9. Thus, our results showed that SCF partially mediated CSC migration via the activation of PI3K/AKT/MMP‑2/‑9 signaling.

References

1 

World Health Organization. The top 10 causes of death. http://who.int/mediacentre/factsheets/fs310/en/urisimplehttp://who.int/mediacentre/factsheets/fs310/en/. Accessed July, 2013

2 

Koudstaal S, Jansen Of, Lorkeers SJ, et al: Concise review: heart regeneration and the role of cardiac stem cells. Stem Cells Transl Med. 2:434–443. 2013. View Article : Google Scholar : PubMed/NCBI

3 

Hou J, Wang L, Jiang J, et al: Cardiac stem cells and their roles in myocardial infarction. Stem Cell Rev. 9:326–338. 2013. View Article : Google Scholar : PubMed/NCBI

4 

Karantalis V, Balkan W, Schulman IH, Hatzistergos KE and Hare JM: Cell-based therapy for prevention and reversal of myocardial remodeling. Am J Physiol Heart Circ Physiol. 303:H256–H270. 2012. View Article : Google Scholar : PubMed/NCBI

5 

Bolli R, Tang XL, Sanganalmath SK, et al: Intracoronary delivery of autologous cardiac stem cells improves cardiac function in a porcine model of chronic ischemic cardiomyopathy. Circulation. 128:122–131. 2013. View Article : Google Scholar : PubMed/NCBI

6 

Ptaszek LM, Mansour M, Ruskin JN and Chien KR: Towards regenerative therapy for cardiac disease. Lancet. 379:933–942. 2012. View Article : Google Scholar : PubMed/NCBI

7 

Bolli R, Chugh AR, D’Amario D, et al: Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet. 378:1847–1857. 2011. View Article : Google Scholar : PubMed/NCBI

8 

Makkar RR, Smith RR, Cheng K, et al: Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet. 379:895–904. 2012. View Article : Google Scholar

9 

Beltrami AP, Barlucchi L, Torella D, et al: Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell. 114:763–776. 2003. View Article : Google Scholar : PubMed/NCBI

10 

Oh H, Bradfute SB, Gallardo TD, et al: Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci USA. 100:12313–12318. 2003. View Article : Google Scholar : PubMed/NCBI

11 

Laugwitz KL, Moretti A, Lam J, et al: Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature. 433:647–653. 2005.

12 

Winter EM, Grauss RW, Hogers B, et al: Preservation of left ventricular function and attenuation of remodeling after transplantation of human epicardium-derived cells into the infarcted mouse heart. Circulation. 116:917–927. 2007. View Article : Google Scholar

13 

Guo J, Jie W, Kuang D, et al: Ischaemia/reperfusion induced cardiac stem cell homing to the injured myocardium by stimulating stem cell factor expression via NF-kappaB pathway. Int J Exp Pathol. 90:355–364. 2009. View Article : Google Scholar : PubMed/NCBI

14 

Williams AR, Hatzistergos KE, Addicott B, et al: Enhanced effect of combining human cardiac stem cells and bone marrow mesenchymal stem cells to reduce infarct size and to restore cardiac function after myocardial infarction. Circulation. 127:213–223. 2013. View Article : Google Scholar

15 

Ellison GM, Vicinanza C, Smith AJ, et al: Adult c-kit(pos) cardiac stem cells are necessary and sufficient for functional cardiac regeneration and repair. Cell. 154:827–842. 2013. View Article : Google Scholar : PubMed/NCBI

16 

Cui G, Shan L, Hung M, et al: A novel Danshensu derivative confers cardioprotection via PI3K/Akt and Nrf2 pathways. Int J Cardiol. 168:1349–1359. 2013. View Article : Google Scholar : PubMed/NCBI

17 

Tekin D, Dursun AD and Xi L: Hypoxia inducible factor 1 (HIF-1) and cardioprotection. Acta Pharmacol Sin. 31:1085–1094. 2010. View Article : Google Scholar : PubMed/NCBI

18 

Gude NA, Emmanuel G, Wu W, et al: Activation of Notch- mediated protective signaling in the myocardium. Circ Res. 102:1025–1035. 2008. View Article : Google Scholar : PubMed/NCBI

19 

Saxena A, Fish JE, White MD, et al: Stromal cell-derived factor-1alpha is cardioprotective after myocardial infarction. Circulation. 117:2224–2231. 2008. View Article : Google Scholar : PubMed/NCBI

20 

Wang X, Chen Y, Kuang D, et al: The cardioprotective effects of erythropoietin in myocardial ischemic injury via upregulation of SDF-1 by JAK2/STAT3. Int J Cardiol. 156:320–322. 2012. View Article : Google Scholar : PubMed/NCBI

21 

Kuang D, Zhao X, Xiao G, et al: Stem cell factor/c-kit signaling mediated cardiac stem cell migration via activation of p38 MAPK. Basic Res Cardiol. 103:265–273. 2008. View Article : Google Scholar : PubMed/NCBI

22 

Tang J, Wang J, Kong X, et al: Vascular endothelial growth factor promotes cardiac stem cell migration via the PI3K/Akt pathway. Exp Cell Res. 315:3521–3531. 2009. View Article : Google Scholar : PubMed/NCBI

23 

Lovell MJ, Yasin M, Lee KL, et al: Bone marrow mononuclear cells reduce myocardial reperfusion injury by activating the PI3K/Akt survival pathway. Atherosclerosis. 213:67–76. 2010. View Article : Google Scholar : PubMed/NCBI

24 

Lu G, Haider HK, Jiang S and Ashraf M: Sca-1+ stem cell survival and engraftment in the infarcted heart: dual role for preconditioning-induced connexin-43. Circulation. 119:2587–2596. 2009.

25 

Zhang Z, Li S, Cui M, et al: Rosuvastatin enhances the therapeutic efficacy of adipose-derived mesenchymal stem cells for myocardial infarction via PI3K/Akt and MEK/ERK pathways. Basic Res Cardiol. 108:3332013. View Article : Google Scholar : PubMed/NCBI

26 

Choi SH, Jung SY, Suh W, Baek SH and Kwon SM: Establishment of isolation and expansion protocols for human cardiac C-kit-positive progenitor cells for stem cell therapy. Transplant Proc. 45:420–426. 2013. View Article : Google Scholar : PubMed/NCBI

27 

He JQ, Vu DM, Hunt G, Chugh A, Bhatnagar A and Bolli R: Human cardiac stem cells isolated from atrial appendages stably express c-kit. PLoS One. 6:e277192011. View Article : Google Scholar : PubMed/NCBI

28 

Miyamoto S, Kawaguchi N, Ellison GM, Matsuoka R, Shin’oka T and Kurosawa H: Characterization of long-term cultured c-kit+cardiac stem cells derived from adult rat hearts. Stem Cells Dev. 19:105–116. 2010. View Article : Google Scholar : PubMed/NCBI

29 

Urbanek K, Cabral-da-Silva MC, Ide-Iwata N, et al: Inhibition of notch1-dependent cardiomyogenesis leads to a dilated myopathy in the neonatal heart. Circ Res. 107:429–441. 2010. View Article : Google Scholar : PubMed/NCBI

30 

Liang J, Wu YL, Chen BJ, Zhang W, Tanaka Y and Sugiyama H: The C-kit receptor-mediated signal transduction and tumor-related diseases. Int J Biol Sci. 9:435–443. 2013. View Article : Google Scholar : PubMed/NCBI

31 

Lutz M, Rosenberg M, Kiessling F, et al: Local injection of stem cell factor (SCF) improves myocardial homing of systemically delivered c-kit+bone marrow-derived stem cells. Cardiovasc Res. 77:143–150. 2008. View Article : Google Scholar : PubMed/NCBI

32 

She T, Wang X, Gan Y, et al: Hyperglycemia suppresses cardiac stem cell homing to peri-infarcted myocardium via regulation of ERK1/2 and p38 MAPK activities. Int J Mol Med. 30:1313–1320. 2012.PubMed/NCBI

33 

Wan J, Deng Y, Guo J, et al: Hyperhomocysteinemia inhibited cardiac stem cell homing into the peri-infarcted area post myocardial infarction in rats. Exp Mol Pathol. 91:411–418. 2011. View Article : Google Scholar : PubMed/NCBI

34 

Petrie RJ, Doyle AD and Yamada KM: Random versus directionally persistent cell migration. Nat Rev Mol Cell Biol. 10:538–549. 2009. View Article : Google Scholar : PubMed/NCBI

35 

Van Haastert PJ and Devreotes PN: Chemotaxis: signalling the way forward. Nat Rev Mol Cell Biol. 5:626–634. 2004.PubMed/NCBI

36 

Berrier AL and Yamada KM: Cell-matrix adhesion. J Cell Physiol. 213:565–573. 2007. View Article : Google Scholar

37 

Libra M, Scalisi A, Vella N, et al: Uterine cervical carcinoma: role of matrix metalloproteinases (Review). Int J Oncol. 34:897–903. 2009. View Article : Google Scholar : PubMed/NCBI

38 

Neth P, Ries C, Karow M, Egea V, Ilmer M and Jochum M: The Wnt signal transduction pathway in stem cells and cancer cells: influence on cellular invasion. Stem Cell Rev. 3:18–29. 2007. View Article : Google Scholar : PubMed/NCBI

39 

Wang L, Zhang ZG, Zhang RL, et al: Matrix metalloproteinase 2 (MMP2) and MMP9 secreted by erythropoietin-activated endothelial cells promote neural progenitor cell migration. J Neurosci. 26:5996–6003. 2006. View Article : Google Scholar : PubMed/NCBI

40 

Urbanek K, Rota M, Cascapera S, et al: Cardiac stem cells possess growth factor-receptor systems that after activation regenerate the infarcted myocardium, improving ventricular function and long-term survival. Circ Res. 97:663–673. 2005. View Article : Google Scholar

Related Articles

Journal Cover

July 2014
Volume 34 Issue 1

Print ISSN: 1107-3756
Online ISSN:1791-244X

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Guo, J., Jie, W., Shen, Z., Li, M., Lan, Y., Kong, Y. ... Zheng, S. (2014). SCF increases cardiac stem cell migration through PI3K/AKT and MMP‑2/‑9 signaling. International Journal of Molecular Medicine, 34, 112-118. https://doi.org/10.3892/ijmm.2014.1773
MLA
Guo, J., Jie, W., Shen, Z., Li, M., Lan, Y., Kong, Y., Guo, S., Li, T., Zheng, S."SCF increases cardiac stem cell migration through PI3K/AKT and MMP‑2/‑9 signaling". International Journal of Molecular Medicine 34.1 (2014): 112-118.
Chicago
Guo, J., Jie, W., Shen, Z., Li, M., Lan, Y., Kong, Y., Guo, S., Li, T., Zheng, S."SCF increases cardiac stem cell migration through PI3K/AKT and MMP‑2/‑9 signaling". International Journal of Molecular Medicine 34, no. 1 (2014): 112-118. https://doi.org/10.3892/ijmm.2014.1773