MicroRNAs play a role in chondrogenesis and osteoarthritis (Review)

  • Authors:
    • Chuanlong Wu
    • Bo Tian
    • Xinhua Qu
    • Fengxiang Liu
    • Tingting Tang
    • An Qin
    • Zhenan Zhu
    • Kerong Dai
  • View Affiliations

  • Published online on: April 15, 2014     https://doi.org/10.3892/ijmm.2014.1743
  • Pages: 13-23
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Osteoarthritis (OA) is one of the most widespread degenerative joint diseases affecting the elderly. Research into the regulatory mechanisms underlying the pathogenesis of OA is therefore warranted, and over the past decade, there has been an increased focus on the functional role of microRNAs (miRNAs or miRs). In this systematic review, we aimed to review the evidence implicating miRNAs in the pathogenesis of chondrogenesis and OA. Systematic reviews of PubMed and Embase were performed to search for studies using strings of miRNAs, non-coding RNAs, cartilage, chondrocytes, chondrogenesis, chondrocytogenesis and OA. The identified studies were retrieved, and the references provided were searched. The selected studies were required to focus on the role of miRNAs in chondrogenesis and OA. The results of this review indicated that more than 25 miRNAs have been implicated in chondrogenesis and OA. In particular, chondrocytogenesis, chondrogenic differentiation, chondrocyte proliferation, chondrocyte hypertrophy, endochondral ossification, and proteolytic enzyme regulation are targeted or facilitated by more than 1 miRNA. To date, limited efforts have been performed to evaluate translational applications for this knowledge. Novel therapeutic strategies have been developed and are under investigation to selectively modulate miRNAs, which could potentially enable personalized OA therapy. miRNAs appear to be important modulators of chondrogenesis and OA. Their expression is frequently altered in OA, and many are functionally implicated in the pathogenesis of the disease. The translational roles and therapeutic potential of miRNAs remains to be evaluated.

References

1 

Iannone F and Lapadula G: The pathophysiology of osteoarthritis. Aging Clin Exp Res. 15:364–372. 2003. View Article : Google Scholar

2 

Mortellaro CM: Pathophysiology of osteoarthritis. Vet Res Commun. 27(Suppl 1): S75–S78. 2003. View Article : Google Scholar

3 

Martel-Pelletier J: Pathophysiology of osteoarthritis. Osteoarthritis Cartilage. 12(Suppl A): S31–S33. 2004. View Article : Google Scholar

4 

Mandelbaum B and Waddell D: Etiology and pathophysiology of osteoarthritis. Orthopedics. 28(Suppl 2): s207–s214. 2005.PubMed/NCBI

5 

Felson DT, Lawrence RC, Dieppe PA, et al: Osteoarthritis: new insights. Part 1: the disease and its risk factors. Ann Intern Med. 133:635–646. 2000. View Article : Google Scholar : PubMed/NCBI

6 

Lawrence RC, Felson DT, Helmick CG, et al: Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum. 58:26–35. 2008. View Article : Google Scholar

7 

Naumann A, Dennis JE, Awadallah A, et al: Immunochemical and mechanical characterization of cartilage subtypes in rabbit. J Histochem Cytochem. 50:1049–1058. 2002. View Article : Google Scholar : PubMed/NCBI

8 

Wong M and Carter DR: Articular cartilage functional histomorphology and mechanobiology: a research perspective. Bone. 33:1–13. 2003. View Article : Google Scholar : PubMed/NCBI

9 

Burgeson RE, Hebda PA, Morris NP and Hollister DW: Human cartilage collagens. Comparison of cartilage collagens with human type V collagen. J Biol Chem. 257:7852–7856. 1982.PubMed/NCBI

10 

Eyre D: Collagen of articular cartilage. Arthritis Res. 4:30–35. 2002. View Article : Google Scholar

11 

Poole AR, Kojima T, Yasuda T, Mwale F, Kobayashi M and Laverty S: Composition and structure of articular cartilage: a template for tissue repair. Clin Orthop Relat Res. 391:S26–S33. 2001. View Article : Google Scholar : PubMed/NCBI

12 

Knudson CB and Knudson W: Cartilage proteoglycans. Semin Cell Dev Biol. 12:69–78. 2001. View Article : Google Scholar : PubMed/NCBI

13 

Cawston TE and Wilson AJ: Understanding the role of tissue degrading enzymes and their inhibitors in development and disease. Best Pract Res Clin Rheumatol. 20:983–1002. 2006. View Article : Google Scholar : PubMed/NCBI

14 

Plaas A, Osborn B, Yoshihara Y, et al: Aggrecanolysis in human osteoarthritis: confocal localization and biochemical characterization of ADAMTS5-hyaluronan complexes in articular cartilages. Osteoarthritis Cartilage. 15:719–734. 2007. View Article : Google Scholar

15 

Wu W, Billinghurst RC, Pidoux I, et al: Sites of collagenase cleavage and denaturation of type II collagen in aging and osteoarthritic articular cartilage and their relationship to the distribution of matrix metalloproteinase 1 and matrix metalloproteinase 13. Arthritis Rheum. 46:2087–2094. 2002. View Article : Google Scholar : PubMed/NCBI

16 

Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 116:281–297. 2004. View Article : Google Scholar : PubMed/NCBI

17 

Cordes KR and Srivastava D: MicroRNA regulation of cardiovascular development. Circ Res. 104:724–732. 2009. View Article : Google Scholar : PubMed/NCBI

18 

Fabian MR, Sonenberg N and Filipowicz W: Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem. 79:351–379. 2010. View Article : Google Scholar : PubMed/NCBI

19 

Liu N and Olson EN: MicroRNA regulatory networks in cardiovascular development. Dev Cell. 18:510–525. 2010. View Article : Google Scholar : PubMed/NCBI

20 

Wang DZ: MicroRNAs in cardiac development and remodeling. Pediatr Cardiol. 31:357–362. 2010. View Article : Google Scholar : PubMed/NCBI

21 

Zhao Y and Srivastava D: A developmental view of microRNA function. Trends Biochem Sci. 32:189–197. 2007. View Article : Google Scholar : PubMed/NCBI

22 

Farh KK, Grimson A, Jan C, et al: The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science. 310:1817–1821. 2005. View Article : Google Scholar : PubMed/NCBI

23 

Calin GA and Croce CM: MicroRNA signatures in human cancers. Nat Rev Cancer. 6:857–866. 2006. View Article : Google Scholar : PubMed/NCBI

24 

Chendrimada TP, Gregory RI, Kumaraswamy E, et al: TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature. 436:740–744. 2005. View Article : Google Scholar : PubMed/NCBI

25 

Lee Y, Ahn C, Han J, et al: The nuclear RNase III Drosha initiates microRNA processing. Nature. 425:415–419. 2003. View Article : Google Scholar : PubMed/NCBI

26 

Gregory RI, Yan KP, Amuthan G, et al: The Microprocessor complex mediates the genesis of microRNAs. Nature. 432:235–240. 2004. View Article : Google Scholar : PubMed/NCBI

27 

Denli AM, Tops BB, Plasterk RH, Ketting RF and Hannon GJ: Processing of primary microRNAs by the Microprocessor complex. Nature. 432:231–235. 2004. View Article : Google Scholar : PubMed/NCBI

28 

Small EM and Olson EN: Pervasive roles of microRNAs in cardiovascular biology. Nature. 469:336–342. 2011. View Article : Google Scholar : PubMed/NCBI

29 

Ghayor C, Chadjichristos C, Herrouin JF, et al: Sp3 represses the Sp1-mediated transactivation of the human COL2A1 gene in primary and de-differentiated chondrocytes. J Biol Chem. 276:36881–36895. 2001. View Article : Google Scholar : PubMed/NCBI

30 

Zhang Z, Kang Y, Zhang H, et al: Expression of microRNAs during chondrogenesis of human adipose-derived stem cells. Osteoarthritis Cartilage. 20:1638–1646. 2012. View Article : Google Scholar : PubMed/NCBI

31 

Cancedda R, Descalzi Cancedda F and Castagnola P: Chondrocyte differentiation. Int Rev Cytol. 159:265–358. 1995. View Article : Google Scholar : PubMed/NCBI

32 

Yang B, Guo H, Zhang Y, Chen L, Ying D and Dong S: MicroRNA-145 regulates chondrogenic differentiation of mesenchymal stem cells by targeting Sox9. PLoS One. 6:e216792011. View Article : Google Scholar : PubMed/NCBI

33 

Martinez-Sanchez A, Dudek KA and Murphy CL: Regulation of human chondrocyte function through direct inhibition of cartilage master regulator SOX9 by microRNA-145 (miRNA-145). J Biol Chem. 287:916–924. 2012. View Article : Google Scholar : PubMed/NCBI

34 

Ning G, Liu X, Dai M, Meng A and Wang Q: MicroRNA-92a upholds Bmp signaling by targeting noggin3 during pharyngeal cartilage formation. Dev Cell. 24:283–295. 2013. View Article : Google Scholar : PubMed/NCBI

35 

Ohgawara T, Kubota S, Kawaki H, et al: Regulation of chondrocytic phenotype by micro RNA 18a: involvement of Ccn2/Ctgf as a major target gene. FEBS Lett. 583:1006–1010. 2009. View Article : Google Scholar : PubMed/NCBI

36 

Soullier S, Jay P, Poulat F, Vanacker JM, Berta P and Laudet V: Diversification pattern of the HMG and SOX family members during evolution. J Mol Evol. 48:517–527. 1999. View Article : Google Scholar : PubMed/NCBI

37 

Wright E, Hargrave MR, Christiansen J, et al: The Sry-related gene Sox9 is expressed during chondrogenesis in mouse embryos. Nat Genet. 9:15–20. 1995. View Article : Google Scholar : PubMed/NCBI

38 

Bi W, Deng JM, Zhang Z, Behringer RR and de Crombrugghe B: Sox9 is required for cartilage formation. Nat Genet. 22:85–89. 1999. View Article : Google Scholar

39 

Ikeda T, Kawaguchi H, Kamekura S, et al: Distinct roles of Sox5, Sox6, and Sox9 in different stages of chondrogenic differentiation. J Bone Miner Metab. 23:337–340. 2005. View Article : Google Scholar : PubMed/NCBI

40 

Bell DM, Leung KK, Wheatley SC, et al: SOX9 directly regulates the type-II collagen gene. Nat Genet. 16:174–178. 1997. View Article : Google Scholar : PubMed/NCBI

41 

Zhang P, Jimenez SA and Stokes DG: Regulation of human COL9A1 gene expression. Activation of the proximal promoter region by SOX9. J Biol Chem. 278:117–123. 2003. View Article : Google Scholar : PubMed/NCBI

42 

Liu Y, Li H, Tanaka K, Tsumaki N and Yamada Y: Identification of an enhancer sequence within the first intron required for cartilage-specific transcription of the alpha2(XI) collagen gene. J Biol Chem. 275:12712–12718. 2000. View Article : Google Scholar : PubMed/NCBI

43 

Sekiya I, Tsuji K, Koopman P, et al: SOX9 enhances aggrecan gene promoter/enhancer activity and is up-regulated by retinoic acid in a cartilage-derived cell line, TC6. J Biol Chem. 275:10738–10744. 2000. View Article : Google Scholar : PubMed/NCBI

44 

Tew SR, Li Y, Pothacharoen P, Tweats LM, Hawkins RE and Hardingham TE: Retroviral transduction with SOX9 enhances re-expression of the chondrocyte phenotype in passaged osteoarthritic human articular chondrocytes. Osteoarthritis Cartilage. 13:80–89. 2005. View Article : Google Scholar : PubMed/NCBI

45 

Cucchiarini M, Thurn T, Weimer A, Kohn D, Terwilliger EF and Madry H: Restoration of the extracellular matrix in human osteoarthritic articular cartilage by overexpression of the transcription factor SOX9. Arthritis Rheum. 56:158–167. 2007. View Article : Google Scholar : PubMed/NCBI

46 

Dai L, Zhang X, Hu X, Zhou C and Ao Y: Silencing of microRNA-101 prevents IL-1beta-induced extracellular matrix degradation in chondrocytes. Arthritis Res Ther. 14:R2682012. View Article : Google Scholar : PubMed/NCBI

47 

Xu J, Kang Y, Liao WM and Yu L: MiR-194 regulates chondrogenic differentiation of human adipose-derived stem cells by targeting Sox5. PLoS One. 7:e318612012. View Article : Google Scholar : PubMed/NCBI

48 

Parvizi J, Zmistowski B, Berbari EF, et al: New definition for periprosthetic joint infection: from the Workgroup of the Musculoskeletal Infection Society. Clin Orthop Relat Res. 469:2992–2994. 2011. View Article : Google Scholar : PubMed/NCBI

49 

Hatakeyama Y, Nguyen J, Wang X, Nuckolls GH and Shum L: Smad signaling in mesenchymal and chondroprogenitor cells. J Bone Joint Surg Am. 85-A(Suppl 3): S13–S18. 2003.PubMed/NCBI

50 

Pan Q, Yu Y, Chen Q, et al: Sox9, a key transcription factor of bone morphogenetic protein-2-induced chondrogenesis, is activated through BMP pathway and a CCAAT box in the proximal promoter. J Cell Physiol. 217:228–241. 2008. View Article : Google Scholar : PubMed/NCBI

51 

Denker AE, Nicoll SB and Tuan RS: Formation of cartilage-like spheroids by micromass cultures of murine C3H10T1/2 cells upon treatment with transforming growth factor-beta 1. Differentiation. 59:25–34. 1995. View Article : Google Scholar : PubMed/NCBI

52 

Lin EA, Kong L, Bai XH, Luan Y and Liu CJ: miR-199a, a bone morphogenic protein 2-responsive MicroRNA, regulates chondrogenesis via direct targeting to Smad1. J Biol Chem. 284:11326–11335. 2009. View Article : Google Scholar : PubMed/NCBI

53 

Liang ZJ, Zhuang H, Wang GX, et al: MiRNA-140 is a negative feedback regulator of MMP-13 in IL-1beta-stimulated human articular chondrocyte C28/I2 cells. Inflamm Res. 61:503–509. 2012. View Article : Google Scholar : PubMed/NCBI

54 

Buechli ME, Lamarre J and Koch TG: MicroRNA-140 expression during chondrogenic differentiation of equine cord blood-derived mesenchymal stromal cells. Stem Cells Dev. 22:1288–1296. 2013. View Article : Google Scholar : PubMed/NCBI

55 

Miyaki S, Nakasa T, Otsuki S, et al: MicroRNA-140 is expressed in differentiated human articular chondrocytes and modulates interleukin-1 responses. Arthritis Rheum. 60:2723–2730. 2009. View Article : Google Scholar : PubMed/NCBI

56 

Nicolas FE, Pais H, Schwach F, et al: mRNA expression profiling reveals conserved and non-conserved miR-140 targets. RNA Biol. 8:607–615. 2011. View Article : Google Scholar : PubMed/NCBI

57 

Pais H, Nicolas FE, Soond SM, et al: Analyzing mRNA expression identifies Smad3 as a microRNA-140 target regulated only at protein level. RNA. 16:489–494. 2010. View Article : Google Scholar : PubMed/NCBI

58 

Nakamura Y, Inloes JB, Katagiri T and Kobayashi T: Chondrocyte-specific microRNA-140 regulates endochondral bone development and targets Dnpep to modulate bone morphogenetic protein signaling. Mol Cell Biol. 31:3019–3028. 2011. View Article : Google Scholar : PubMed/NCBI

59 

Song J, Kim D and Jin EJ: MicroRNA-488 suppresses cell migration through modulation of the focal adhesion activity during chondrogenic differentiation of chick limb mesenchymal cells. Cell Biol Int. 35:179–185. 2011. View Article : Google Scholar

60 

Kim D, Song J, Kim S, Chun CH and Jin EJ: MicroRNA-34a regulates migration of chondroblast and IL-1beta-induced degeneration of chondrocytes by targeting EphA5. Biochem Biophys Res Commun. 415:551–557. 2011. View Article : Google Scholar

61 

Abouheif MM, Nakasa T, Shibuya H, Niimoto T, Kongcharoensombat W and Ochi M: Silencing microRNA-34a inhibits chondrocyte apoptosis in a rat osteoarthritis model in vitro. Rheumatology (Oxford). 49:2054–2060. 2010. View Article : Google Scholar : PubMed/NCBI

62 

Kim D, Song J and Jin EJ: MicroRNA-221 regulates chondrogenic differentiation through promoting proteosomal degradation of slug by targeting Mdm2. J Biol Chem. 285:26900–26907. 2010. View Article : Google Scholar : PubMed/NCBI

63 

Dunn W, DuRaine G and Reddi AH: Profiling microRNA expression in bovine articular cartilage and implications for mechanotransduction. Arthritis Rheum. 60:2333–2339. 2009. View Article : Google Scholar : PubMed/NCBI

64 

Magee C, Nurminskaya M, Faverman L, Galera P and Linsenmayer TF: SP3/SP1 transcription activity regulates specific expression of collagen type X in hypertrophic chondrocytes. J Biol Chem. 280:25331–25338. 2005. View Article : Google Scholar

65 

Kavurma MM and Khachigian LM: Sp1 inhibits proliferation and induces apoptosis in vascular smooth muscle cells by repressing p21WAF1/Cip1 transcription and cyclin D1-Cdk4-p21WAF1/Cip1 complex formation. J Biol Chem. 278:32537–32543. 2003. View Article : Google Scholar : PubMed/NCBI

66 

Deniaud E, Baguet J, Chalard R, et al: Overexpression of transcription factor Sp1 leads to gene expression perturbations and cell cycle inhibition. PLoS One. 4:e70352009. View Article : Google Scholar : PubMed/NCBI

67 

Yang J, Qin S, Yi C, et al: MiR-140 is co-expressed with Wwp2-C transcript and activated by Sox9 to target Sp1 in maintaining the chondrocyte proliferation. FEBS Lett. 585:2992–2997. 2011. View Article : Google Scholar : PubMed/NCBI

68 

Sumiyoshi K, Kubota S, Ohgawara T, et al: Identification of miR-1 as a micro RNA that supports late-stage differentiation of growth cartilage cells. Biochem Biophys Res Commun. 402:286–290. 2010. View Article : Google Scholar : PubMed/NCBI

69 

Guan YJ, Yang X, Wei L and Chen Q: MiR-365: a mechanosensitive microRNA stimulates chondrocyte differentiation through targeting histone deacetylase 4. FASEB J. 25:4457–4466. 2011. View Article : Google Scholar : PubMed/NCBI

70 

Vega RB, Matsuda K, Oh J, et al: Histone deacetylase 4 controls chondrocyte hypertrophy during skeletogenesis. Cell. 119:555–566. 2004. View Article : Google Scholar : PubMed/NCBI

71 

Tuddenham L, Wheeler G, Ntounia-Fousara S, et al: The cartilage specific microRNA-140 targets histone deacetylase 4 in mouse cells. FEBS Lett. 580:4214–4217. 2006. View Article : Google Scholar : PubMed/NCBI

72 

Nicolas FE, Pais H, Schwach F, et al: Experimental identification of microRNA-140 targets by silencing and overexpressing miR-140. RNA. 14:2513–2520. 2008. View Article : Google Scholar : PubMed/NCBI

73 

Zhong N, Sun J, Min Z, et al: MicroRNA-337 is associated with chondrogenesis through regulating TGFBR2 expression. Osteoarthritis Cartilage. 20:593–602. 2012. View Article : Google Scholar : PubMed/NCBI

74 

Ham O, Song BW, Lee SY, et al: The role of microRNA-23b in the differentiation of MSC into chondrocyte by targeting protein kinase A signaling. Biomaterials. 33:4500–4507. 2012. View Article : Google Scholar : PubMed/NCBI

75 

Iliopoulos D, Malizos KN, Oikonomou P and Tsezou A: Integrative microRNA and proteomic approaches identify novel osteoarthritis genes and their collaborative metabolic and inflammatory networks. PLoS One. 3:e37402008. View Article : Google Scholar

76 

Glasson SS, Askew R, Sheppard B, et al: Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis. Nature. 434:644–648. 2005. View Article : Google Scholar : PubMed/NCBI

77 

Stanton H, Rogerson FM, East CJ, et al: ADAMTS5 is the major aggrecanase in mouse cartilage in vivo and in vitro. Nature. 434:648–652. 2005. View Article : Google Scholar : PubMed/NCBI

78 

Miyaki S, Sato T, Inoue A, et al: MicroRNA-140 plays dual roles in both cartilage development and homeostasis. Genes Dev. 24:1173–1185. 2010. View Article : Google Scholar : PubMed/NCBI

79 

Zhang M, Liu L, Xiao T and Guo W: Detection of the expression level of miR-140 using realtime fluorescent quantitative PCR in knee synovial fluid of osteoarthritis patients. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 37:1210–1214. 2012.(In Chinese).

80 

Tardif G, Hum D, Pelletier JP, Duval N and Martel-Pelletier J: Regulation of the IGFBP-5 and MMP-13 genes by the microRNAs miR-140 and miR-27a in human osteoarthritic chondrocytes. BMC Musculoskelet Disord. 10:1482009. View Article : Google Scholar : PubMed/NCBI

81 

Ukai T, Sato M, Akutsu H, Umezawa A and Mochida J: MicroRNA-199a-3p, microRNA-193b, and microRNA-320c are correlated to aging and regulate human cartilage metabolism. J Orthop Res. 30:1915–1922. 2012. View Article : Google Scholar : PubMed/NCBI

82 

Matsukawa T, Sakai T, Yonezawa T, et al: MicroRNA-125b regulates the expression of aggrecanase-1 (ADAMTS-4) in human osteoarthritic chondrocytes. Arthritis Res Ther. 15:R282013. View Article : Google Scholar : PubMed/NCBI

83 

Xu N, Zhang L, Meisgen F, et al: MicroRNA-125b down-regulates matrix metallopeptidase 13 and inhibits cutaneous squamous cell carcinoma cell proliferation, migration, and invasion. J Biol Chem. 287:29899–29908. 2012. View Article : Google Scholar : PubMed/NCBI

84 

Muramatsu F, Kidoya H, Naito H, Sakimoto S and Takakura N: microRNA-125b inhibits tube formation of blood vessels through translational suppression of VE-cadherin. Oncogene. 32:414–421. 2013. View Article : Google Scholar : PubMed/NCBI

85 

Little CB, Barai A, Burkhardt D, et al: Matrix metalloproteinase 13-deficient mice are resistant to osteoarthritic cartilage erosion but not chondrocyte hypertrophy or osteophyte development. Arthritis Rheum. 60:3723–3733. 2009. View Article : Google Scholar : PubMed/NCBI

86 

Mapp PI and Walsh DA: Mechanisms and targets of angiogenesis and nerve growth in osteoarthritis. Nat Rev Rheumatol. 8:390–398. 2012. View Article : Google Scholar : PubMed/NCBI

87 

Akhtar N, Rasheed Z, Ramamurthy S, Anbazhagan AN, Voss FR and Haqqi TM: MicroRNA-27b regulates the expression of matrix metalloproteinase 13 in human osteoarthritis chondrocytes. Arthritis Rheum. 62:1361–1371. 2010. View Article : Google Scholar : PubMed/NCBI

88 

Akhtar N and Haqqi TM: MicroRNA-199a* regulates the expression of cyclooxygenase-2 in human chondrocytes. Ann Rheum Dis. 71:1073–1080. 2012.

89 

He L, He X, Lim LP, et al: A microRNA component of the p53 tumour suppressor network. Nature. 447:1130–1134. 2007. View Article : Google Scholar : PubMed/NCBI

90 

Chang TC, Wentzel EA, Kent OA, et al: Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell. 26:745–752. 2007. View Article : Google Scholar : PubMed/NCBI

91 

Jones SW, Watkins G, Le Good N, et al: The identification of differentially expressed microRNA in osteoarthritic tissue that modulate the production of TNF-alpha and MMP13. Osteoarthritis Cartilage. 17:464–472. 2009. View Article : Google Scholar : PubMed/NCBI

92 

Yamasaki K, Nakasa T, Miyaki S, et al: Expression of MicroRNA-146a in osteoarthritis cartilage. Arthritis Rheum. 60:1035–1041. 2009. View Article : Google Scholar : PubMed/NCBI

93 

Li X, Gibson G, Kim JS, et al: MicroRNA-146a is linked to pain-related pathophysiology of osteoarthritis. Gene. 480:34–41. 2011. View Article : Google Scholar : PubMed/NCBI

94 

Song J, Lee M, Kim D, Han J, Chun CH and Jin EJ: MicroRNA-181b regulates articular chondrocytes differentiation and cartilage integrity. Biochem Biophys Res Commun. 431:210–214. 2013. View Article : Google Scholar : PubMed/NCBI

95 

Swingler TE, Wheeler G, Carmont V, et al: The expression and function of microRNAs in chondrogenesis and osteoarthritis. Arthritis Rheum. 64:1909–1919. 2012. View Article : Google Scholar : PubMed/NCBI

96 

Dudek KA, Lafont JE, Martinez-Sanchez A and Murphy CL: Type II collagen expression is regulated by tissue-specific miR-675 in human articular chondrocytes. J Biol Chem. 285:24381–24387. 2010. View Article : Google Scholar

97 

Steck E, Boeuf S, Gabler J, et al: Regulation of H19 and its encoded microRNA-675 in osteoarthritis and under anabolic and catabolic in vitro conditions. J Mol Med (Berl). 90:1185–1195. 2012. View Article : Google Scholar : PubMed/NCBI

98 

Hu F, Zhu W and Wang L: MicroRNA-203 up-regulates nitric oxide expression in temporomandibular joint chondrocytes via targeting TRPV4. Arch Oral Biol. Nov 16–2012.(Epub ahead of print). View Article : Google Scholar

Related Articles

Journal Cover

July 2014
Volume 34 Issue 1

Print ISSN: 1107-3756
Online ISSN:1791-244X

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Wu, C., Tian, B., Qu, X., Liu, F., Tang, T., Qin, A. ... Dai, K. (2014). MicroRNAs play a role in chondrogenesis and osteoarthritis (Review). International Journal of Molecular Medicine, 34, 13-23. https://doi.org/10.3892/ijmm.2014.1743
MLA
Wu, C., Tian, B., Qu, X., Liu, F., Tang, T., Qin, A., Zhu, Z., Dai, K."MicroRNAs play a role in chondrogenesis and osteoarthritis (Review)". International Journal of Molecular Medicine 34.1 (2014): 13-23.
Chicago
Wu, C., Tian, B., Qu, X., Liu, F., Tang, T., Qin, A., Zhu, Z., Dai, K."MicroRNAs play a role in chondrogenesis and osteoarthritis (Review)". International Journal of Molecular Medicine 34, no. 1 (2014): 13-23. https://doi.org/10.3892/ijmm.2014.1743