FERM family proteins and their importance in cellular movements and wound healing (Review)

  • Authors:
    • David C. Bosanquet
    • Lin Ye
    • Keith G. Harding
    • Wen G. Jiang
  • View Affiliations

  • Published online on: May 8, 2014     https://doi.org/10.3892/ijmm.2014.1775
  • Pages: 3-12
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Motility is a requirement for a number of biological processes, including embryonic development, neuronal development, immune responses, cancer progression and wound healing. Specific to wound healing is the migration of endothelial cells, fibroblasts and other key cellular players into the wound space. Aberrations in wound healing can result in either chronic wounds or abnormally healed wounds. The protein 4.1R, ezrin, radixin, moesin (FERM) superfamily consists of over 40 proteins all containing a three lobed N-terminal FERM domain which binds a variety of cell-membrane associated proteins and lipids. The C-terminal ends of these proteins typically contain an actin-binding domain (ABD). These proteins therefore mediate the linkage between the cell membrane and the actin cytoskeleton, and are involved in cellular movements and migration. Certain FERM proteins have been shown to promote cancer metastasis via this very mechanism. Herein we review the effects of a number of FERM proteins on wound healing and cancer. We show how these proteins typically aid wound healing through their effects on increasing cellular migration and movements, but also typically promote metastasis in cancer. We conclude that FERM proteins play important roles in cellular migration, with markedly different outcomes in the context of cancer and wound healing.

References

1 

Weigelt B, Peterse JL and van ’t Veer LJ: Breast cancer metastasis: markers and models. Nat Rev Cancer. 5:591–602. 2005. View Article : Google Scholar : PubMed/NCBI

2 

Mehlen P and Puisieux A: Metastasis: a question of life or death. Nat Rev Cancer. 6:449–458. 2006. View Article : Google Scholar : PubMed/NCBI

3 

Yang J and Weinberg RA: Epithelial-mesenchymal transition: At the crossroads of development and tumor metastasis. Dev Cell. 14:818–829. 2008. View Article : Google Scholar : PubMed/NCBI

4 

Arnoux V, Come C, Kusewitt D, Hudson L and Savagner P: Cutaneous Wound Reepithelializaton: A partial and reversible EMT. Rise and Fall of Epithelial Phenotype: Concepts of Epithelial-Mesenchymal Transition. Savagner P: Springer; Berlin: pp. 111–134. 2005, View Article : Google Scholar

5 

Yan CL, Grimm WA, Garner WL, et al: Epithelial to mesenchymal transition in human skin wound healing is induced by tumor necrosis factor-alpha through bone morphogenic protein-2. Am J Pathol. 176:2247–2258. 2010. View Article : Google Scholar : PubMed/NCBI

6 

Virchow R: Aetiologie der neoplastischen Geschwulste/ Pathogenie der neoplastischen Geschwulste. Die Krankhaften Geschwülste. Verlag von August Hirschwald; Berlin: pp. 57–101. 1863

7 

Dolberg DS, Hollingsworth R, Hertle M and Bissell MJ: Wounding and its role in RSV-mediated tumor formation. Science. 230:676–678. 1985. View Article : Google Scholar : PubMed/NCBI

8 

Martinsgreen M, Boudreau N and Bissell MJ: Inflammation is responsible for the development of wound-induced tumors in chickens infected with Rous sarcoma virus. Cancer Res. 54:4334–4341. 1994.PubMed/NCBI

9 

Dvorak HF: Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med. 315:1650–1659. 1986. View Article : Google Scholar : PubMed/NCBI

10 

Schafer M and Werner S: Cancer as an overhealing wound: an old hypothesis revisited. Nat Rev Mol Cell Bio. 9:628–638. 2008. View Article : Google Scholar : PubMed/NCBI

11 

Antsiferova M and Werner S: The bright and the dark sides of activin in wound healing and cancer. J Cell Sci. 125:3929–3937. 2012. View Article : Google Scholar : PubMed/NCBI

12 

Grose R: Common ground in the transcriptional profiles of wounds and tumors. Genome Biol. 5:2282004. View Article : Google Scholar : PubMed/NCBI

13 

Pedersen TX, Leethanakul C, Patel V, et al: Laser capture microdissection-based in vivo genomic profiling of wound keratinocytes identifies similarities and differences to squamous cell carcinoma. Oncogene. 22:3964–3976. 2003. View Article : Google Scholar

14 

Chang HY, Sneddon JB, Alizadeh AA, et al: Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds. PLoS Biol. 2:72004. View Article : Google Scholar

15 

Eming SA, Brachvogel B, Odorisio T and Koch M: Regulation of angiogenesis: wound healing as a model. Prog Histochem Cytochem. 42:115–170. 2007. View Article : Google Scholar : PubMed/NCBI

16 

Midwood KS, Williams LV and Schwarzbauer JE: Tissue repair and the dynamics of the extracellular matrix. Int J Biochem Cell Biol. 36:1031–1037. 2004. View Article : Google Scholar : PubMed/NCBI

17 

Martin P: Wound healing--aiming for perfect skin regeneration. Science. 276:75–81. 1997. View Article : Google Scholar : PubMed/NCBI

18 

Pollard TD and Borisy GG: Cellular motility driven by assembly and disassembly of actin filaments. Cell. 112:453–465. 2003. View Article : Google Scholar : PubMed/NCBI

19 

Mellman I and Nelson WJ: Coordinated protein sorting, targeting and distribution in polarized cells. Nat Rev Mol Cell Biol. 9:833–845. 2008. View Article : Google Scholar : PubMed/NCBI

20 

Small JV, Stradal T, Vignal E and Rottner K: The lamellipodium: where motility begins. Trends Cell Biol. 12:112–120. 2002. View Article : Google Scholar : PubMed/NCBI

21 

Bugyi B and Carlier MF: Control of actin filament treadmilling in cell motility. Annu Rev Biophys. 39:449–470. 2010. View Article : Google Scholar : PubMed/NCBI

22 

Yu H, Zhang Y, Ye L and Jiang WG: The FERM family proteins in cancer invasion and metastasis. Frontiers in bioscience: a journal and virtual library. 16:1536–1550. 2011. View Article : Google Scholar : PubMed/NCBI

23 

Chishti AH, Kim AC, Marfatia SM, et al: The FERM domain: a unique module involved in the linkage of cytoplasmic proteins to the membrane. Trends Biochem Sci. 23:281–282. 1998. View Article : Google Scholar : PubMed/NCBI

24 

Leto TL and Marchesi VT: A structural model of human erythrocyte protein 4.1. J Biol Chem. 259:4603–4608. 1984.PubMed/NCBI

25 

Tyler JM, Hargreaves WR and Branton D: Purification of two spectrin-binding proteins: biochemical and electron microscopic evidence for site-specific reassociation between spectrin and bands 2.1 and 4.1. Proc Natl Acad Sci USA. 76:5192–5196. 1979. View Article : Google Scholar

26 

Shiffer KA and Goodman SR: Protein 4.1: its association with the human erythrocyte membrane. Proc Natl Acad Sci USA. 81:4404–4408. 1984. View Article : Google Scholar : PubMed/NCBI

27 

Bretscher A: Purification of the intestinal microvillus cytoskeletal proteins villin, fimbrin, and ezrin. Methods Enzymol. 134:24–37. 1986. View Article : Google Scholar : PubMed/NCBI

28 

Tsukita S and Hieda Y: A new 82-kD barbed end-capping protein (radixin) localized in the cell-to-cell adherens junction: purification and characterization. J Cell Biol. 108:2369–2382. 1989. View Article : Google Scholar : PubMed/NCBI

29 

Lankes WT and Furthmayr H: Moesin: a member of the protein 4.1-talin-ezrin family of proteins. Proc Natl Acad Sci USA. 88:8297–8301. 1991. View Article : Google Scholar : PubMed/NCBI

30 

Jiang WG, Hiscox S, Singhrao SK, et al: Induction of tyrosine phosphorylation and translocation of ezrin by hepatocyte growth factor/scatter factor. Biochem Biophys Res Commun. 217:1062–1069. 1995. View Article : Google Scholar : PubMed/NCBI

31 

Sun CX, Robb VA and Gutmann DH: Protein 4.1 tumor suppressors: getting a FERM grip on growth regulation. J Cell Sci. 115:3991–4000. 2002. View Article : Google Scholar : PubMed/NCBI

32 

Takeuchi K, Kawashima A, Nagafuchi A and Tsukita S: Structural diversity of band 4.1 superfamily members. J Cell Sci. 107:1921–1928. 1994.

33 

Conboy J, Kan YW, Shohet SB and Mohandas N: Molecular cloning of protein 4.1, a major structural element of the human erythrocyte membrane skeleton. Proc Natl Acad Sci USA. 83:9512–9516. 1986. View Article : Google Scholar : PubMed/NCBI

34 

Smith WJ, Nassar N, Bretscher A, Cerione RA and Karplus PA: Structure of the active N-terminal domain of Ezrin. Conformational and mobility changes identify keystone interactions. J Biol Chem. 278:4949–4956. 2003. View Article : Google Scholar : PubMed/NCBI

35 

Shimizu T, Seto A, Maita N, Hamada K, Tsukita S and Hakoshima T: Structural basis for neurofibromatosis type 2. Crystal structure of the merlin FERM domain. J Biol Chem. 277:10332–10336. 2002. View Article : Google Scholar : PubMed/NCBI

36 

Pearson MA, Reczek D, Bretscher A and Karplus PA: Structure of the ERM protein moesin reveals the FERM domain fold masked by an extended actin binding tail domain. Cell. 101:259–270. 2000. View Article : Google Scholar : PubMed/NCBI

37 

Gautreau A, Louvard D and Arpin M: ERM proteins and NF2 tumor suppressor: the Yin and Yang of cortical actin organization and cell growth signaling. Curr Opin Cell Biol. 14:104–109. 2002. View Article : Google Scholar : PubMed/NCBI

38 

Bretscher A: Purification of an 80,000-dalton protein that is a component of the isolated microvillus cytoskeleton, and its localization in nonmuscle cells. J Cell Biol. 97:425–432. 1983. View Article : Google Scholar : PubMed/NCBI

39 

Franck Z, Gary R and Bretscher A: Moesin, like ezrin, colocalizes with actin in the cortical cytoskeleton in cultured cells, but its expression is more variable. J Cell Sci. 105:219–231. 1993.PubMed/NCBI

40 

Sato N, Funayama N, Nagafuchi A, Yonemura S and Tsukita S and Tsukita S: A gene family consisting of ezrin, radixin and moesin. Its specific localization at actin filament/plasma membrane association sites. J Cell Sci. 103:131–143. 1992.PubMed/NCBI

41 

Louvet-Vallee S: ERM proteins: From cellular architecture to cell signaling. Biol Cell. 92:305–316. 2000. View Article : Google Scholar : PubMed/NCBI

42 

Nowak D, Mazur AJ, Popow-Wozniak A, Radwanska A, Mannherz HG and Malicka-Blaszkiewicz M: Subcellular distribution and expression of cofilin and ezrin in human colon adenocarcinoma cell lines with different metastatic potential. Eur J Histochem. 54:142010. View Article : Google Scholar : PubMed/NCBI

43 

Sarrio D, Rodriguez-Pinilla SM, Dotor A, Calero F, Hardisson D and Palacios J: Abnormal ezrin localization is associated with clinicopathological features in invasive breast carcinomas. Breast Cancer Res Tr. 98:71–79. 2006. View Article : Google Scholar : PubMed/NCBI

44 

Lankes W, Griesmacher A, Grunwald J, Schwartzalbiez R and Keller R: A heparin-binding protein involved in inhibition of smooth-muscle cell proliferation. Biochem J. 251:831–842. 1988.PubMed/NCBI

45 

Amieva MR and Furthmayr H: Subcellular localization of moesin in dynamic filopodia, retraction fibers, and other structures involved in substrate exploration, attachment, and cell-cell contacts. Exp Cell Res. 219:180–196. 1995. View Article : Google Scholar

46 

Lallemand D and Arpin M: Moesin/ezrin: a specific role in cell metastasis? Pigm Cell Melanoma Res. 23:6–7. 2010. View Article : Google Scholar : PubMed/NCBI

47 

He M, Cheng Y, Li W, et al: Vascular endothelial growth factor C promotes cervical cancer metastasis via up-regulation and activation of RhoA/ROCK-2/moesin cascade. BMC Cancer. 10:2010.PubMed/NCBI

48 

Amieva MR, Wilgenbus KK and Furthmayr H: Radixin is a component of hepatocyte microvilli in situ. Exp Cell Res. 210:140–144. 1994. View Article : Google Scholar : PubMed/NCBI

49 

Hamada K, Shimizu T, Matsui T, Tsukita S and Hakoshima T: Structural basis of the membrane-targeting and unmasking mechanisms of the radixin FERM domain. Embo J. 19:4449–4462. 2000. View Article : Google Scholar : PubMed/NCBI

50 

Loebrich S, Bahring R, Katsuno T, Tsukita S and Kneussel M: Activated radixin is essential for GABAA receptor alpha5 subunit anchoring at the actin cytoskeleton. EMBO J. 25:987–999. 2006. View Article : Google Scholar : PubMed/NCBI

51 

Elliott BE, Meens JA, SenGupta SK, Louvard D and Arpin M: The membrane cytoskeletal crosslinker ezrin is required for metastasis of breast carcinoma cells. Breast Cancer Research. 7:365–373. 2005. View Article : Google Scholar : PubMed/NCBI

52 

Khanna C, Wan XL, Bose S, et al: The membrane-cytoskeleton linker ezrin is necessary for osteosarcoma metastasis. Nat Med. 10:182–186. 2004. View Article : Google Scholar : PubMed/NCBI

53 

Yu YL, Khan J, Khanna C, Helman L, Meltzer PS and Merlino G: Expression profiling identifies the cytoskeletal organizer ezrin and the developmental homeoprotein Six-1 as key metastatic regulators. Nat Med. 10:175–181. 2004. View Article : Google Scholar : PubMed/NCBI

54 

Kang YK, Hong SW, Lee H and Kim WH: Prognostic implications of ezrin expression in human hepatocellular carcinoma. Mol Carcinog. 49:798–804. 2010.PubMed/NCBI

55 

Deng XY, Tannehill-Gregg SH, Nadella MVP, et al: Parathyroid hormone-related protein and ezrin are up-regulated in human lung cancer bone metastases. Clin Exp Metastas. 24:107–119. 2007. View Article : Google Scholar : PubMed/NCBI

56 

Meng YX, Lu ZH, Yu SN, Zhang QA, Ma YH and Chen J: Ezrin promotes invasion and metastasis of pancreatic cancer cells. J Transl Med. 8:2010.

57 

Federici C, Brambilla D, Lozupone F, et al: Pleiotropic function of ezrin in human metastatic melanomas. Int J Cancer. 124:2804–2812. 2009. View Article : Google Scholar : PubMed/NCBI

58 

Zhou BB, Leng J, Hu M, et al: Ezrin is a key molecule in the metastasis of MOLT4 cells induced by CCL25/CCR9. Leuk Res. 34:769–776. 2010. View Article : Google Scholar : PubMed/NCBI

59 

Morales FC, Molina JR, Hayashi Y and Georgescu MM: Overexpression of ezrin inactivates NF2 tumor suppressor in glioblastoma. Neuro Oncol. 12:528–539. 2010. View Article : Google Scholar : PubMed/NCBI

60 

Cui YZ, Wu JM, Zong MJ, et al: Proteomic profiling in pancreatic cancer with and without lymph node metastasis. Int J Cancer. 124:1614–1621. 2009. View Article : Google Scholar : PubMed/NCBI

61 

Estecha A, Sanchez-Martin L, Puig-Kroger A, et al: Moesin orchestrates cortical polarity of melanoma tumour cells to initiate 3D invasion. J Cell Sci. 122:3492–3501. 2009. View Article : Google Scholar : PubMed/NCBI

62 

Jensen PV and Larsson LI: Actin microdomains on endothelial cells: association with CD44, ERM proteins, and signaling molecules during quiescence and wound healing. Histochem Cell Biol. 121:361–369. 2004. View Article : Google Scholar : PubMed/NCBI

63 

Ng T, Parsons M, Hughes WE, et al: Ezrin is a downstream effector of trafficking PKC-integrin complexes involved in the control of cell motility. EMBO J. 20:2723–2741. 2001. View Article : Google Scholar : PubMed/NCBI

64 

Haas MA, Vickers JC and Dickson TC: Binding partners L1 cell adhesion molecule and the ezrin-radixin-moesin (ERM) proteins are involved in development and the regenerative response to injury of hippocampal and cortical neurons. Eur J Neurosci. 20:1436–1444. 2004. View Article : Google Scholar : PubMed/NCBI

65 

Haas MA, Vickers JC and Dickson TC: Rho kinase activates ezrin-radixin-moesin (ERM) proteins and mediates their function in cortical neuron growth, morphology and motility in vitro. J Neurosci Res. 85:34–46. 2007. View Article : Google Scholar : PubMed/NCBI

66 

Tsuda M, Makino Y, Iwahara T, et al: Crk associates with ERM proteins and promotes cell motility toward hyaluronic acid. J Biol Chem. 279:46843–46850. 2004. View Article : Google Scholar : PubMed/NCBI

67 

Crepaldi T, Gautreau A, Comoglio PM, Louvard D and Arpin M: Ezrin is an effector of hepatocyte growth factor-mediated migration and morphogenesis in epithelial cells. J Cell Biol. 138:423–434. 1997. View Article : Google Scholar : PubMed/NCBI

68 

Hashimoto S, Amaya F, Matsuyama H, et al: Dysregulation of lung injury and repair in moesin-deficient mice treated with intratracheal bleomycin. Am J Physiol Lung Cell Mol Physiol. 295:L566–L574. 2008. View Article : Google Scholar : PubMed/NCBI

69 

Okayama T, Kikuchi S, Ochiai T, et al: Attenuated response to liver injury in moesin-deficient mice: impaired stellate cell migration and decreased fibrosis. Biochim Biophys Acta. 1782:542–548. 2008. View Article : Google Scholar : PubMed/NCBI

70 

Takakuwa Y: Regulation of red cell membrane protein interactions: implications for red cell function. Curr Opin Hematol. 8:80–84. 2001. View Article : Google Scholar : PubMed/NCBI

71 

Holzwarth G, Yu J and Steck TL: Heterogeneity in the conformation of different protein fractions from the human erythrocyte membrane. J Supramol Struct. 4:161–168. 1976. View Article : Google Scholar : PubMed/NCBI

72 

Diakowski W, Grzybek M and Sikorski AF: Protein 4.1, a component of the erythrocyte membrane skeleton and its related homologue proteins forming the protein 4.1/FERM superfamily. Folia Histochem Cyto. 44:231–248. 2006.PubMed/NCBI

73 

Mattagajasingh SN, Huang SC, Hartenstein JS and Benz EJ: Characterization of the interaction between protein 4.1R and ZO-2. A possible link between the tight junction and the actin cytoskeleton. J Biol Chem. 275:30573–30585. 2000. View Article : Google Scholar

74 

Yamakawa H, Ohara R, Nakajima D, Nakayama M and Ohara O: Molecular characterization of a new member of the protein 4.1 family (brain 4.1) in rat brain. Mol Brain Res. 74:247. 1999.

75 

Tchernia G, Mohandas N and Shohet SB: Deficiency of skeletal membrane protein band 4.1 in homozygous hereditary elliptocytosis. Implications for erythrocyte membrane stability. J Clin Invest. 68:454–460. 1981. View Article : Google Scholar

76 

Shi ZT, Afzal V, Coller B, et al: Protein 4.1R-deficient mice are viable but have erythroid membrane skeleton abnormalities. J Clin Invest. 103:331–340. 1999. View Article : Google Scholar : PubMed/NCBI

77 

Salomao M, Zhang XH, Yang Y, et al: Protein 4.1R-dependent multiprotein complex: New insights into the structural organization of the red blood cell membrane. Proc Natl Acad Sci USA. 105:8026–8031. 2008. View Article : Google Scholar : PubMed/NCBI

78 

Nunomura W and Takakuwa Y: Regulation of protein 4.1R interactions with membrane proteins by Ca2+ and calmodulin. Front Biosci. 11:1522–1539. 2006.

79 

Pinder JC, Gardner B and Gratzer WB: Interaction of protein 4.1 with the red cell membrane: effects of phosphorylation by protein kinase C. Biochem Biophys Res Commun. 210:478–482. 1995. View Article : Google Scholar : PubMed/NCBI

80 

Horne WC, Prinz WC and Tang EK: Identification of two cAMP-dependent phosphorylation sites on erythrocyte protein 4.1. Biochim Biophys Acta. 1055:87–92. 1990. View Article : Google Scholar : PubMed/NCBI

81 

Eder PS, Soong CJ and Tao M: Phosphorylation reduces the affinity of protein 4.1 for spectrin. Biochemistry. 25:1764–1770. 1986. View Article : Google Scholar

82 

Krauss SW, Larabell CA, Lockett S, et al: Structural protein 4.1 in the nucleus of human cells: dynamic rearrangements during cell division. J Cell Biol. 137:275–289. 1997. View Article : Google Scholar : PubMed/NCBI

83 

Mattagajasingh SN, Huang SC, Hartenstein JS, Snyder M, Marchesi VT and Benz EJ: A nonerythroid isoform of protein 4.1R interacts with the nuclear mitotic apparatus (NuMA) protein. J Cell Biol. 145:29–43. 1999. View Article : Google Scholar : PubMed/NCBI

84 

Perez-Ferreiro CM, Luque CM and Correas I: 4.1R proteins associate with interphase microtubules in human T cells: a 4.1R constitutive region is involved in tubulin binding. J Biol Chem. 276:44785–44791. 2001. View Article : Google Scholar : PubMed/NCBI

85 

Krauss SW, Heald R, Lee G, et al: Two distinct domains of protein 4.1 critical for assembly of functional nuclei in vitro. J Biol Chem. 277:44339–44346. 2002. View Article : Google Scholar : PubMed/NCBI

86 

Yang SM, Guo XH, Debnath G, Mohandas N and An XL: Protein 4.1R links E-cadherin/beta-catenin complex to the cytoskeleton through its direct interaction with beta-catenin and modulates adherens junction integrity. Biochim Biophys Acta. 1788:1458–1465. 2009. View Article : Google Scholar : PubMed/NCBI

87 

Chen L, Hughes RA, Baines AJ, Conboy J, Mohandas N and An X: Protein 4.1R regulates cell adhesion, spreading, migration and motility of mouse keratinocytes by modulating surface expression of beta1 integrin. J Cell Sci. 124:2478–2487. 2011. View Article : Google Scholar : PubMed/NCBI

88 

Ruiz-Sáenz A, Kremer L, Alonso MA, Millan J and Correas I: Protein 4.1R regulates cell migration and IQGAP1 recruitment to the leading edge. J Cell Sci. 124:2529–2538. 2011.PubMed/NCBI

89 

Hashimoto Y, Shindo-Okada N, Tani M, Takeuchi K, Toma H and Yokota J: Identification of genes differentially expressed in association with metastatic potential of K-1735 murine melanoma by messenger RNA differential display. Cancer Res. 56:5266–5271. 1996.PubMed/NCBI

90 

Shimizu K, Nagamachi Y, Tani M, et al: Molecular cloning of a novel NF2/ERM/4.1 superfamily gene, ehm2, that is expressed in high-metastatic K1735 murine melanoma cells. Genomics. 65:113–120. 2000. View Article : Google Scholar : PubMed/NCBI

91 

Chauhan S, Pandey R, Way JF, et al: Androgen regulation of the human FERM domain encoding gene EHM2 in a cell model of steroid-induced differentiation. Biochem Biophys Res Commun. 310:421–432. 2003. View Article : Google Scholar : PubMed/NCBI

92 

Cress AE and Nagle RB: Cell Adhesion and Cytoskeletal Molecules in Metastasis. (Series: Cancer Metastasis - Biology and Treatment). 9. Springer; Dordrecht: 2006, View Article : Google Scholar

93 

Hoover KB and Bryant PJ: Drosophila Yurt is a new protein-4.1-like protein required for epithelial morphogenesis. Dev Genes Evol. 212:230–238. 2002. View Article : Google Scholar

94 

Wang J, Cai Y, Penland R, Chauhan S, Miesfeld RL and Ittmann M: Increased expression of the metastasis-associated gene Ehm2 in prostate cancer. Prostate. 66:1641–1652. 2006. View Article : Google Scholar : PubMed/NCBI

95 

Schulz WA, Ingenwerth M, Djuidje CE, Hader C, Rahnenfuhrer J and Engers R: Changes in cortical cytoskeletal and extracellular matrix gene expression in prostate cancer are related to oncogenic ERG deregulation. BMC Cancer. 10:5052010. View Article : Google Scholar : PubMed/NCBI

96 

Dhanasekaran SM, Barrette TR, Ghosh D, et al: Delineation of prognostic biomarkers in prostate cancer. Nature. 412:822–826. 2001. View Article : Google Scholar : PubMed/NCBI

97 

Luo JH, Yu YP, Cieply K, et al: Gene expression analysis of prostate cancers. Mol Carcinog. 33:25–35. 2002. View Article : Google Scholar : PubMed/NCBI

98 

Luo J, Duggan DJ, Chen Y, et al: Human prostate cancer and benign prostatic hyperplasia: molecular dissection by gene expression profiling. Cancer Res. 61:4683–4688. 2001.PubMed/NCBI

99 

Yu H, Ye L, Mansel RE, Zhang Y and Jiang WG: Clinical implications of the influence of Ehm2 on the aggressiveness of breast cancer cells through regulation of matrix metalloproteinase-9 expression. Mol Cancer Res. 8:1501–1512. 2010. View Article : Google Scholar : PubMed/NCBI

100 

Bosanquet DC, Ye L, Harding KG and Jiang WG: Expressed in high metastatic cells (Ehm2) is a positive regulator of keratinocyte adhesion and motility: The implication for wound healing. J Dermatol Sci. 71:115–121. 2013. View Article : Google Scholar : PubMed/NCBI

101 

Reid BJ, Li X, Galipeau PC and Vaughan TL: Barrett’s oesophagus and oesophageal adenocarcinoma: time for a new synthesis. Nat Rev Cancer. 10:87–101. 2010.

102 

De Minicis S, Marzioni M, Saccomanno S, et al: Cellular and molecular mechanisms of hepatic fibrogenesis leading to liver cancer. Transl Gastrointest Cancer. 1:88–94. 2011.

103 

Mountford RA, Brown P, Salmon PR, Alvarenga C, Neumann CS and Read AE: Gastric cancer detection in gastric ulcer disease. Gut. 21:9–17. 1980. View Article : Google Scholar : PubMed/NCBI

104 

Jess T, Rungoe C and Peyrin-Biroulet L: Risk of colorectal cancer in patients with ulcerative colitis: a meta-analysis of population-based cohort studies. Clin Gastroenterol Hepatol. 10:639–645. 2012. View Article : Google Scholar : PubMed/NCBI

105 

Malka D, Hammel P, Maire F, et al: Risk of pancreatic adenocarcinoma in chronic pancreatitis. Gut. 51:849–852. 2002. View Article : Google Scholar : PubMed/NCBI

106 

Kerr-Valentic MA, Samimi K, Rohlen BH, Agarwal JP and Rockwell WB: Marjolin’s ulcer: modern analysis of an ancient problem. Plast Reconstr Surg. 123:184–191. 2009.

107 

Pasternack GR, Anderson RA, Leto TL and Marchesi VT: Interactions between protein 4.1 and band 3. An alternative binding site for an element of the membrane skeleton. J Biol Chem. 260:3676–3683. 1985.PubMed/NCBI

108 

Hemming NJ, Anstee DJ, Mawby WJ, Reid ME and Tanner MJ: Localization of the protein 4.1-binding site on human erythrocyte glycophorins C and D. Biochem J. 299:191–196. 1994.

109 

Marfatia SM, Leu RA, Branton D and Chishti AH: Identification of the protein 4.1 binding interface on glycophorin C and p55, a homologue of the Drosophila discs-large tumor suppressor protein. J Biol Chem. 270:715–719. 1995. View Article : Google Scholar : PubMed/NCBI

110 

Reczek D, Berryman M and Bretscher A: Identification of EBP50: A PDZ-containing phosphoprotein that associates with members of the ezrin-radixin-moesin family. J Cell Biol. 139:169–179. 1997. View Article : Google Scholar : PubMed/NCBI

111 

Nunomura W, Takakuwa Y, Tokimitsu R, Krauss SW, Kawashima M and Mohandas N: Regulation of CD44-protein 4.1 interaction by Ca2+ and calmodulin. Implications for modulation of CD44-ankyrin interaction. J Biol Chem. 272:30322–30328. 1997. View Article : Google Scholar

112 

Heiska L, Alfthan K, Gronholm M, Vilja P, Vaheri A and Carpen O: Association of ezrin with intercellular adhesion molecule-1 and -2 (ICAM-1 and ICAM-2). Regulation by phosphatidylinositol 4, 5-bisphosphate. J Biol Chem. 273:21893–21900. 1998. View Article : Google Scholar : PubMed/NCBI

113 

Darmellah A, Rucker-Martin C and Feuvray D: ERM proteins mediate the effects of Na+/H+ exchanger (NHE1) activation in cardiac myocytes. Cardiovasc Res. 81:294–300. 2009. View Article : Google Scholar : PubMed/NCBI

114 

Niggli V, Andreoli C, Roy C and Mangeat P: Identification of a phosphatidylinositol-4,5-bisphosphate-binding domain in the N-terminal region of ezrin. FEBS Lett. 376:172–176. 1995. View Article : Google Scholar : PubMed/NCBI

115 

Tanaka T, Kadowaki K, Lazarides E and Sobue K: Ca2(+)-dependent regulation of the spectrin/actin interaction by calmodulin and protein 4.1. J Biol Chem. 266:1134–1140. 1991.

116 

Weinman EJ, Steplock D, Wade JB and Shenolikar S: Ezrin binding domain-deficient NHERF attenuates cAMP-mediated inhibition of Na(+)/H(+) exchange in OK cells. Am J Physiol Renal Physiol. 281:F374–F380. 2001.PubMed/NCBI

Related Articles

Journal Cover

July 2014
Volume 34 Issue 1

Print ISSN: 1107-3756
Online ISSN:1791-244X

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Bosanquet, D.C., Ye, L., Harding, K.G., & Jiang, W.G. (2014). FERM family proteins and their importance in cellular movements and wound healing (Review). International Journal of Molecular Medicine, 34, 3-12. https://doi.org/10.3892/ijmm.2014.1775
MLA
Bosanquet, D. C., Ye, L., Harding, K. G., Jiang, W. G."FERM family proteins and their importance in cellular movements and wound healing (Review)". International Journal of Molecular Medicine 34.1 (2014): 3-12.
Chicago
Bosanquet, D. C., Ye, L., Harding, K. G., Jiang, W. G."FERM family proteins and their importance in cellular movements and wound healing (Review)". International Journal of Molecular Medicine 34, no. 1 (2014): 3-12. https://doi.org/10.3892/ijmm.2014.1775