MicroRNA-17 induces epithelial-mesenchymal transition consistent with the cancer stem cell phenotype by regulating CYP7B1 expression in colon cancer

  • Authors:
    • Xiang‑Peng Xi
    • Jing Zhuang
    • Mu‑Jian Teng
    • Li‑Jian Xia
    • Ming‑Yu Yang
    • Qing‑Gen Liu
    • Jing‑Bo Chen
  • View Affiliations

  • Published online on: June 6, 2016     https://doi.org/10.3892/ijmm.2016.2624
  • Pages: 499-506
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

MicroRNA-17 (miRNA-17/miR‑17) expression has been confirmed to be significantly higher in colorectal cancer tissues than in normal tissues. However, its exact role in colorectal cancer has not yet been fully elucidated. In this study, we found that miR-17 not only promoted epithelial-mesenchymal transition (EMT), but also promoted the formation of a stem cell-like population in colon cancer DLD1 cells. We also wished to determine the role of cytochrome P450, family 7, subfamily B, polypeptide 1 (CYP7B1) in CRC. miR-17 was overexpressed using a recombinant plasmid and CYP7B1 was silenced by transfection with shRNA. Western blot analysis was used to determine protein expression in the DLD1 cells and in tumor tissues obtained from patients with colon cancer. Our results revealed that miR‑17 overexpression led to the degradation of CYP7B1 mRNA expression in DLD1 cells. In addition, we found that the silencing of CYB7B1 promoted EMT and the formation of a stem cell-like population in the cells. Thus, our findings demonstrate that miR‑17 induces EMT consistent with the cancer stem cell phenotype by regulating CYP7B1 expression in colon cancer.

References

1 

Jemal A, Siegel R, Ward E, Hao Y, Xu J and Thun MJ: Cancer statistics, 2009. CA Cancer J Clin. 59:225–249. 2009. View Article : Google Scholar : PubMed/NCBI

2 

Hawk ET and Levin B: Colorectal cancer prevention. J Clin Oncol. 23:378–391. 2005. View Article : Google Scholar : PubMed/NCBI

3 

Brabletz T, Hlubek F, Spaderna S, Schmalhofer O, Hiendlmeyer E, Jung A and Kirchner T: Invasion and metastasis in colorectal cancer: Epithelial-mesenchymal transition, mesenchymal-epithelial transition, stem cells and beta-catenin. Cells Tissues Organs. 179:56–65. 2005. View Article : Google Scholar : PubMed/NCBI

4 

Thiery JP, Acloque H, Huang RY and Nieto MA: Epithelial-mesenchymal transitions in development and disease. Cell. 139:871–890. 2009. View Article : Google Scholar : PubMed/NCBI

5 

Kalluri R and Weinberg RA: The basics of epithelial-mesenchymal transition. J Clin Invest. 119:1420–1428. 2009. View Article : Google Scholar : PubMed/NCBI

6 

Wu Z, Martin KO, Javitt NB and Chiang JY: Structure and functions of human oxysterol 7alpha-hydroxylase cDNAs and gene CYP7B1. J Lipid Res. 40:2195–2203. 1999.PubMed/NCBI

7 

Sulcová J and Stárka L: Characterisation of microsomal dehydroepiandrosterone 7-hydroxylase from rat liver. Steroids. 12:113–126. 1968. View Article : Google Scholar : PubMed/NCBI

8 

Norlin M and Wikvall K: Biochemical characterization of the 7alpha-hydroxylase activities towards 27-hydroxycholesterol and dehydroepiandrosterone in pig liver microsomes. Biochim Biophys Acta. 1390:269–281. 1998. View Article : Google Scholar : PubMed/NCBI

9 

Shoda J, Toll A, Axelson M, Pieper F, Wikvall K and Sjövall J: Formation of 7 alpha- and 7 beta-hydroxylated bile acid precursors from 27-hydroxycholesterol in human liver microsomes and mitochondria. Hepatology. 17:395–403. 1993. View Article : Google Scholar : PubMed/NCBI

10 

Weihua Z, Lathe R, Warner M and Gustafsson JA: An endocrine pathway in the prostate, ERbeta, AR, 5alpha-androstane-3beta,17beta-diol, and CYP7B1, regulates prostate growth. Proc Natl Acad Sci USA. 99:13589–13594. 2002. View Article : Google Scholar : PubMed/NCBI

11 

Norlin M: Expression of key enzymes in bile acid biosynthesis during development: CYP7B1-mediated activities show tissue-specific differences. J Lipid Res. 43:721–731. 2002.PubMed/NCBI

12 

Martin C, Ross M, Chapman KE, Andrew R, Bollina P, Seckl JR and Habib FK: CYP7B generates a selective estrogen receptor beta agonist in human prostate. J Clin Endocrinol Metab. 89:2928–2935. 2004. View Article : Google Scholar : PubMed/NCBI

13 

Rose KA, Stapleton G, Dott K, Kieny MP, Best R, Schwarz M, Russell DW, Björkhem I, Seckl J and Lathe R: Cyp7b, a novel brain cytochrome P450, catalyzes the synthesis of neurosteroids 7alpha-hydroxy dehydroepiandrosterone and 7alpha-hydroxy pregnenolone. Proc Natl Acad Sci USA. 94:4925–4930. 1997. View Article : Google Scholar : PubMed/NCBI

14 

Dulos J, Verbraak E, Bagchus WM, Boots AM and Kaptein A: Severity of murine collagen-induced arthritis correlates with increased CYP7B activity: Enhancement of dehydroepiandrosterone metabolism by interleukin-1beta. Arthritis Rheum. 50:3346–3353. 2004. View Article : Google Scholar : PubMed/NCBI

15 

Rainey WE, Rehman KS and Carr BR: The human fetal adrenal: Making adrenal androgens for placental estrogens. Semin Reprod Med. 22:327–336. 2004. View Article : Google Scholar

16 

Kim SB, Hill M, Kwak YT, Hampl R, Jo DH and Morfin R: Neurosteroids: Cerebrospinal fluid levels for Alzheimer's disease and vascular dementia diagnostics. J Clin Endocrinol Metab. 88:5199–5206. 2003. View Article : Google Scholar : PubMed/NCBI

17 

Katyare SS, Modi HR and Patel MA: Dehydroepiandrosterone treatment alters lipid/phospholipid profiles of rat brain and liver mitochondria. Curr Neurovasc Res. 3:273–279. 2006. View Article : Google Scholar : PubMed/NCBI

18 

Mayer D and Forstner K: Impact of dehydroepiandrosterone on hepatocarcinogenesis in the rat (Review). Int J Oncol. 25:1021–1030. 2004.PubMed/NCBI

19 

Nelson ER, Wardell SE, Jasper JS, Park S, Suchindran S, Howe MK, Carver NJ, Pillai RV, Sullivan PM, Sondhi V, et al: 27-Hydroxycholesterol links hypercholesterolemia and breast cancer pathophysiology. Science. 342:1094–1098. 2013. View Article : Google Scholar : PubMed/NCBI

20 

Wu Q, Ishikawa T, Sirianni R, Tang H, McDonald JG, Yuhanna IS, Thompson B, Girard L, Mineo C, Brekken RA, et al: 27-Hydroxycholesterol promotes cell-autonomous, ER-positive breast cancer growth. Cell Rep. 5:637–645. 2013. View Article : Google Scholar : PubMed/NCBI

21 

Anderson DM, Anderson KM, Chang CL, Makarewich CA, Nelson BR, McAnally JR, Kasaragod P, Shelton JM, Liou J, Bassel-Duby R and Olson EN: A micropeptide encoded by a putative long noncoding RNA regulates muscle performance. Cell. 160:595–606. 2015. View Article : Google Scholar : PubMed/NCBI

22 

Esquela-Kerscher A and Slack FJ: Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer. 6:259–269. 2006. View Article : Google Scholar : PubMed/NCBI

23 

Rossi JJ: New hope for a microRNA therapy for liver cancer. Cell. 137:990–992. 2009. View Article : Google Scholar : PubMed/NCBI

24 

Kota J, Chivukula RR, O'Donnell KA, Wentzel EA, Montgomery CL, Hwang HW, Chang TC, Vivekanandan P, Torbenson M, Clark KR, et al: Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell. 137:1005–1017. 2009. View Article : Google Scholar : PubMed/NCBI

25 

Zuo JH, Zhu W, Li MY, Li XH, Yi H, Zeng GQ, Wan XX, He QY, Li JH, Qu JQ, et al: Activation of EGFR promotes squamous carcinoma SCC10A cell migration and invasion via inducing EMT-like phenotype change and MMP-9-mediated degradation of E-cadherin. J Cell Biochem. 112:2508–2517. 2011. View Article : Google Scholar : PubMed/NCBI

26 

Jung H, Lee KP, Park SJ, Park JH, Jang YS, Choi SY, Jung JG, Jo K, Park DY, Yoon JH, et al: TMPRSS4 promotes invasion, migration and metastasis of human tumor cells by facilitating an epithelial-mesenchymal transition. Oncogene. 27:2635–2647. 2008. View Article : Google Scholar

27 

Christiansen JJ and Rajasekaran AK: Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis. Cancer Res. 66:8319–8326. 2006. View Article : Google Scholar : PubMed/NCBI

28 

Kurrey NK, Jalgaonkar SP, Joglekar AV, Ghanate AD, Chaskar PD, Doiphode RY and Bapat SA: Snail and slug mediate radioresistance and chemoresistance by antagonizing p53-mediated apoptosis and acquiring a stem-like phenotype in ovarian cancer cells. Stem Cells. 27:2059–2068. 2009. View Article : Google Scholar : PubMed/NCBI

29 

Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, et al: The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 133:704–715. 2008. View Article : Google Scholar : PubMed/NCBI

30 

Morel AP, Lièvre M, Thomas C, Hinkal G, Ansieau S and Puisieux A: Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS One. 3:e28882008. View Article : Google Scholar : PubMed/NCBI

31 

Santisteban M, Reiman JM, Asiedu MK, Behrens MD, Nassar A, Kalli KR, Haluska P, Ingle JN, Hartmann LC, Manjili MH, et al: Immune-induced epithelial to mesenchymal transition in vivo generates breast cancer stem cells. Cancer Res. 69:2887–2895. 2009. View Article : Google Scholar : PubMed/NCBI

32 

Du L, Wang H, He L, Zhang J, Ni B, Wang X, Jin H, Cahuzac N, Mehrpour M, Lu Y and Chen Q: CD44 is of functional importance for colorectal cancer stem cells. Clin Cancer Res. 14:6751–6760. 2008. View Article : Google Scholar : PubMed/NCBI

33 

Bartel DP: MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 116:281–297. 2004. View Article : Google Scholar : PubMed/NCBI

34 

Diosdado B, van de Wiel MA, Terhaar Sive Droste JS, Mongera S, Postma C, Meijerink WJ, Carvalho B and Meijer GA: MiR-17-92 cluster is associated with 13q gain and c-myc expression during colorectal adenoma to adenocarcinoma progression. Br J Cancer. 101:707–714. 2009. View Article : Google Scholar : PubMed/NCBI

35 

Monzo M, Navarro A, Bandres E, Artells R, Moreno I, Gel B, Ibeas R, Moreno J, Martinez F, Diaz T, et al: Overlapping expression of microRNAs in human embryonic colon and colorectal cancer. Cell Res. 18:823–833. 2008. View Article : Google Scholar : PubMed/NCBI

36 

Lanza G, Ferracin M, Gafà R, Veronese A, Spizzo R, Pichiorri F, Liu CG, Calin GA, Croce CM and Negrini M: mRNA/microRNA gene expression profile in microsatellite unstable colorectal cancer. Mol Cancer. 6:542007. View Article : Google Scholar : PubMed/NCBI

37 

Schetter AJ, Leung SY, Sohn JJ, Zanetti KA, Bowman ED, Yanaihara N, Yuen ST, Chan TL, Kwong DL, Au GK, et al: MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA. 299:425–436. 2008. View Article : Google Scholar : PubMed/NCBI

38 

Motoyama K, Inoue H, Takatsuno Y, Tanaka F, Mimori K, Uetake H, Sugihara K and Mori M: Over- and under-expressed microRNAs in human colorectal cancer. Int J Oncol. 34:1069–1075. 2009.PubMed/NCBI

39 

Jiang H, Wang P, Wang Q, Wang B, Mu J, Zhuang X, Zhang L, Yan J, Miller D and Zhang HG: Quantitatively controlling expression of miR-17-92 determines colon tumor progression in a mouse tumor model. Am J Pathol. 184:1355–1368. 2014. View Article : Google Scholar : PubMed/NCBI

40 

Yu G, Tang JQ, Tian ML, Li H, Wang X, Wu T, Zhu J, Huang SJ and Wan YL: Prognostic values of the miR-17-92 cluster and its paralogs in colon cancer. J Surg Oncol. 106:232–237. 2012. View Article : Google Scholar

41 

Olsson M, Gustafsson O, Skogastierna C, Tolf A, Rietz BD, Morfin R, Rane A and Ekström L: Regulation and expression of human CYP7B1 in prostate: Overexpression of CYP7B1 during progression of prostatic adenocarcinoma. Prostate. 67:1439–1446. 2007. View Article : Google Scholar : PubMed/NCBI

42 

Tang W and Norlin M: Regulation of steroid hydroxylase CYP7B1 by androgens and estrogens in prostate cancer LNCaP cells. Biochem Biophys Res Commun. 344:540–546. 2006. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

August 2016
Volume 38 Issue 2

Print ISSN: 1107-3756
Online ISSN:1791-244X

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Xi, X., Zhuang, J., Teng, M., Xia, L., Yang, M., Liu, Q., & Chen, J. (2016). MicroRNA-17 induces epithelial-mesenchymal transition consistent with the cancer stem cell phenotype by regulating CYP7B1 expression in colon cancer. International Journal of Molecular Medicine, 38, 499-506. https://doi.org/10.3892/ijmm.2016.2624
MLA
Xi, X., Zhuang, J., Teng, M., Xia, L., Yang, M., Liu, Q., Chen, J."MicroRNA-17 induces epithelial-mesenchymal transition consistent with the cancer stem cell phenotype by regulating CYP7B1 expression in colon cancer". International Journal of Molecular Medicine 38.2 (2016): 499-506.
Chicago
Xi, X., Zhuang, J., Teng, M., Xia, L., Yang, M., Liu, Q., Chen, J."MicroRNA-17 induces epithelial-mesenchymal transition consistent with the cancer stem cell phenotype by regulating CYP7B1 expression in colon cancer". International Journal of Molecular Medicine 38, no. 2 (2016): 499-506. https://doi.org/10.3892/ijmm.2016.2624