Open Access

Amentoflavone protects against high fat-induced metabolic dysfunction: Possible role of the regulation of adipogenic differentiation

  • Authors:
    • Guangyong Chen
    • Yangdong Han
    • Wang He
    • Feng Liang
  • View Affiliations

  • Published online on: October 14, 2016     https://doi.org/10.3892/ijmm.2016.2772
  • Pages: 1759-1767
  • Copyright: © Chen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

In the present study, we evaluated the protective effects of amentoflavone (AMF) against high-fat (HF) diet-induced metabolic dysfunction and focused on the influence of AMF on adipogenic differentiation during 3T3-L1 adipocyte differentiation. For this purpose, male Wistar rats were fed a HF diet or a HF diet with AMF (10 or 50 mg/kg). We found that AMF protected against HF diet-induced metabolic dysfunction in a dose-dependent manner, as evidenced by a decrease in the fasting blood glucose levels, fasting insulin levels and the homeostatic model assessment-insulin resistance index (HOMA‑IR), as well as by a decrease in the glucose level, as shown by the intraperitoneal glucose tolerance test and intraperitoneal insulin tolerance test. Moreover, the results revealed that AMF significantly inhibited the increase in body weight, the weight of perirenal adipose tissues and the serum triglyceride (TG) content of the rats fed the HF diet in a dose-dependent manner. AMF also inhibited the accumulation of oil droplets in differentiated 3T3-L1 adipocytes in a concentration-dependent manner. The incubation of the cells with AMF for 0-8, 0-2, 2-4, or 4-8 days markedly inhibited adipogenesis. During the early phase of the adipocyte differentiation of 3T3-L1 cells, AMF decreased CCAAT/enhancer-binding protein (C/EBP) β expression in a concentration-dependent manner, leading to the inhibition of mitotic clonal expansion (MCE). Moreover, our results demonstrated that AMF significantly increased reactive oxygen species (ROS) generation in the cells and the antioxidant, N-acetylcysteine (NAC), markedly attenuated the inhibitory effects of AMF on adipogenesis. AMF also inhibited the expression of peroxisome proliferator-activated receptor γ (PPARγ) and C/EBPα and the expression of downstream targets in a concentration-dependent manner. The overexpression of PPARγ and C/EBPα  (by transfection with respective overexpression plasmids) attentuated the inhibitory effects of AMF on the formation of oil droplets. The inhibitory effects of AMF on adipocyte differentiation may contribute to its protective effects against HF diet-induced metabolic dysfunction. Overall, the data in our study provide novel insight into the mechanisms responsible for the protective effects of AMF against HF diet-induced metabolic dysfunction and those for its inhibitory effect on adipocyte differentiation.
View Figures
View References

Related Articles

Journal Cover

December-2016
Volume 38 Issue 6

Print ISSN: 1107-3756
Online ISSN:1791-244X

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Chen G, Han Y, He W and Liang F: Amentoflavone protects against high fat-induced metabolic dysfunction: Possible role of the regulation of adipogenic differentiation. Int J Mol Med 38: 1759-1767, 2016
APA
Chen, G., Han, Y., He, W., & Liang, F. (2016). Amentoflavone protects against high fat-induced metabolic dysfunction: Possible role of the regulation of adipogenic differentiation. International Journal of Molecular Medicine, 38, 1759-1767. https://doi.org/10.3892/ijmm.2016.2772
MLA
Chen, G., Han, Y., He, W., Liang, F."Amentoflavone protects against high fat-induced metabolic dysfunction: Possible role of the regulation of adipogenic differentiation". International Journal of Molecular Medicine 38.6 (2016): 1759-1767.
Chicago
Chen, G., Han, Y., He, W., Liang, F."Amentoflavone protects against high fat-induced metabolic dysfunction: Possible role of the regulation of adipogenic differentiation". International Journal of Molecular Medicine 38, no. 6 (2016): 1759-1767. https://doi.org/10.3892/ijmm.2016.2772