Open Access

Interaction of iPSC-derived neural stem cells on poly(L-lactic acid) nanofibrous scaffolds for possible use in neural tissue engineering

  • Authors:
    • Chengkai Lin
    • Chang Liu
    • Liangming Zhang
    • Zhi Huang
    • Peipei Zhao
    • Ruiqiang Chen
    • Mao Pang
    • Zhenxiang Chen
    • Liumin He
    • Chunxiao Luo
    • Limin Rong
    • Bin Liu
  • View Affiliations

  • Published online on: November 30, 2017     https://doi.org/10.3892/ijmm.2017.3299
  • Pages:697-708
  • Copyright: © Lin et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: HTML 0 views | PDF 0 views     Cited By (CrossRef): 0 citations

Abstract

Tissue engineering is a rapidly growing technological area for the regeneration and reconstruction of damage to the central nervous system. By combining seed cells with appropriate biomaterial scaffolds, tissue engineering has the ability to improve nerve regeneration and functional recovery. In the present study, mouse induced pluripotent stem cells (iPSCs) were generated from mouse embryonic fibroblasts (MEFs) with the non-integrating episomal vectors pCEP4-EO2S-ET2K and pCEP4-miR-302-367 cluster, and differentiated into neural stem cells (NSCs) as transplanting cells. Electrospinning was then used to fabricate randomly oriented poly(L-lactic acid) (PLLA) nanofibers and aligned PLLA nanofibers and assessed their cytocompatibility and neurite guidance effect with iPSC-derived NSCs (iNSCs). The results demonstrated that non-integrated iPSCs were effectively generated and differentiated into iNSCs. PLLA nanofiber scaffolds were able to promote the adhesion, growth, survival and proliferation of the iNSCs. Furthermore, comp­ared with randomly oriented PLLA nanofibers, the aligned PLLA nanofibers greatly directed neurite outgrowth from the iNSCs and significantly promoted neurite growth along the nanofibrous alignment. Overall, these findings indicate the feasibility of using PLLA nanofiber scaffolds in combination with iNSCs in vitro and support their potential for use in nerve tissue engineering.

Related Articles

Journal Cover

February 2018
Volume 41 Issue 2

Print ISSN: 1107-3756
Online ISSN:1791-244X

2016 Impact Factor: 2.341
Ranked #21/128 Medicine Research and Experimental
(total number of cites)

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Lin, C., Liu, C., Zhang, L., Huang, Z., Zhao, P., Chen, R. ... Liu, B. (2018). Interaction of iPSC-derived neural stem cells on poly(L-lactic acid) nanofibrous scaffolds for possible use in neural tissue engineering. International Journal of Molecular Medicine, 41, 697-708. https://doi.org/10.3892/ijmm.2017.3299
MLA
Lin, C., Liu, C., Zhang, L., Huang, Z., Zhao, P., Chen, R., Pang, M., Chen, Z., He, L., Luo, C., Rong, L., Liu, B."Interaction of iPSC-derived neural stem cells on poly(L-lactic acid) nanofibrous scaffolds for possible use in neural tissue engineering". International Journal of Molecular Medicine 41.2 (2018): 697-708.
Chicago
Lin, C., Liu, C., Zhang, L., Huang, Z., Zhao, P., Chen, R., Pang, M., Chen, Z., He, L., Luo, C., Rong, L., Liu, B."Interaction of iPSC-derived neural stem cells on poly(L-lactic acid) nanofibrous scaffolds for possible use in neural tissue engineering". International Journal of Molecular Medicine 41, no. 2 (2018): 697-708. https://doi.org/10.3892/ijmm.2017.3299