Cisplatin-resistant prostate cancer model: Differences in antioxidant system, apoptosis and cell cycle

  • Authors:
    • Jaromir Gumulec
    • Jan Balvan
    • Marketa Sztalmachova
    • Martina Raudenska
    • Veronika Dvorakova
    • Lucia Knopfova
    • Hana Polanska
    • Kristyna Hudcova
    • Branislav Ruttkay-Nedecky
    • Petr Babula
    • Vojtech Adam
    • Rene Kizek
    • Marie Stiborova
    • Michal Masarik
  • View Affiliations

  • Published online on: December 20, 2013     https://doi.org/10.3892/ijo.2013.2223
  • Pages: 923-933
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Differences in the antioxidant system, apoptotic mechanism and in cell cycle between prostatic cell lines could partially elucidate the development of cisplatin resistance. The aim of this study was to identify the most characteristic parameter for a particular cell line and/or a particular cisplatin treatment using a general regression model and to assess whether it is possible to use measured parameters as markers of cisplatin resistance. This study integrates the results of viability, antioxidant, flow cytometric and quantitative PCR assays in order to characterize the resistance of prostate cancer to cisplatin. Cell growth using metabolic- (MTT) and impedance-based assays, the expression of key cell death signaling proteins (p53, Bax and Bcl-2), cell cycle, activity of antioxidant system-related proteins (superoxide dismutase, glutathione peroxidase, glutathione reductase and metallothionein) and free radical scavenging capacity assays [free radicals (FR), ferric reducing antioxidant power (FRAP), ABTS] were analyzed in the cell lines 22Rv1, PC-3 and PNT1A with respect to rising concentrations (0-150 µM) and different length of cisplatin treatment (12-72 h). The non-functional-p53 PC-3 cell line showed decreased BAX (p<0.05) and, in contrast to PNT1A and 22Rv1, no cisplatin-induced effects on cell cycle. All cell lines showed increasing levels of free radical scavenging activity by ABTS, FRAP and FR assays in a time- and dose-dependent manner (r>0.76 at p<0.001 for ABTS, FRAP and FR at p<0.001). PC-3 showed increased (p<0.05) levels of free radical scavenging activity by ABTS and FR methods. These findings, together with significantly elevated MT, decreased p53 and Bax indicate PC-3 to be cisplatin-resistant. The differences in the antioxidant system and apoptotic mechanisms in PC-3 cells may elucidate the development of cisplatin resistance and indicate that this cell line may be further studied as a model of cytostatic resistance.

References

1. 

Gonzalez VM, Fuertes MA, Alonso C and Perez JM: Is cisplatin-induced cell death always produced by apoptosis? Mol Pharmacol. 59:657–663. 2001.PubMed/NCBI

2. 

Kartalou M and Essigmann JM: Mechanisms of resistance to cisplatin. Mutat Res. 478:23–43. 2001. View Article : Google Scholar : PubMed/NCBI

3. 

Niedner H, Christen R, Lin X, Kondo A and Howell SB: Identification of genes that mediate sensitivity to cisplatin. Mol Pharmacol. 60:1153–1160. 2001.PubMed/NCBI

4. 

Herraez E, Gonzalez-Sanchez E, Vaquero J, et al: Cisplatin-induced chemoresistance in colon cancer cells involves FXR-dependent and FXR-independent up-regulation of ABC proteins. Mol Pharm. 9:2565–2576. 2012. View Article : Google Scholar : PubMed/NCBI

5. 

Liu YB, Bernauer AM, Yingling CM and Belinsky SA: HIF1 alpha regulated expression of XPA contributes to cisplatin resistance in lung cancer. Carcinogenesis. 33:1187–1192. 2012. View Article : Google Scholar : PubMed/NCBI

6. 

Wu YC, Ling TY, Lu SH, et al: Chemotherapeutic sensitivity of testicular germ cell tumors under hypoxic conditions is negatively regulated by SENP1-controlled sumoylation of OCT4. Cancer Res. 72:4963–4973. 2012. View Article : Google Scholar : PubMed/NCBI

7. 

Skjoth IHE and Issinger OG: Profiling of signaling molecules in four different human prostate carcinoma cell lines before and after induction of apoptosis. Int J Oncol. 28:217–229. 2006.PubMed/NCBI

8. 

Faria MHG, Neves EHC, Alves MKS, Burbano RMR, De Moraes MO and Rabenhorst SHB: TP53 mutations in astrocytic gliomas: an association with histological grade, TP53 codon 72 polymorphism and p53 expression. APMIS. 120:882–889. 2012. View Article : Google Scholar : PubMed/NCBI

9. 

Fuertes MA, Alonso C and Perez JM: Biochemical modulation of cisplatin mechanisms of action: enhancement of antitumor activity and circumvention of drug resistance. Chem Rev. 103:645–662. 2003. View Article : Google Scholar : PubMed/NCBI

10. 

Righetti SC, Perego P, Carenini N, et al: Molecular alterations of cells resistant to platinum drugs: role of PKC alpha. Biochim Biophys Acta. 1763:93–100. 2006. View Article : Google Scholar : PubMed/NCBI

11. 

Brozovic A, Ambriovic-Ristov A and Osmak M: The relationship between cisplatin-induced reactive oxygen species, glutathione, and BCL-2 and resistance to cisplatin. Crit Rev Toxicol. 40:347–359. 2010. View Article : Google Scholar : PubMed/NCBI

12. 

Santos NAG, Catao CS, Martins NM, Curti C, Bianchi MLP and Santos AC: Cisplatin-induced nephrotoxicity is associated with oxidative stress, redox state unbalance, impairment of energetic metabolism and apoptosis in rat kidney mitochondria. Arch Toxicol. 81:495–504. 2007. View Article : Google Scholar

13. 

Martins NM, Santos NAG, Curti C, Bianchi MLP and Santos AC: Cisplatin induces mitochondrial oxidative stress with resultant energetic metabolism impairment, membrane rigidification and apoptosis in rat liver. J Appl Toxicol. 28:337–344. 2008. View Article : Google Scholar

14. 

Kizek R, Trnkova L and Palecek E: Determination of metallothionein at the femtomole level by constant current stripping chronopotentiometry. Anal Chem. 73:4801–4807. 2001. View Article : Google Scholar : PubMed/NCBI

15. 

Sochor J, Ryvolova M, Krystofova O, et al: Fully automated spectrometric protocols for determination of antioxidant activity: advantages and disadvantages. Molecules. 15:8618–8640. 2010. View Article : Google Scholar : PubMed/NCBI

16. 

Quereda JJ, Martinez-Alarcon L, Mendoca L, et al: Validation of xCELLigence real-time cell analyzer to assess compatibility in xenotransplantation with pig-to-baboon model. Transplant Proc. 42:3239–3243. 2010. View Article : Google Scholar : PubMed/NCBI

17. 

Vistejnova L, Dvorakova J, Hasova M, et al: The comparison of impedance-based method of cell proliferation monitoring with commonly used metabolic-based techniques. Neuroendocrinol Lett. 30:121–127. 2009.PubMed/NCBI

18. 

Carroll AG, Voeller HJ, Sugars L and Gelmann EP: p53 oncogene mutations in 3 human prostate-cancer cell-lines. Prostate. 23:123–134. 1993. View Article : Google Scholar : PubMed/NCBI

19. 

Rubin SJ, Hallahan DE, Ashman CR, et al: 2 prostate carcinoma cell-lines demonstrate abnormalities in tumor suppressor genes. J Surg Oncol. 46:31–36. 1991. View Article : Google Scholar

20. 

Sztalmachova M, Hlavna M, Gumulec J, et al: Effect of zinc(II) ions on the expression of pro- and anti-apoptotic factors in high-grade prostate carcinoma cells. Oncol Rep. 28:806–814. 2012.PubMed/NCBI

21. 

Schmieg FI and Simmons DT: Characterization of the in vitro interaction between SV40 T-antigen and p53: mapping the p53 binding-site. Virology. 164:132–140. 1988. View Article : Google Scholar : PubMed/NCBI

22. 

Gonin S, Diaz-Latoud C, Richard MJ, et al: p53/T-antigen complex disruption in T-antigen transformed NIH3T3 fibroblasts exposed to oxidative stress: correlation with the appearance of a Fas/APO-1/CD95 dependent, caspase independent, necrotic pathway. Oncogene. 18:8011–8023. 1999. View Article : Google Scholar

23. 

Barr MP, Gray SG, Hoffmann AC, et al: Generation and characterisation of cisplatin-resistant non-small cell lung cancer cell lines displaying a stem-like signature. Plos One. 8:1–19. 2013.PubMed/NCBI

24. 

Liu J, Liu YP, Habeebu SSM and Klaassen CD: Metallothionein (MT)-null mice are sensitive to cisplatin-induced hepatotoxicity. Toxicol Appl Pharmacol. 149:24–31. 1998. View Article : Google Scholar : PubMed/NCBI

25. 

Siddik ZH: Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene. 22:7265–7279. 2003. View Article : Google Scholar : PubMed/NCBI

26. 

Wang D and Lippard SJ: Cellular processing of platinum anti-cancer drugs. Nat Rev Drug Discov. 4:307–320. 2005. View Article : Google Scholar

27. 

Gravina GL, Marampon F, Di Staso M, et al: 5-Azacitidine restores and amplifies the bicalutamide response on preclinical models of androgen receptor expressing or deficient prostate tumors. Prostate. 70:1166–1178. 2010. View Article : Google Scholar

28. 

Aitken RJ, Whiting S, De Iuliis GN, McClymont S, Mitchell LA and Baker MA: Electrophilic aldehydes generated by sperm metabolism activate mitochondrial reactive oxygen species generation and apoptosis by targeting succinate dehydrogenase. J Biol Chem. 287:33048–33060. 2012. View Article : Google Scholar

29. 

Komatsu M, Waguri S, Ueno T, et al: Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol. 169:425–434. 2005. View Article : Google Scholar : PubMed/NCBI

30. 

Cao C, Subhawong T, Albert JM, et al: Inhibition of mammalian target of rapamycin or apoptotic pathway induces autophagy and radiosensitizes PTEN null prostate cancer cells. Cancer Res. 66:10040–10047. 2006. View Article : Google Scholar : PubMed/NCBI

31. 

Masarik M, Gumulec J, Hlavna M, et al: Monitoring of the prostate tumour cells redox state and real-time proliferation by novel biophysical techniques and fluorescent staining. Integr Biol. 4:672–684. 2012. View Article : Google Scholar : PubMed/NCBI

32. 

Kuwana T and Newmeyer DD: Bcl-2-family proteins and the role of mitochondria in apoptosis. Curr Opin Cell Biol. 15:691–699. 2003. View Article : Google Scholar : PubMed/NCBI

33. 

Kharaziha P, Rodriguez P, Li Q, et al: Targeting of distinct signaling cascades and cancer-associated fibroblasts define the efficacy of Sorafenib against prostate cancer cells. Cell Death Dis. 3:1–10. 2012. View Article : Google Scholar : PubMed/NCBI

34. 

Li GQ, Chen XG, Wu XP, et al: Effect of dicycloplatin, a novel platinum chemotherapeutical drug, on inhibiting cell growth and inducing cell apoptosis. Plos One. 7:1–13. 2012.PubMed/NCBI

35. 

Kondo Y, Kuo SM, Watkins SC and Lazo JS: Metallothionein localization and cisplatin resistance in human hormone-independent prostatic tumor-cell lines. Cancer Res. 55:474–477. 1995.PubMed/NCBI

36. 

Suzuki Y, Kondo Y, Himeno S, Nemoto K, Akimoto M and Imura N: Role of antioxidant systems in human androgen-independent prostate cancer cells. Prostate. 43:144–149. 2000. View Article : Google Scholar : PubMed/NCBI

37. 

Yamasaki M, Nomura T, Sato F and Mimata H: Metallothionein is up-regulated under hypoxia and promotes the survival of human prostate cancer cells. Oncol Rep. 18:1145–1153. 2007.PubMed/NCBI

38. 

Costello LC, Fenselau CC and Franklin RB: Evidence for operation of the direct zinc ligand exchange mechanism for trafficking, transport, and reactivity of zinc in mammalian cells. J Inorg Biochem. 105:589–599. 2011. View Article : Google Scholar : PubMed/NCBI

39. 

Bell SG and Vallee BL: The metallothionein/thionein system: an oxidoreductive metabolic zinc link. Chembiochem. 10:55–62. 2009. View Article : Google Scholar : PubMed/NCBI

40. 

Pratibha R, Sameer R, Rataboli PV, Bhiwgade DA and Dhume CY: Enzymatic studies of cisplatin induced oxidative stress in hepatic tissue of rats. Eur J Pharmacol. 532:290–293. 2006. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

March 2014
Volume 44 Issue 3

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Gumulec, J., Balvan, J., Sztalmachova, M., Raudenska, M., Dvorakova, V., Knopfova, L. ... Masarik, M. (2014). Cisplatin-resistant prostate cancer model: Differences in antioxidant system, apoptosis and cell cycle. International Journal of Oncology, 44, 923-933. https://doi.org/10.3892/ijo.2013.2223
MLA
Gumulec, J., Balvan, J., Sztalmachova, M., Raudenska, M., Dvorakova, V., Knopfova, L., Polanska, H., Hudcova, K., Ruttkay-Nedecky, B., Babula, P., Adam, V., Kizek, R., Stiborova, M., Masarik, M."Cisplatin-resistant prostate cancer model: Differences in antioxidant system, apoptosis and cell cycle". International Journal of Oncology 44.3 (2014): 923-933.
Chicago
Gumulec, J., Balvan, J., Sztalmachova, M., Raudenska, M., Dvorakova, V., Knopfova, L., Polanska, H., Hudcova, K., Ruttkay-Nedecky, B., Babula, P., Adam, V., Kizek, R., Stiborova, M., Masarik, M."Cisplatin-resistant prostate cancer model: Differences in antioxidant system, apoptosis and cell cycle". International Journal of Oncology 44, no. 3 (2014): 923-933. https://doi.org/10.3892/ijo.2013.2223