The effectiveness of an anti-human IL-6 receptor monoclonal antibody combined with chemotherapy to target colon cancer stem-like cells

  • Authors:
    • Jin Ying
    • Masahiko Tsujii
    • Jumpei Kondo
    • Yoshito Hayashi
    • Motohiko Kato
    • Tomofumi Akasaka
    • Takuta Inoue
    • Eri Shiraishi
    • Tahahiro Inoue
    • Satoshi Hiyama
    • Yoshiki Tsujii
    • Akira Maekawa
    • Shoichiro Kawai
    • Tetsuji Fujinaga
    • Maekawa Araki
    • Shinichiro Shinzaki
    • Kenji Watabe
    • Tsutomu Nishida
    • Hideki Iijima
    • Tetsuo Takehara
  • View Affiliations

  • Published online on: January 26, 2015     https://doi.org/10.3892/ijo.2015.2851
  • Pages: 1551-1559
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Recent studies have demonstrated that cancer stem cells (CSCs) can initiate and sustain tumor growth and exhibit resistance to clinical cytotoxic therapies. Therefore, CSCs represent the main target of anticancer therapy. Interleukin-6 (IL-6) promotes cellular proliferation and drug resistance in colorectal cancer, and its serum levels correlate with patient survival. Therefore, IL-6 and its downstream signaling molecule the signal transducer and activator of transcription-3 (STAT3) represent potential molecular targets. In the present study, we investigated the effects of IL-6 and its downstream signaling components on stem cell biology, particularly the chemoresistance of CSCs, to explore potential molecular targets for cancer therapy. The colon cancer cell line WiDr was cultured in serum-free, non-adherent, and three-dimensional spheroid-forming conditions to enrich the stem cell-like population. Spheroid-forming cells slowly proliferated and expressed high levels of Oct-4, Klf4, Bmi-1, Lgr5, IL-6, and Notch 3 compared with adherent cells. Treatment with an anti-human IL-6 receptor monoclonal antibody reduced spheroid formation, stem cell-related gene expression, and 5-fluorouracil (5-FU) resistance. In addition, IL-6 treatment enhanced the levels of p-STAT3 (Tyr705), the expression of Oct-4, Klf4, Lgr5, and Notch 3, and chemoresistance to 5-FU. siRNA targeting Notch 3 suppressed spheroid formation, Oct-4 and Lgr5 expression, and 5-FU chemoresistance, whereas STAT3 inhibition enhanced Oct-4, Klf4, Lgr5, and Notch 3 expression and 5-FU chemoresistance along with reduced spheroid growth. Taken together, these results indicate that IL-6 functions in dichotomous pathways involving Notch 3 induction and STAT3 activation. The former pathway is involved in cancer stem-like cell biology and enhanced chemoresistance, and the latter pathway leads to accelerated proliferation and reduced chemoresistance. Thus, an anti-human IL-6 receptor monoclonal antibody or Notch 3 inhibition may be superior to STAT3 inhibition for CSC-targeting therapies concomitant with anticancer drugs.

References

1 

Gabrilovich D: Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol. 4:941–952. 2004. View Article : Google Scholar : PubMed/NCBI

2 

Fang DD, Kim YJ, Lee CN, et al: Expansion of CD133 (+) colon cancer cultures retaining stem cell properties to enable cancer stem cell target discovery. Br J Cancer. 102:1265–1275. 2010. View Article : Google Scholar : PubMed/NCBI

3 

Dick JE: Stem cell concepts renew cancer research. Blood. 112:4793–4807. 2008. View Article : Google Scholar : PubMed/NCBI

4 

Sukach AN and Ivanov EN: Formation of spherical colonies as a property of stem cells. Tsitologiia. 49:916–922. 2007.(In Russian).

5 

Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J and Dirks PB: Identification of a cancer stem cell in human brain tumors. Cancer Res. 63:5821–5828. 2003.PubMed/NCBI

6 

Farnie G, Clarke RB, Spence K, Pinnock N, Brennan K, Anderson NG and Bundred NJ: Novel cell culture technique for primary ductal carcinoma in situ: role of Notch and epidermal growth factor receptor signaling pathways. J Natl Cancer Inst. 99:616–627. 2007. View Article : Google Scholar : PubMed/NCBI

7 

Vermeulen L, Todaro M, de Sousa Mello F, Sprick MR, Kemper K, Perez Alea M, Richel DJ, Stassi G and Medema JP: Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. Proc Natl Acad Sci USA. 105:13427–13432. 2008. View Article : Google Scholar : PubMed/NCBI

8 

van der Flier LG, van Gijn ME, Hatzis P, et al: Transcription factor achaetescute-like 2 controls intestinal stem cell fate. Cell. 136:903–912. 2009. View Article : Google Scholar : PubMed/NCBI

9 

Barker N, van Es JH, Kuipers J, et al: Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature. 449:1003–1007. 2007. View Article : Google Scholar : PubMed/NCBI

10 

Leng Z, Tao K, Xia Q, Tan J, Yue Z, Chen J, Xi H, Li J and Zheng H: Kruppel-like factor 4 acts as an oncogene in colon cancer stem cell-enriched spheroid cells. PLoS One. 8:e560822013. View Article : Google Scholar

11 

Sangiorgi E and Capecchi MR: Bmi1 is expressed in vivo in intestinal stem cells. Nat Genet. 40:915–920. 2008. View Article : Google Scholar : PubMed/NCBI

12 

Wen K, Fu Z, Wu X, Feng J, Chen W and Qian J: Oct-4 is required for an antiapoptotic behavior of chemoresistant colorectal cancer cells enriched for cancer stem cells: effects associated with STAT3/Survivin. Cancer Lett. 333:56–65. 2013. View Article : Google Scholar : PubMed/NCBI

13 

Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K and Yamanaka S: Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 131:861–872. 2007. View Article : Google Scholar : PubMed/NCBI

14 

Ishihara K and Hirano T: IL-6 in autoimmune disease and chronic inflammatory proliferative disease. Cytokine Growth Factor Rev. 13:357–368. 2002. View Article : Google Scholar : PubMed/NCBI

15 

Nian M, Lee P, Khaper N and Liu P: Inflammatory cytokines and postmyocardial infarction remodeling. Circ Res. 94:1543–1553. 2004. View Article : Google Scholar : PubMed/NCBI

16 

Wu CW, Wang SR, Chao MF, Wu TC, Lui WY, P’eng FK and Chi CW: Serum interleukin-6 levels reflect disease status of gastric cancer. Am J Gastroenterol. 91:1417–1422. 1996.PubMed/NCBI

17 

Koontongkaew S, Amornphimoltham P and Yapong B: Tumor-stroma interactions influence cytokine expression and matrix metalloproteinase activities in paired primary and metastatic head and neck cancer cells. Cell Biol Int. 33:165–173. 2009. View Article : Google Scholar

18 

Burger RA, Grosen EA, Ioli GR, et al: Spontaneous release of interleukin-6 by primary cultures of lymphoid and tumor cell populations purified from human ovarian carcinoma. J Interferon Cytokine Res. 15:255–260. 1995. View Article : Google Scholar : PubMed/NCBI

19 

Knupfer H and Preiss R: Serum interleukin-6 levels in colorectal cancer patients - a summary of published results. Int J Colorectal Dis. 25:135–140. 2010. View Article : Google Scholar

20 

Hsu CP and Chung YC: Influence of interleukin-6 on the invasiveness of human colorectal carcinoma. Anticancer Res. 26:4607–4614. 2006.

21 

Corvinus FM, Orth C, Moriggl R, et al: Persistent STAT3 activation in colon cancer is associated with enhanced cell proliferation and tumor growth. Neoplasia. 7:545–555. 2005. View Article : Google Scholar : PubMed/NCBI

22 

Lin L, Fuchs J, Li C, Olson V, Bekaii-Saab T and Lin J: STAT3 signaling pathway is necessary for cell survival and tumor sphere forming capacity in ALDH(+)/CD133(+) stem cell-like human colon cancer cells. Biochem Biophys Res Commun. 416:246–251. 2011. View Article : Google Scholar : PubMed/NCBI

23 

Cheng X, Jin G, Zhang X, Tian M and Zou L: Stage-dependent STAT3 activation is involved in the differentiation of rat hippocampus neural stem cells. Neurosci Lett. 493:18–23. 2011. View Article : Google Scholar : PubMed/NCBI

24 

Luo Y, Mughal MR, Ouyang TG, Jiang H, Luo W, Yu QS, Greig NH and Mattson MP: Plumbagin promotes the generation of astrocytes from rat spinal cord neural progenitors via activation of the transcription factor Stat3. J Neurochem. 115:1337–1349. 2010. View Article : Google Scholar : PubMed/NCBI

25 

Sansone P, Storci G, Tavolari S, et al: IL-6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland. J Clin Invest. 117:3988–4002. 2007. View Article : Google Scholar : PubMed/NCBI

26 

Fan X, Matsui W, Khaki L, Stearn D, Chun J, Li YM and Eberhart CG: Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Res. 66:7445–7452. 2006. View Article : Google Scholar : PubMed/NCBI

27 

Fan X, Ouyang N, Teng H and Yao H: Isolation and characterization of spheroid cells from the HT29 colon cancer cell line. Int J Colorectal Dis. 26:1279–1285. 2011. View Article : Google Scholar : PubMed/NCBI

28 

Fletcher JI, Haber M, Henderson MJ and Norris MD: ABC transporters in cancer: more than just drug efflux pumps. Nat Rev Cancer. 10:147–156. 2010. View Article : Google Scholar : PubMed/NCBI

29 

Olszewski WL, Kubicka U, Tarnowski W, Bielecki K, Ziolkowska A and Wesolowska A: Activation of human peritoneal immune cells in early stages of gastric and colon cancer. Surgery. 141:212–221. 2007. View Article : Google Scholar : PubMed/NCBI

30 

Lin L, Liu A, Peng Z, Lin HJ, Li PK, Li PK, Li C and Lin J: STAT3 is necessary for proliferation and survival in colon cancer-initiating cells. Cancer Res. 71:7226–7237. 2011. View Article : Google Scholar : PubMed/NCBI

31 

Bruce WR and van der Gaag H: A quantitative assay for the number of murine lymphoma cells capable of proliferation in vivo. Nature. 199:79–80. 1963. View Article : Google Scholar : PubMed/NCBI

32 

Willson JK, Bittner GN, Oberley TD, Meisner LF and Weese JL: Cell culture of human colon adenomas and carcinomas. Cancer Res. 47:2704–2713. 1987.PubMed/NCBI

33 

Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD and Dirks PB: Identification of human brain tumour initiating cells. Nature. 432:396–401. 2004. View Article : Google Scholar : PubMed/NCBI

34 

Dey D, Saxena M, Paranjape AN, Krishnan V, Giraddi R, Kumar MV, Mukherjee G and Rangarajan A: Phenotypic and functional characterization of human mammary stem/progenitor cells in long term culture. PLoS One. 4:e53292009. View Article : Google Scholar : PubMed/NCBI

35 

Todaro M, Alea MP, Di Stefano AB, et al: Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell. 1:389–402. 2007. View Article : Google Scholar

36 

Lopez J, Poitevin A, Mendoza-Martinez V, Perez-Plasencia C and Garcia-Carranca A: Cancer-initiating cells derived from established cervical cell lines exhibit stem-cell markers and increased radioresistance. BMC Cancer. 12:482012. View Article : Google Scholar : PubMed/NCBI

37 

Christgen M, Ballmaier M, Bruchhardt H, von Wasielewski R, Kreipe H and Lehmann U: Identification of a distinct side population of cancer cells in the Cal-51 human breast carcinoma cell line. Mol Cell Biochem. 306:201–212. 2007. View Article : Google Scholar : PubMed/NCBI

38 

Han B and Zhang JT: Multidrug resistance in cancer chemotherapy and xenobiotic protection mediated by the half ATP-binding cassette transporter ABCG2. Curr Med Chem Anticancer Agents. 4:31–42. 2004. View Article : Google Scholar : PubMed/NCBI

39 

Lichtenauer UD, Shapiro I, Osswald A, Meurer S, Kulle A, Reincke M, Riepe F and Beuschlein F: Characterization of NCI-H295R cells as an in vitro model of hyperaldosteronism. Horm Metab Res. 45:124–129. 2013.

40 

Gabriel E, Schievenbusch S, Kolossov E, Hengstler JG, Rotshteyn T, Bohlen H, Nierhoff D, Hescheler J and Drobinskaya L: Differentiation and selection of hepatocyte precursors in suspension spheroid culture of transgenic murine embryonic stem cells. PLoS One. 7:e449122012. View Article : Google Scholar : PubMed/NCBI

41 

Ohata H, Ishiguro T, Aihara Y, et al: Induction of the stem-like cell regulator CD44 by Rho kinase inhibition contributes to the maintenance of colon cancer-initiating cells. Cancer Res. 72:5101–5110. 2012. View Article : Google Scholar : PubMed/NCBI

42 

Scheller J and Rose-John S: Interleukin-6 and its receptor: from bench to bedside. Med Microbiol Immunol. 195:173–183. 2006. View Article : Google Scholar : PubMed/NCBI

43 

Fisman EZ and Tenenbaum A: The ubiquitous interleukin-6: a time for reappraisal. Cardiovasc Diabetol. 9:622010. View Article : Google Scholar : PubMed/NCBI

44 

Yi H, Cho HJ, Cho SM, Jo K, Park JA, Lee SH, Chang BJ, Kim JS and Shin HC: Effect of 5-FU and MTX on the expression of drug-resistance related cancer stem cell markers in nn-small cell lung cancer cells. Korean J Physiol Pharmacol. 16:11–16. 2012. View Article : Google Scholar : PubMed/NCBI

45 

Conze D, Weiss L, Regen PS, Bhushan A, Weaver D, Johnson P and Rincon M: Autocrine production of interleukin 6 causes multidrug resistance in breast cancer cells. Cancer Res. 61:8851–8858. 2001.PubMed/NCBI

46 

Kim SY, Kang JW, Song X, Kim BK, Yoo YD, Kwon YT and Lee YJ: Role of the IL-6-JAK1-STAT3-Oct-4 pathway in the conversion of non-stem cancer cells into cancer stem-like cells. Cell Signal. 25:961–969. 2013. View Article : Google Scholar : PubMed/NCBI

47 

Garzia L, Andolfo I, Cusanelli E, et al: MicroRNA-199b-5p impairs cancer stem cells through negative regulation of HES1 in medulloblastoma. PLoS One. 4:e49982009. View Article : Google Scholar : PubMed/NCBI

48 

Wang Z, Li Y, Kong D, et al: Acquisition of epithelial-mesenchymal transition phenotype of gemcitabine-resistant pancreatic cancer cells is linked with activation of the notch signaling pathway. Cancer Res. 69:2400–2407. 2009. View Article : Google Scholar : PubMed/NCBI

49 

Levina V, Marrangoni AM, DeMarco R, Gorelik E and Lokshin AE: Drug-selected human lung cancer stem cells: cytokine network, tumorigenic and metastatic properties. PLoS One. 3:e30772008. View Article : Google Scholar : PubMed/NCBI

50 

Bao B, Ali S, Ahmad A, et al: Hypoxia-induced aggressiveness of pancreatic cancer cells is due to increased expression of VEGF, IL-6 and miR-21, which can be attenuated by CDF treatment. PLoS One. 7:e501652012. View Article : Google Scholar : PubMed/NCBI

51 

Grivennikov S and Karin M: Autocrine IL-6 signaling: a key event in tumorigenesis? Cancer Cell. 13:7–9. 2008. View Article : Google Scholar : PubMed/NCBI

52 

Radtke F and Raj K: The role of Notch in tumorigenesis: oncogene or tumour suppressor? Nat Rev Cancer. 3:756–767. 2003. View Article : Google Scholar : PubMed/NCBI

53 

Leong KG and Karsan A: Recent insights into the role of Notch signaling in tumorigenesis. Blood. 107:2223–2233. 2006. View Article : Google Scholar

54 

Reedijk M, Odorcic S, Zhang H, Chetty R, Tennert C, Dickson BC, Lockwood G, Gallinger S and Egan SE: Activation of Notch signaling in human colon adenocarcinoma. Int J Oncol. 33:1223–1229. 2008.PubMed/NCBI

55 

Zhang H, Li W, Nan F, Ren F, Wang H, Xu Y and Zhang F: MicroRNA expression profile of colon cancer stem-like cells in HT29 adenocarcinoma cell line. Biochem and Biophys Res Commun. 404:273–278. 2011. View Article : Google Scholar

56 

Sullivan JP, Spinola M, Dodge M, et al: Aldehyde dehydrogenase activity selects for lung adenocarcinoma stem cells dependent on notch signaling. Cancer Res. 70:9937–9948. 2010. View Article : Google Scholar : PubMed/NCBI

57 

McAuliffe SM, Morgan SL, Wyant GA, et al: Targeting Notch, a key pathway for ovarian cancer stem cells, sensitizes tumors to platinum therapy. Proc Natl Acad Sci USA. 109:E2939–E2948. 2012. View Article : Google Scholar : PubMed/NCBI

58 

Ma XT, Wang S, Ye YJ, Du RY, Cui ZR and Somsouk M: Constitutive activation of Stat3 signaling pathway in human colorectal carcinoma. World J Gastroenterol. 10:1569–1573. 2004.PubMed/NCBI

59 

Ashizawa T, Miyata H, Iizuka A, et al: Effect of the STAT3 inhibitor STX-0119 on the proliferation of cancer stem-like cells derived from recurrent glioblastoma. Int J Oncol. 43:219–227. 2013.PubMed/NCBI

60 

Song X, Wang M, Zhang L, Zhang J, Wang X, Lui W, Gu X and Lv C: Changes in cell ultrastructure and inhibition of JAK1/STAT3 signaling pathway in CBRH-7919 cells with astaxanthin. Toxicol Mech Methods. 22:679–686. 2012. View Article : Google Scholar : PubMed/NCBI

61 

Lin Q, Lai R, Chirieac LR, et al: Constitutive activation of JAK3/STAT3 in colon carcinoma tumors and cell lines: inhibition of JAK3/STAT3 signaling induces apoptosis and cell cycle arrest of colon carcinoma cells. Am J Pathol. 167:969–980. 2005. View Article : Google Scholar : PubMed/NCBI

62 

Decker T and Kovarik P: Serine phosphorylation of STATs. Oncogene. 19:2628–2637. 2000. View Article : Google Scholar : PubMed/NCBI

63 

Wen Z, Zhong Z and Darnell JE Jr: Maximal activation of transcription by Stat1 and Stat3 requires both tyrosine and serine phosphorylation. Cell. 82:241–250. 1995. View Article : Google Scholar : PubMed/NCBI

64 

Takaoka A, Tanaka N, Mitani Y, et al: protein tyrosine kinase Pyk2 mediates the Jak-dependent activation of MAPK and Stat1 in IFN-gamma, bu not IFN-alpha, signaling. EMBO J. 18:2480–2488. 1999. View Article : Google Scholar : PubMed/NCBI

65 

Coppo P, Dusanter-Fourt I, Millot G, et al: Constitutive and specific activation of STAT3 by BCR-ABL in embryonic stem cells. Oncogene. 22:4102–4110. 2003. View Article : Google Scholar : PubMed/NCBI

66 

Zhang Y, Liu G and Dong Z: MSK1 and JNKs mediate phosphorylation of STAT3 in UVA-irradiated mouse epidermal JB6 cells. J Biol Chem. 276:42534–42542. 2001. View Article : Google Scholar : PubMed/NCBI

67 

Lim CP and Cao X: Serine phosphorylation and negative regulation of Stat3 by JNK. J Biol Chem. 274:31055–31061. 1999. View Article : Google Scholar : PubMed/NCBI

68 

Ceresa BP and Pessin JE: Insulin stimulates the serine phosphorylation of the signal transducer and activator of transcription (STAT3) isoform. J Biol Chem. 271:12121–12124. 1996. View Article : Google Scholar : PubMed/NCBI

69 

Ceresa BP, Horvath CM and Pessin JE: Signal transducer and activator of transcription-3 serine phosphorylation by insulin is mediated by a Ras/Raf/MEK-dependent pathway. Endocrinology. 138:4131–4137. 1997.PubMed/NCBI

70 

Androutsellis-Theotokis A, Leker RR, Soldner F, et al: Notch signaling regulates stem cell numbers in vitro and in vivo. Nature. 442:823–826. 2006. View Article : Google Scholar : PubMed/NCBI

71 

Nagao M, Sugimori M and Nakafuku M: Cross talk between notch and growth factor/cytokine signaling pathways in neural stem cells. Mol Cell Biol. 27:3982–3994. 2007. View Article : Google Scholar : PubMed/NCBI

72 

Rajan P and Mckay RD: Multiple routes to astrocytic differentiation in the CNS. J Neurosci. 18:3620–3629. 1998.PubMed/NCBI

73 

Kwak YD, Dantuma E, Merchant S, Bushnev S and Sugaya K: Amyloid-beta precursor protein induces glial differentiation of neural progenitor cells by activation of the IL-6/gp130 signaling pathway. Neurotox Res. 18:328–338. 2010. View Article : Google Scholar : PubMed/NCBI

74 

Peng H, Sun L, Jia B, Lan X, Zhu B, Wu Y and Zheng J: HIV-1-infected and immune-activated macrophages induce astrocytic differentiation of human cortical neural progenitor cells via the STAT3 pathway. PLoS One. 6:e194392011. View Article : Google Scholar : PubMed/NCBI

75 

Luo M and Liu Z, Chen G, Hao H, Lu T, Cui Y, Lei M, Verfaillie CM and Liu Z: High glucose enhances TGF-beta1 expression in rat bone marrow stem cells via ERK1/2-mediated inhibition of STAT3 signaling. Life Sci. 90:509–518. 2012. View Article : Google Scholar : PubMed/NCBI

76 

Yoshimatsu T, Kawaguchi D, Oishi K, Takeda K, Akira S, Masuyama N and Gotoh Y: Non-cell-autonomous action of STAT3 in maintenance of neural precursor cells in the mouse neocortex. Development. 133:2553–2563. 2006. View Article : Google Scholar : PubMed/NCBI

77 

Choi B, Chun E, Kim SY, Kim M, Lee KY and Kim SJ: Notch-induced hIL-6 production facilitates the maintenance of self-renewal of hCD34+ cord blood cells through the activation of Jak-PI3K-STAT3 pathway. Am J Pathol. 180:351–364. 2012. View Article : Google Scholar

78 

De la Iglesia N, Puram SV and Bonni A: STAT3 regulation of glioblastoma pathogenesis. Curr Mol Med. 9:580–590. 2009. View Article : Google Scholar : PubMed/NCBI

79 

Kondo J, Endo H, Okuyama H, Ishikawa O, Lishi H, Tsujii M, Ohue M and Inoue M: Retaining cell-cell contact enables preparation and culture of spheroids composed of pure primary cancer cells from colorectal cancer. Proc Natl Acad Sci USA. 108:6235–6240. 2011. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

April 2015
Volume 46 Issue 4

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Ying, J., Tsujii, M., Kondo, J., Hayashi, Y., Kato, M., Akasaka, T. ... Takehara, T. (2015). The effectiveness of an anti-human IL-6 receptor monoclonal antibody combined with chemotherapy to target colon cancer stem-like cells. International Journal of Oncology, 46, 1551-1559. https://doi.org/10.3892/ijo.2015.2851
MLA
Ying, J., Tsujii, M., Kondo, J., Hayashi, Y., Kato, M., Akasaka, T., Inoue, T., Shiraishi, E., Inoue, T., Hiyama, S., Tsujii, Y., Maekawa, A., Kawai, S., Fujinaga, T., Araki, M., Shinzaki, S., Watabe, K., Nishida, T., Iijima, H., Takehara, T."The effectiveness of an anti-human IL-6 receptor monoclonal antibody combined with chemotherapy to target colon cancer stem-like cells". International Journal of Oncology 46.4 (2015): 1551-1559.
Chicago
Ying, J., Tsujii, M., Kondo, J., Hayashi, Y., Kato, M., Akasaka, T., Inoue, T., Shiraishi, E., Inoue, T., Hiyama, S., Tsujii, Y., Maekawa, A., Kawai, S., Fujinaga, T., Araki, M., Shinzaki, S., Watabe, K., Nishida, T., Iijima, H., Takehara, T."The effectiveness of an anti-human IL-6 receptor monoclonal antibody combined with chemotherapy to target colon cancer stem-like cells". International Journal of Oncology 46, no. 4 (2015): 1551-1559. https://doi.org/10.3892/ijo.2015.2851