Notch and Wnt signaling pathway in cancer: Crucial role and potential therapeutic targets (Review)

  • Authors:
    • Yu-Feng Xiao
    • Xin Yong
    • Bo Tang
    • Yong Qin
    • Jian-Wei Zhang
    • Dan Zhang
    • Rui Xie
    • Shi-Ming Yang
  • View Affiliations

  • Published online on: December 7, 2015     https://doi.org/10.3892/ijo.2015.3280
  • Pages: 437-449
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

There is no radical cure for all cancer types. The most frequently used therapies are surgical treatment, radiotherapy and chemotherapy. However, recrudescence, radiation resistance and chemotherapy resistance are the most challenging issues in clinical practice. To address these issues, they should be further studied at the molecular level, and the signaling pathways involved represent a promising avenue for this research. In the present review, we mainly discuss the components and mechanisms of activation of the Notch and Wnt signaling pathways, and we summarize the recent research efforts on these two pathways in different cancers. We also evaluate the ideal drugs that could target these two signaling pathways for cancer therapy, summarize alterations in the Notch and Wnt signaling pathways in cancer, and discuss potential signaling inhibitors as effective drugs for cancer therapy.

References

1 

Ramdass B, Duggal R, Minev B, Chowdhary A, Ramdass B, Duggal R, Minev B, Chowdhary A and Koka P: Functional role of solid tumor stem cells in disease etiology and susceptibility to therapeutic interventions. J Stem Cells. 8:189–231. 2013.

2 

Chung E and Kondo M: Role of Ras/Raf/MEK/ERK signaling in physiological hematopoiesis and leukemia development. Immunol Res. 49:248–268. 2011. View Article : Google Scholar

3 

Knight T and Irving JA: Ras/Raf/MEK/ERK pathway activation in childhood acute lymphoblastic leukemia and its therapeutic targeting. Front Oncol. 4:1602014. View Article : Google Scholar : PubMed/NCBI

4 

Monga SP: Role and regulation of β-catenin signaling during physiological liver growth. Gene Expr. 16:51–62. 2014. View Article : Google Scholar

5 

Andersson ER and Lendahl U: Therapeutic modulation of Notch signalling: are we there yet? Nat Rev Drug Discov. 13:357–378. 2014. View Article : Google Scholar : PubMed/NCBI

6 

Pasillas MP, Shields S, Reilly R, Strnadel J, Behl C, Park R, Yates JR III, Klemke R, Gonias SL and Coppinger JA: Proteomic analysis reveals a role for Bcl2-associated athanogene 3 and major vault protein in resistance to apoptosis in senescent cells by regulating ERK1/2 activation. Mol Cell Proteomics. 14:1–14. 2015. View Article : Google Scholar :

7 

Shi X, Wu S, Yang Y, Tang L, Wang Y, Dong J, Lü B, Jiang G and Zhao W: AQP5 silencing suppresses p38 MAPK signaling and improves drug resistance in colon cancer cells. Tumour Biol. 35:7035–7045. 2014. View Article : Google Scholar : PubMed/NCBI

8 

Yu SL, Lee DC, Son JW, Park CG, Lee HY and Kang J: Histone deacetylase 4 mediates SMAD family member 4 deacetylation and induces 5-fluorouracil resistance in breast cancer cells. Oncol Rep. 30:1293–1300. 2013.PubMed/NCBI

9 

Jiang AG, Yu H and Huang JA: Expression and clinical significance of the phosphatidylinositol 3-kinase/protein kinase B signal transduction pathway in non-small cell lung carcinoma. Oncol Lett. 8:601–607. 2014.PubMed/NCBI

10 

Ogawa R, Ishiguro H, Kimura M, Funahashi H, Wakasugi T, Ando T, Shiozaki M and Takeyama H: NOTCH1 expression predicts patient prognosis in esophageal squamous cell cancer. Eur Surg Ress. 51:101–107. 2013. View Article : Google Scholar

11 

Chu W, Song X, Yang X, Ma L, Zhu J, He M, Wang Z and Wu Y: Neuropilin-1 promotes epithelial-to-mesenchymal transition by stimulating nuclear factor-kappa B and is associated with poor prognosis in human oral squamous cell carcinoma. PLoS One. 9:e1019312014. View Article : Google Scholar : PubMed/NCBI

12 

Yao L, Sun B, Zhao X, Zhao X, Gu Q, Dong X, Zheng Y, Sun J, Cheng R, Qi H, et al: Overexpression of Wnt5a promotes angiogenesis in NSCLC. BioMed Res Int. 2014:8325622014. View Article : Google Scholar : PubMed/NCBI

13 

Carvalho FL, Simons BW, Eberhart CG and Berman DM: Notch signaling in prostate cancer: A moving target. Prostate. 74:933–945. 2014. View Article : Google Scholar : PubMed/NCBI

14 

Jamieson C, Sharma M and Henderson BR: Targeting the β-catenin nuclear transport pathway in cancer. Semin Cancer Biol. 27:20–29. 2014. View Article : Google Scholar : PubMed/NCBI

15 

Gasparini C, Celeghini C, Monasta L and Zauli G: NF-kappaB pathways in hematological malignancies. Cellular and molecular life sciences. Cell Mol Life Sci. 71:2083–2102. 2014. View Article : Google Scholar : PubMed/NCBI

16 

Tournier C: The 2 Faces of JNK Signaling in Cancer. Genes Cancer. 4:397–400. 2013. View Article : Google Scholar : PubMed/NCBI

17 

Ntziachristos P, Lim JS, Sage J and Aifantis I: From fly wings to targeted cancer therapies: A centennial for notch signaling. Cancer Cell. 25:318–334. 2014. View Article : Google Scholar : PubMed/NCBI

18 

Okajima T and Irvine KD: Regulation of notch signaling by o-linked fucose. Cell. 111:893–904. 2002. View Article : Google Scholar

19 

Haines N and Irvine KD: Glycosylation regulates Notch signalling. Nat Rev Mol Cell Biol. 4:786–797. 2003. View Article : Google Scholar : PubMed/NCBI

20 

Guo S, Liu M and Gonzalez-Perez RR: Role of Notch and its oncogenic signaling crosstalk in breast cancer. Biochim Biophys Acta. 1815:197–213. 2011.PubMed/NCBI

21 

Lai EC: Notch signaling: Control of cell communication and cell fate. Development. 131:965–973. 2004. View Article : Google Scholar : PubMed/NCBI

22 

Wang Z, Li Y, Ahmad A, Azmi AS, Banerjee S, Kong D and Sarkar FH: Targeting Notch signaling pathway to overcome drug resistance for cancer therapy. Biochim Biophys Acta. 1806:258–267. 2010.PubMed/NCBI

23 

Kopan R and Ilagan MX: The canonical Notch signaling pathway: Unfolding the activation mechanism. Cell. 137:216–233. 2009. View Article : Google Scholar : PubMed/NCBI

24 

Louvi A and Artavanis-Tsakonas S: Notch and disease: A growing field. Semin Cell Dev Biol. 23:473–480. 2012. View Article : Google Scholar : PubMed/NCBI

25 

Rizzo P, Osipo C, Foreman K, Golde T, Osborne B and Miele L: Rational targeting of Notch signaling in cancer. Oncogene. 27:5124–5131. 2008. View Article : Google Scholar : PubMed/NCBI

26 

Wang Z, Banerjee S, Li Y, Rahman KM, Zhang Y and Sarkar FH: Down-regulation of notch-1 inhibits invasion by inactivation of nuclear factor-kappaB, vascular endothelial growth factor, and matrix metalloproteinase-9 in pancreatic cancer cells. Cancer Res. 66:2778–2784. 2006. View Article : Google Scholar : PubMed/NCBI

27 

Wang Z, Zhang Y, Li Y, Banerjee S, Liao J and Sarkar FH: Down-regulation of Notch-1 contributes to cell growth inhibition and apoptosis in pancreatic cancer cells. Mol Cancer Ther. 5:483–493. 2006. View Article : Google Scholar : PubMed/NCBI

28 

Zavadil J, Cermak L, Soto-Nieves N and Böttinger EP: Integration of TGF-beta/Smad and Jagged1/Notch signalling in epithelial-to-mesenchymal transition. EMBO J. 23:1155–1165. 2004. View Article : Google Scholar : PubMed/NCBI

29 

Sansone P, Storci G, Tavolari S, Guarnieri T, Giovannini C, Taffurelli M, Ceccarelli C, Santini D, Paterini P, Marcu KB, et al: IL-6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland. J Clin Invest. 117:3988–4002. 2007. View Article : Google Scholar : PubMed/NCBI

30 

Patel NS, Li JL, Generali D, Poulsom R, Cranston DW and Harris AL: Up-regulation of delta-like 4 ligand in human tumor vasculature and the role of basal expression in endothelial cell function. Cancer Res. 65:8690–8697. 2005. View Article : Google Scholar : PubMed/NCBI

31 

Lawson ND, Vogel AM and Weinstein BM: sonic hedgehog and vascular endothelial growth factor act upstream of the Notch pathway during arterial endothelial differentiation. Dev Cell. 3:127–136. 2002. View Article : Google Scholar : PubMed/NCBI

32 

South AP, Cho RJ and Aster JC: The double-edged sword of Notch signaling in cancer. Semin Cell Dev Biol. 23:458–464. 2012. View Article : Google Scholar : PubMed/NCBI

33 

Ellisen LW, Bird J, West DC, Soreng AL, Reynolds TC, Smith SD and Sklar J: TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell. 66:649–661. 1991. View Article : Google Scholar : PubMed/NCBI

34 

Capobianco AJ, Zagouras P, Blaumueller CM, Artavanis-Tsakonas S and Bishop JM: Neoplastic transformation by truncated alleles of human NOTCH1/TAN1 and NOTCH2. Mol Cell Biol. 17:6265–6273. 1997. View Article : Google Scholar : PubMed/NCBI

35 

Girard L, Hanna Z, Beaulieu N, Hoemann CD, Simard C, Kozak CA and Jolicoeur P: Frequent provirus insertional mutagenesis of Notch1 in thymomas of MMTVD/myc transgenic mice suggests a collaboration of c-myc and Notch1 for oncogenesis. Genes Dev. 10:1930–1944. 1996. View Article : Google Scholar : PubMed/NCBI

36 

Weng AP, Ferrando AA, Lee W, Morris JP IV, Silverman LB, Sanchez-Irizarry C, Blacklow SC, Look AT and Aster JC: Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science. 306:269–271. 2004. View Article : Google Scholar : PubMed/NCBI

37 

Radtke F, Wilson A, Mancini SJ and MacDonald HR: Notch regulation of lymphocyte development and function. Nat Immunol. 5:247–253. 2004. View Article : Google Scholar : PubMed/NCBI

38 

Hoyne GF: Notch signaling in the immune system. J Leukoc Biol. 74:971–981. 2003. View Article : Google Scholar : PubMed/NCBI

39 

Sulis ML, Williams O, Palomero T, Tosello V, Pallikuppam S, Real PJ, Barnes K, Zuurbier L, Meijerink JP and Ferrando AA: NOTCH1 extracellular juxtamembrane expansion mutations in T-ALL. Blood. 112:733–740. 2008. View Article : Google Scholar : PubMed/NCBI

40 

Breit S, Stanulla M, Flohr T, Schrappe M, Ludwig WD, Tolle G, Happich M, Muckenthaler MU and Kulozik AE: Activating NOTCH1 mutations predict favorable early treatment response and long-term outcome in childhood precursor T-cell lymphoblastic leukemia. Blood. 108:1151–1157. 2006. View Article : Google Scholar : PubMed/NCBI

41 

Park MJ, Taki T, Oda M, Watanabe T, Yumura-Yagi K, Kobayashi R, Suzuki N, Hara J, Horibe K and Hayashi Y: FBXW7 and NOTCH1 mutations in childhood T cell acute lymphoblastic leukaemia and T cell non-Hodgkin lymphoma. Br J Haematol. 145:198–206. 2009. View Article : Google Scholar : PubMed/NCBI

42 

Clappier E, Collette S, Grardel N, Girard S, Suarez L, Brunie G, Kaltenbach S, Yakouben K, Mazingue F, Robert A, et al; EORTC-CLG. NOTCH1 and FBXW7 mutations have a favorable impact on early response to treatment, but not on outcome, in children with T-cell acute lymphoblastic leukemia (T-ALL) treated on EORTC trials 58881 and 58951. Leukemia. 24:2023–2031. 2010. View Article : Google Scholar : PubMed/NCBI

43 

Weissmann S, Roller A, Jeromin S, Hernández M, Abáigar M, Hernández-Rivas JM, Grossmann V, Haferlach C, Kern W, Haferlach T, et al: Prognostic impact and landscape of NOTCH1 mutations in chronic lymphocytic leukemia (CLL): A study on 852 patients. Leukemia. 27:2393–2396. 2013. View Article : Google Scholar : PubMed/NCBI

44 

Di Ianni M, Baldoni S, Rosati E, Ciurnelli R, Cavalli L, Martelli MF, Marconi P, Screpanti I and Falzetti F: A new genetic lesion in B-CLL: A NOTCH1 PEST domain mutation. Br J Haematol. 146:689–691. 2009. View Article : Google Scholar : PubMed/NCBI

45 

Sportoletti P, Baldoni S, Cavalli L, Del Papa B, Bonifacio E, Ciurnelli R, Bell AS, Di Tommaso A, Rosati E, Crescenzi B, et al: NOTCH1 PEST domain mutation is an adverse prognostic factor in B-CLL. Br J Haematol. 151:404–406. 2010. View Article : Google Scholar : PubMed/NCBI

46 

Wickremasinghe RG, Prentice AG and Steele AJ: p53 and Notch signaling in chronic lymphocytic leukemia: Clues to identifying novel therapeutic strategies. Leukemia. 25:1400–1407. 2011. View Article : Google Scholar : PubMed/NCBI

47 

Rossi D, Rasi S, Fabbri G, Spina V, Fangazio M, Forconi F, Marasca R, Laurenti L, Bruscaggin A, Cerri M, et al: Mutations of NOTCH1 are an independent predictor of survival in chronic lymphocytic leukemia. Blood. 119:521–529. 2012. View Article : Google Scholar :

48 

Kiel MJ, Velusamy T, Betz BL, Zhao L, Weigelin HG, Chiang MY, Huebner-Chan DR, Bailey NG, Yang DT, Bhagat G, et al: Whole-genome sequencing identifies recurrent somatic NOTCH2 mutations in splenic marginal zone lymphoma. J Exp Med. 209:1553–1565. 2012. View Article : Google Scholar : PubMed/NCBI

49 

Lee SY, Kumano K, Nakazaki K, Sanada M, Matsumoto A, Yamamoto G, Nannya Y, Suzuki R, Ota S, Ota Y, et al: Gainof-function mutations and copy number increases of Notch2 in diffuse large B-cell lymphoma. Cancer Sci. 100:920–926. 2009. View Article : Google Scholar : PubMed/NCBI

50 

Rossi D, Trifonov V, Fangazio M, Bruscaggin A, Rasi S, Spina V, Monti S, Vaisitti T, Arruga F, Famà R, et al: The coding genome of splenic marginal zone lymphoma: Activation of NOTCH2 and other pathways regulating marginal zone development. J Exp Med. 209:1537–1551. 2012. View Article : Google Scholar : PubMed/NCBI

51 

Uyttendaele H, Soriano JV, Montesano R and Kitajewski J: Notch4 and Wnt-1 proteins function to regulate branching morphogenesis of mammary epithelial cells in an opposing fashion. Dev Biol. 196:204–217. 1998. View Article : Google Scholar : PubMed/NCBI

52 

Bellavia D, Checquolo S, Campese AF, Felli MP, Gulino A and Screpanti I: Notch3: From subtle structural differences to functional diversity. Oncogene. 27:5092–5098. 2008. View Article : Google Scholar : PubMed/NCBI

53 

Melchor L and Smalley MJ: Highway to heaven: Mammary gland development and differentiation. Breast Cancer Res. 10:3052008. View Article : Google Scholar : PubMed/NCBI

54 

Weijzen S, Rizzo P, Braid M, Vaishnav R, Jonkheer SM, Zlobin A, Osborne BA, Gottipati S, Aster JC, Hahn WC, et al: Activation of Notch-1 signaling maintains the neoplastic phenotype in human Ras-transformed cells. Nat Med. 8:979–986. 2002. View Article : Google Scholar : PubMed/NCBI

55 

Hu C, Diévart A, Lupien M, Calvo E, Tremblay G and Jolicoeur P: Overexpression of activated murine Notch1 and Notch3 in transgenic mice blocks mammary gland development and induces mammary tumors. Am J Pathol. 168:973–990. 2006. View Article : Google Scholar : PubMed/NCBI

56 

Imatani A and Callahan R: Identification of a novel NOTCH-4/INT-3 RNA species encoding an activated gene product in certain human tumor cell lines. Oncogene. 19:223–231. 2000. View Article : Google Scholar : PubMed/NCBI

57 

Reedijk M, Odorcic S, Chang L, Zhang H, Miller N, McCready DR, Lockwood G and Egan SE: High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res. 65:8530–8537. 2005. View Article : Google Scholar : PubMed/NCBI

58 

Zhang Z, Wang H, Ikeda S, Fahey F, Bielenberg D, Smits P and Hauschka PV: Notch3 in human breast cancer cell lines regulates osteoblast-cancer cell interactions and osteolytic bone metastasis. Am J Pathol. 177:1459–1469. 2010. View Article : Google Scholar : PubMed/NCBI

59 

Parr C, Watkins G and Jiang WG: The possible correlation of Notch-1 and Notch-2 with clinical outcome and tumour clinicopathological parameters in human breast cancer. Int J Mol Med. 14:779–786. 2004.PubMed/NCBI

60 

Baumgart A, Mazur PK, Anton M, Rudelius M, Schwamborn K, Feuchtinger A, Behnke K, Walch A, Braren R, Peschel C, et al: Opposing role of Notch1 and Notch2 in a Kras(G12D)-driven murine non-small cell lung cancer model. Oncogene. 34:578–588. 2015. View Article : Google Scholar

61 

Yang Y, Yan X, Duan W, Yan J, Yi W, Liang Z, Wang N, Li Y, Chen W, Yu S, et al: Pterostilbene exerts antitumor activity via the Notch1 signaling pathway in human lung adenocarcinoma cells. PLoS One. 8:e626522013. View Article : Google Scholar : PubMed/NCBI

62 

Licciulli S, Avila JL, Hanlon L, Troutman S, Cesaroni M, Kota S, Keith B, Simon MC, Puré E, Radtke F, et al: Notch1 is required for Kras-induced lung adenocarcinoma and controls tumor cell survival via p53. Cancer Res. 73:5974–5984. 2013. View Article : Google Scholar : PubMed/NCBI

63 

Xie M, He CS, Wei SH and Zhang L: Notch-1 contributes to epidermal growth factor receptor tyrosine kinase inhibitor acquired resistance in non-small cell lung cancer in vitro and in vivo. Eur J Cancer. 49:3559–3572. 2013. View Article : Google Scholar : PubMed/NCBI

64 

Hassan KA, Wang L, Korkaya H, Chen G, Maillard I, Beer DG, Kalemkerian GP and Wicha M: Notch pathway activity identifies cells with cancer stem cell-like properties and correlates with worse survival in lung adenocarcinoma. Clin Cancer Res. 19:1972–1980. 2013. View Article : Google Scholar : PubMed/NCBI

65 

Theys J, Yahyanejad S, Habets R, Span P, Dubois L, Paesmans K, Kattenbeld B, Cleutjens J, Groot AJ, Schuurbiers OC, et al: High NOTCH activity induces radiation resistance in non small cell lung cancer. Radiother Oncol. 108:440–445. 2013. View Article : Google Scholar : PubMed/NCBI

66 

Wael H, Yoshida R, Kudoh S, Hasegawa K, Niimori-Kita K and Ito T: Notch1 signaling controls cell proliferation, apoptosis and differentiation in lung carcinoma. Lung Cancer. 85:131–140. 2014. View Article : Google Scholar : PubMed/NCBI

67 

Huang J, Song H, Liu B, Yu B, Wang R and Chen L: Expression of Notch-1 and its clinical significance in different histological subtypes of human lung adenocarcinoma. J Exp Clin Cancer Res. 32:842013. View Article : Google Scholar :

68 

Zhou M, Jin WY, Fan ZW and Han RC: Analysis of the expression of the Notch3 receptor protein in adult lung cancer. Oncol Lett. 5:499–504. 2013.PubMed/NCBI

69 

Ye YZ, Zhang ZH, Fan XY, Xu XL, Chen ML, Chang BW and Zhang YB: Notch3 overexpression associates with poor prognosis in human non-small-cell lung cancer. Med Oncol. 30:5952013. View Article : Google Scholar : PubMed/NCBI

70 

Jemal A, Bray F, Center MM, Ferlay J, Ward E and Forman D: Global cancer statistics. CA Cancer J Clin. 61:69–90. 2011. View Article : Google Scholar : PubMed/NCBI

71 

Yeh TS, Wu CW, Hsu KW, Liao WJ, Yang MC, Li AF, Wang AM, Kuo ML and Chi CW: The activated Notch1 signal pathway is associated with gastric cancer progression through cyclooxygenase-2. Cancer Res. 69:5039–5048. 2009. View Article : Google Scholar : PubMed/NCBI

72 

Yao J and Qian C: Over-activated Notch-1 protects gastric carcinoma BGC-823 cells from TNFalpha-induced apoptosis. Dig Liver Dis. 41:867–874. 2009. View Article : Google Scholar : PubMed/NCBI

73 

Carson C, Murdoch B and Roskams AJ: Notch 2 and Notch 1/3 segregate to neuronal and glial lineages of the developing olfactory epithelium. Dev Dyn. 235:1678–1688. 2006. View Article : Google Scholar : PubMed/NCBI

74 

Sun Y, Gao X, Liu J, Kong QY, Wang XW, Chen XY, Wang Q, Cheng YF, Qu XX and Li H: Differential Notch1 and Notch2 expression and frequent activation of Notch signaling in gastric cancers. Arch Pathol Lab Med. 135:451–458. 2011.PubMed/NCBI

75 

Tseng YC, Tsai YH, Tseng MJ, Hsu KW, Yang MC, Huang KH, Li AF, Chi CW, Hsieh RH, Ku HH, et al: Notch2-induced COX-2 expression enhancing gastric cancer progression. Mol Carcinog. 51:939–951. 2012. View Article : Google Scholar

76 

Guo LY, Li YM, Qiao L, Liu T, Du YY, Zhang JQ, He WT, Zhao YX and He DQ: Notch2 regulates matrix metallopeptidase 9 via PI3K/AKT signaling in human gastric carcinoma cell MKN-45. World J Gastroenterol. 18:7262–7270. 2012. View Article : Google Scholar

77 

Piazzi G, Fini L, Selgrad M, Garcia M, Daoud Y, Wex T, Malfertheiner P, Gasbarrini A, Romano M, Meyer RL, et al: Epigenetic regulation of Delta-Like1 controls Notch1 activation in gastric cancer. Oncotarget. 2:1291–1301. 2011. View Article : Google Scholar

78 

Pellegrinet L, Rodilla V, Liu Z, Chen S, Koch U, Espinosa L, Kaestner KH, Kopan R, Lewis J and Radtke F: Dll1- and dll4-mediated notch signaling are required for homeostasis of intestinal stem cells. Gastroenterology. 140:1230–1240.e7. 2011. View Article : Google Scholar : PubMed/NCBI

79 

Li GG, Li L, Li C, Ye LY, Li XW, Liu DR, Bao Q, Zheng YX, Xiang DP, Chen L, et al: Influence of up-regulation of Notch ligand DLL4 on biological behaviors of human gastric cancer cells. World J Gastroenterol. 19:4486–4494. 2013. View Article : Google Scholar : PubMed/NCBI

80 

Sun HW, Wu C, Tan HY and Wang QS: Combination DLL4 with Jagged1-siRNA can enhance inhibition of the proliferation and invasiveness activity of human gastric carcinoma by Notch1/VEGF pathway. Hepatogastroenterology. 59:924–929. 2012.

81 

Logan CY and Nusse R: The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 20:781–810. 2004. View Article : Google Scholar : PubMed/NCBI

82 

Rosenbluh J, Wang X and Hahn WC: Genomic insights into WNT/β-catenin signaling. Trends Pharmacol Sci. 35:103–109. 2014. View Article : Google Scholar :

83 

MacDonald BT, Tamai K and He X: Wnt/beta-catenin signaling: Components, mechanisms, and diseases. Dev Cell. 17:9–26. 2009. View Article : Google Scholar : PubMed/NCBI

84 

Niehrs C: The complex world of WNT receptor signalling. Nat Rev Mol Cell Biol. 13:767–779. 2012. View Article : Google Scholar : PubMed/NCBI

85 

Wang JM, Huang FC, Kuo MH, Wang ZF, Tseng TY, Chang LC, Yen SJ, Chang TC and Lin JJ: Inhibition of cancer cell migration and invasion through suppressing the Wnt1-mediating signal pathway by G-quadruplex structure stabilizers. J Biol Chem. 289:14612–14623. 2014. View Article : Google Scholar : PubMed/NCBI

86 

Lee MA, Park JH, Rhyu SY, Oh ST, Kang WK and Kim HN: Wnt3a expression is associated with MMP-9 expression in primary tumor and metastatic site in recurrent or stage IV colorectal cancer. BMC Cancer. 14:1252014. View Article : Google Scholar : PubMed/NCBI

87 

Wang SH, Li N, Wei Y, Li QR and Yu ZP: β-catenin deacetylation is essential for WNT-induced proliferation of breast cancer cells. Mol Med Rep. 9:973–978. 2014.PubMed/NCBI

88 

Miao CG, Yang YY, He X, Huang C, Huang Y, Zhang L, Lv XW, Jin Y and Li J: Wnt signaling in liver fibrosis: Progress, challenges and potential directions. Biochimie. 95:2326–2335. 2013. View Article : Google Scholar : PubMed/NCBI

89 

Arend RC, Londoño-Joshi AI, Straughn JM Jr and Buchsbaum DJ: The Wnt/β-catenin pathway in ovarian cancer: A review. Gynecol Oncol. 131:772–779. 2013. View Article : Google Scholar : PubMed/NCBI

90 

Holland JD, Klaus A, Garratt AN and Birchmeier W: Wnt signaling in stem and cancer stem cells. Curr Opin Cell Biol. 25:254–264. 2013. View Article : Google Scholar : PubMed/NCBI

91 

Barbolina MV, Burkhalter RJ and Stack MS: Diverse mechanisms for activation of Wnt signalling in the ovarian tumour microenvironment. Biochem J. 437:1–12. 2011. View Article : Google Scholar : PubMed/NCBI

92 

Andersen P, Uosaki H, Shenje LT and Kwon C: Non-canonical Notch signaling: Emerging role and mechanism. Trends Cell Biol. 22:257–265. 2012. View Article : Google Scholar : PubMed/NCBI

93 

Clark CE, Nourse CC and Cooper HM: The tangled web of non-canonical Wnt signalling in neural migration. Neurosignals. 20:202–220. 2012. View Article : Google Scholar : PubMed/NCBI

94 

González-Sancho JM, Brennan KR, Castelo-Soccio LA and Brown AM: Wnt proteins induce dishevelled phosphorylation via an LRP5/6-independent mechanism, irrespective of their ability to stabilize beta-catenin. Mol Cell Biol. 24:4757–4768. 2004. View Article : Google Scholar

95 

Beier F and Loeser RF: Biology and pathology of Rho GTPase, PI-3 kinase-Akt, and MAP kinase signaling pathways in chondrocytes. J Cell Biochem. 110:573–580. 2010. View Article : Google Scholar : PubMed/NCBI

96 

Asad M, Wong MK, Tan TZ, Choolani M, Low J, Mori S, Virshup D, Thiery JP and Huang RY: FZD7 drives in vitro aggressiveness in Stem-A subtype of ovarian cancer via regulation of non-canonical Wnt/PCP pathway. Cell Death Dis. 5:e13462014. View Article : Google Scholar : PubMed/NCBI

97 

Bernemann C, Hülsewig C, Ruckert C, Schäfer S, Blümel L, Hempel G, Götte M, Greve B, Barth PJ, Kiesel L, et al: Influence of secreted frizzled receptor protein 1 (SFRP1) on neoadjuvant chemotherapy in triple negative breast cancer does not rely on WNT signaling. Mol Cancer. 13:1742014. View Article : Google Scholar : PubMed/NCBI

98 

Xi Y and Chen Y: Wnt signaling pathway: Implications for therapy in lung cancer and bone metastasis. Cancer Lett. 353:8–16. 2014. View Article : Google Scholar : PubMed/NCBI

99 

Nejak-Bowen KN and Monga SP: Beta-catenin signaling, liver regeneration and hepatocellular cancer: Sorting the good from the bad. Semin Cancer Biol. 21:44–58. 2011. View Article : Google Scholar :

100 

Colussi D, Brandi G, Bazzoli F and Ricciardiello L: Molecular pathways involved in colorectal cancer: Implications for disease behavior and prevention. Int J Mol Sci. 14:16365–16385. 2013. View Article : Google Scholar : PubMed/NCBI

101 

Pez F, Lopez A, Kim M, Wands JR, Caron de Fromentel C and Merle P: Wnt signaling and hepatocarcinogenesis: Molecular targets for the development of innovative anticancer drugs. J Hepatol. 59:1107–1117. 2013. View Article : Google Scholar : PubMed/NCBI

102 

Armengol C, Cairo S, Fabre M and Buendia MA: Wnt signaling and hepatocarcinogenesis: The hepatoblastoma model. Int J Biochem Cell Biol. 43:265–270. 2011. View Article : Google Scholar

103 

Gedaly R, Galuppo R, Daily MF, Shah M, Maynard E, Chen C, Zhang X, Esser KA, Cohen DA, Evers BM, et al: Targeting the Wnt/β-catenin signaling pathway in liver cancer stem cells and hepatocellular carcinoma cell lines with FH535. PLoS One. 9:e992722014. View Article : Google Scholar

104 

Hou L, Wang X, Zhou Y, Ma H, Wang Z, He J, Hu H, Guan W and Ma Y: Inhibitory effect and mechanism of mesenchymal stem cells on liver cancer cells. Tumour Biol. 35:1239–1250. 2014. View Article : Google Scholar

105 

Zucchini-Pascal N, Peyre L and Rahmani R: Crosstalk between beta-catenin and snail in the induction of epithelial to mesenchymal transition in hepatocarcinoma: Role of the ERK1/2 pathway. Int J Mol Sci. 14:20768–20792. 2013. View Article : Google Scholar : PubMed/NCBI

106 

Bustos VH, Ferrarese A, Venerando A, Marin O, Allende JE and Pinna LA: The first armadillo repeat is involved in the recognition and regulation of beta-catenin phosphorylation by protein kinase CK1. Proc Natl Acad Sci USA. 103:19725–19730. 2006. View Article : Google Scholar : PubMed/NCBI

107 

Singh Y, Port J, Schwarz M and Braeuning A: Genetic ablation of β-catenin inhibits the proliferative phenotype of mouse liver adenomas. Br J Cancer. 111:132–138. 2014. View Article : Google Scholar : PubMed/NCBI

108 

Calderaro J, Nault JC, Bioulac-Sage P, Laurent A, Blanc JF, Decaens T and Zucman-Rossi J: ALDH3A1 is overexpressed in a subset of hepatocellular carcinoma characterised by activation of the Wnt/ss-catenin pathway. Virchows Arch. 464:53–60. 2014. View Article : Google Scholar

109 

Cheng JH, She H, Han YP, Wang J, Xiong S, Asahina K and Tsukamoto H: Wnt antagonism inhibits hepatic stellate cell activation and liver fibrosis. Am J Physiol Gastrointest Liver Physiol. 294:G39–G49. 2008. View Article : Google Scholar

110 

Li W, Zhu C, Li Y, Wu Q and Gao R: Mest attenuates CCl4-induced liver fibrosis in rats by inhibiting the Wnt/β-catenin signaling pathway. Gut Liver. 8:282–291. 2014. View Article : Google Scholar : PubMed/NCBI

111 

Tenesa A and Dunlop MG: New insights into the aetiology of colorectal cancer from genome-wide association studies. Nat Rev Genet. 10:353–358. 2009. View Article : Google Scholar : PubMed/NCBI

112 

Pandurangan AK: Potential targets for prevention of colorectal cancer: A focus on PI3K/Akt/mTOR and Wnt pathways. Asian Pac J Cancer Prev. 14:2201–2205. 2013. View Article : Google Scholar : PubMed/NCBI

113 

Curtin JC: Novel drug discovery opportunities for colorectal cancer. Expert Opin Drug Discov. 8:1153–1164. 2013. View Article : Google Scholar : PubMed/NCBI

114 

Sparks AB, Morin PJ, Vogelstein B and Kinzler KW: Mutational analysis of the APC/beta-catenin/Tcf pathway in colorectal cancer. Cancer Res. 58:1130–1134. 1998.PubMed/NCBI

115 

Murakami T, Mitomi H, Saito T, Takahashi M, Sakamoto N, Fukui N, Yao T and Watanabe S: Distinct WNT/beta-catenin signaling activation in the serrated neoplasia pathway and the adenoma-carcinoma sequence of the colorectum. Mod Pathol. 28:146–158. 2015. View Article : Google Scholar

116 

Raghu D and Karunagaran D: Plumbagin downregulates Wnt signaling independent of p53 in human colorectal cancer cells. J Nat Prod. 77:1130–1134. 2014. View Article : Google Scholar : PubMed/NCBI

117 

Tai WP, Hu PJ, Wu J and Lin XC: The inhibition of Wnt/β-catenin signaling pathway in human colon cancer cells by sulindac. Tumori. 100:97–101. 2014.PubMed/NCBI

118 

Tumova L, Pombinho AR, Vojtechova M, Stancikova J, Gradl D, Krausova M, Sloncova E, Horazna M, Kriz V, Machonova O, et al: Monensin inhibits canonical Wnt signaling in human colorectal cancer cells and suppresses tumor growth in multiple intestinal neoplasia mice. Mol Cancer Ther. 13:812–822. 2014. View Article : Google Scholar : PubMed/NCBI

119 

Bruun J, Kolberg M, Nesland JM, Svindland A, Nesbakken A and Lothe RA: Prognostic Significance of β-catenin, E-cadherin, and SOX9 in colorectal cancer: Results from a large population-representative series. Front Oncol. 4:1182014. View Article : Google Scholar

120 

Voorham QJ, Janssen J, Tijssen M, Snellenberg S, Mongera S, van Grieken NC, Grabsch H, Kliment M, Rembacken BJ, Mulder CJ, et al: Promoter methylation of Wnt-antagonists in polypoid and nonpolypoid colorectal adenomas. BMC Cancer. 13:6032013. View Article : Google Scholar : PubMed/NCBI

121 

Serafino A, Moroni N, Zonfrillo M, Andreola F, Mercuri L, Nicotera G, Nunziata J, Ricci R, Antinori A, Rasi G, et al: WNT-pathway components as predictive markers useful for diagnosis, prevention and therapy in inflammatory bowel disease and sporadic colorectal cancer. Oncotarget. 5:978–992. 2014. View Article : Google Scholar : PubMed/NCBI

122 

Abdelmaksoud-Dammak R, Miladi-Abdennadher I, Saadallah-Kallel A, Khabir A, Sellami-Boudawara T, Frikha M, Daoud J and Mokdad-Gargouri R: Downregulation of WIF-1 and Wnt5a in patients with colorectal carcinoma: clinical significance. Tumour Biol. 35:7975–7982. 2014. View Article : Google Scholar : PubMed/NCBI

123 

Bauer M, Bénard J, Gaasterland T, Willert K and Cappellen D: WNT5A encodes two isoforms with distinct functions in cancers. PLoS One. 8:e805262013. View Article : Google Scholar : PubMed/NCBI

124 

Chai J, Modak C, Ouyang Y, Wu SY and Jamal MM: CCN1 Induces β-catenin translocation in esophageal squamous cell carcinoma through integrin α11. ISRN Gastroenterol. 2012:2072352012. View Article : Google Scholar

125 

Moyes LH, McEwan H, Radulescu S, Pawlikowski J, Lamm CG, Nixon C, Sansom OJ, Going JJ, Fullarton GM and Adams PD: Activation of Wnt signalling promotes development of dysplasia in Barrett's oesophagus. J Pathol. 228:99–112. 2012.PubMed/NCBI

126 

Long A, Giroux V, Whelan KA, Hamilton KE, Tétreault MP, Tanaka K, Lee JS, Klein-Szanto AJ, Nakagawa H and Rustgi AK: WNT10A promotes an invasive and self-renewing phenotype in esophageal squamous cell carcinoma. Carcinogenesis. 36:598–606. 2015. View Article : Google Scholar : PubMed/NCBI

127 

Yang SH, Li SL, Dong ZM and Kan QC: Epigenetic inactivation of Wnt inhibitory factor-1 in human esophageal squamous cell carcinoma. Oncol Res. 20:123–130. 2012. View Article : Google Scholar : PubMed/NCBI

128 

Ge XS, Ma HJ, Zheng XH, Ruan HL, Liao XY, Xue WQ, Chen YB, Zhang Y and Jia WH: HOTAIR, a prognostic factor in esophageal squamous cell carcinoma, inhibits WIF-1 expression and activates Wnt pathway. Cancer Sci. 104:1675–1682. 2013. View Article : Google Scholar : PubMed/NCBI

129 

Liu K, Luo Y, Tian H, Yu KZ, He JX and Shen WY: The tumor suppressor LKB1 antagonizes WNT signaling pathway through modulating GSK3beta activity in cell growth of esophageal carcinoma. Tumour Biol. 35:995–1002. 2014. View Article : Google Scholar

130 

Tong X, Li L, Li X, Heng L, Zhong L, Su X, Rong R, Hu S, Liu W, Jia B, et al: SOX10, a novel HMG-box-containing tumor suppressor, inhibits growth and metastasis of digestive cancers by suppressing the Wnt/β-catenin pathway. Oncotarget. 5:10571–10583. 2014. View Article : Google Scholar : PubMed/NCBI

131 

Kuramoto T, Goto H, Mitsuhashi A, Tabata S, Ogawa H, Uehara H, Saijo A, Kakiuchi S, Maekawa Y, Yasutomo K, et al: Dll4-Fc, an inhibitor of Dll4-notch signaling, suppresses liver metastasis of small cell lung cancer cells through the downregulation of the NF-κB activity. Mol Cancer Ther. 11:2578–2587. 2012. View Article : Google Scholar : PubMed/NCBI

132 

Stewart KS, Zhou Z, Zweidler-McKay P and Kleinerman ES: Delta-like ligand 4-Notch signaling regulates bone marrow-derived pericyte/vascular smooth muscle cell formation. Blood. 117:719–726. 2011. View Article : Google Scholar :

133 

Ridgway J, Zhang G, Wu Y, Stawicki S, Liang WC, Chanthery Y, Kowalski J, Watts RJ, Callahan C, Kasman I, et al: Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature. 444:1083–1087. 2006. View Article : Google Scholar : PubMed/NCBI

134 

Oishi H, Sunamura M, Egawa S, Motoi F, Unno M, Furukawa T, Habib NA and Yagita H: Blockade of delta-like ligand 4 signaling inhibits both growth and angiogenesis of pancreatic cancer. Pancreas. 39:897–903. 2010. View Article : Google Scholar : PubMed/NCBI

135 

Gurney A and Hoey T: Anti-DLL4, a cancer therapeutic with multiple mechanisms of action. Vasc Cell. 3:182011. View Article : Google Scholar : PubMed/NCBI

136 

Fischer M, Yen WC, Kapoun AM, Wang M, O'Young G, Lewicki J, Gurney A and Hoey T: Anti-DLL4 inhibits growth and reduces tumor-initiating cell frequency in colorectal tumors with oncogenic KRAS mutations. Cancer Res. 71:1520–1525. 2011. View Article : Google Scholar : PubMed/NCBI

137 

Jenkins DW, Ross S, Veldman-Jones M, Foltz IN, Clavette BC, Manchulenko K, Eberlein C, Kendrew J, Petteruti P, Cho S, et al: MEDI0639: A novel therapeutic antibody targeting Dll4 modulates endothelial cell function and angiogenesis in vivo. Mol Cancer Ther. 11:1650–1660. 2012. View Article : Google Scholar : PubMed/NCBI

138 

Liu SK, Bham SA, Fokas E, Beech J, Im J, Cho S, Harris AL and Muschel RJ: Delta-like ligand 4-notch blockade and tumor radiation response. J Natl Cancer Inst. 103:1778–1798. 2011. View Article : Google Scholar : PubMed/NCBI

139 

El Kaffas A, Nofiele J, Giles A, Cho S, Liu SK and Czarnota GJ: Dll4-notch signalling blockade synergizes combined ultrasound-stimulated microbubble and radiation therapy in human colon cancer xenografts. PLoS One. 9:e938882014. View Article : Google Scholar : PubMed/NCBI

140 

Aste-Amézaga M, Zhang N, Lineberger JE, Arnold BA, Toner TJ, Gu M, Huang L, Vitelli S, Vo KT, Haytko P, et al: Characterization of Notch1 antibodies that inhibit signaling of both normal and mutated Notch1 receptors. PLoS One. 5:e90942010. View Article : Google Scholar : PubMed/NCBI

141 

Sharma A, Paranjape AN, Rangarajan A and Dighe RR: A monoclonal antibody against human Notch1 ligand-binding domain depletes subpopulation of putative breast cancer stem-like cells. Mol Cancer Ther. 11:77–86. 2012. View Article : Google Scholar

142 

Yan M, Callahan CA, Beyer JC, Allamneni KP, Zhang G, Ridgway JB, Niessen K and Plowman GD: Chronic DLL4 blockade induces vascular neoplasms. Nature. 463:E6–E7. 2010. View Article : Google Scholar : PubMed/NCBI

143 

Rosati E, Sabatini R, De Falco F, Del Papa B, Falzetti F, Di Ianni M, Cavalli L, Fettucciari K, Bartoli A, Screpanti I, et al: gamma-Secretase inhibitor I induces apoptosis in chronic lymphocytic leukemia cells by proteasome inhibition, endoplasmic reticulum stress increase and notch down-regulation. Int J Cancer. 132:1940–1953. 2013. View Article : Google Scholar

144 

Palagani V, El Khatib M, Kossatz U, Bozko P, Müller MR, Manns MP, Krech T, Malek NP and Plentz RR: Epithelial mesenchymal transition and pancreatic tumor initiating CD44+/EpCAM+ cells are inhibited by γ-secretase inhibitor IX. PLoS One. 7:e465142012. View Article : Google Scholar

145 

Schott AF, Landis MD, Dontu G, Griffith KA, Layman RM, Krop I, Paskett LA, Wong H, Dobrolecki LE, Lewis MT, et al: Preclinical and clinical studies of gamma secretase inhibitors with docetaxel on human breast tumors. Clin Cancer Res. 19:1512–1524. 2013. View Article : Google Scholar : PubMed/NCBI

146 

López-Guerra M, Xargay-Torrent S, Rosich L, Montraveta A, Roldán J, Matas-Céspedes A, Villamor N, Aymerich M, López-Otín C, Pérez-Galán P, et al: The γ-secretase inhibitor PF-03084014 combined with fludarabine antagonizes migration, invasion and angiogenesis in NOTCH1-mutated CLL cells. Leukemia. 29:96–106. 2015. View Article : Google Scholar

147 

Saito N, Fu J, Zheng S, Yao J, Wang S, Liu DD, Yuan Y, Sulman EP, Lang FF, Colman H, et al: A high Notch pathway activation predicts response to γ secretase inhibitors in proneural subtype of glioma tumor-initiating cells. Stem Cells. 32:301–312. 2014. View Article : Google Scholar :

148 

Groeneweg JW, Hall TR, Zhang L, Kim M, Byron VF, Tambouret R, Sathayanrayanan S, Foster R, Rueda BR and Growdon WB: Inhibition of gamma-secretase activity impedes uterine serous carcinoma growth in a human xenograft model. Gynecol Oncol. 133:607–615. 2014. View Article : Google Scholar : PubMed/NCBI

149 

Li LC, Peng Y, Liu YM, Wang LL and Wu XL: Gastric cancer cell growth and epithelial-mesenchymal transition are inhibited by γ-secretase inhibitor DAPT. Oncol Lett. 7:2160–2164. 2014.PubMed/NCBI

150 

Dahmani R, Just PA and Perret C: The Wnt/β-catenin pathway as a therapeutic target in human hepatocellular carcinoma. Clin Res Hepatol Gastroenterol. 35:709–713. 2011. View Article : Google Scholar : PubMed/NCBI

151 

Fontenot E, Rossi E, Mumper R, Snyder S, Siamakpour-Reihani S, Ma P, Hilliard E, Bone B, Ketelsen D, Santos C, et al: A novel monoclonal antibody to secreted frizzled-related protein 2 inhibits tumor growth. Mol Cancer Ther. 12:685–695. 2013. View Article : Google Scholar : PubMed/NCBI

152 

Wang Y, Shek FH, Wong KF, Liu LX, Zhang XQ, Yuan Y, Khin E, Hu MY, Wang JH, Poon RT, et al: Anti-cadherin-17 antibody modulates beta-catenin signaling and tumorigenicity of hepatocellular carcinoma. PLoS One. 8:e723862013. View Article : Google Scholar : PubMed/NCBI

153 

Gao W, Kim H, Feng M, Phung Y, Xavier CP, Rubin JS and Ho M: Inactivation of Wnt signaling by a human antibody that recognizes the heparan sulfate chains of glypican-3 for liver cancer therapy. Hepatology. 60:576–587. 2014. View Article : Google Scholar : PubMed/NCBI

154 

Ettenberg SA, Charlat O, Daley MP, Liu S, Vincent KJ, Stuart DD, Schuller AG, Yuan J, Ospina B, Green J, et al: Inhibition of tumorigenesis driven by different Wnt proteins requires blockade of distinct ligand-binding regions by LRP6 antibodies. Proc Natl Acad Sci USA. 107:15473–15478. 2010. View Article : Google Scholar : PubMed/NCBI

155 

Gong Y, Bourhis E, Chiu C, Stawicki S, DeAlmeida VI, Liu BY, Phamluong K, Cao TC, Carano RA, Ernst JA, et al: Wnt isoform-specific interactions with coreceptor specify inhibition or potentiation of signaling by LRP6 antibodies. PLoS One. 5:e126822010. View Article : Google Scholar : PubMed/NCBI

156 

Lavergne E, Hendaoui I, Coulouarn C, Ribault C, Leseur J, Eliat PA, Mebarki S, Corlu A, Clément B and Musso O: Blocking Wnt signaling by SFRP-like molecules inhibits in vivo cell proliferation and tumor growth in cells carrying active β-catenin. Oncogene. 30:423–433. 2011. View Article : Google Scholar

157 

Wei W, Chua MS, Grepper S and So SK: Soluble Frizzled-7 receptor inhibits Wnt signaling and sensitizes hepatocellular carcinoma cells towards doxorubicin. Mol Cancer. 10:162011. View Article : Google Scholar : PubMed/NCBI

158 

Amado NG, Predes D, Moreno MM, Carvalho IO, Mendes FA and Abreu JG: Flavonoids and Wnt/β-catenin signaling: Potential role in colorectal cancer therapies. Int J Mol Sci. 15:12094–12106. 2014. View Article : Google Scholar : PubMed/NCBI

159 

Ji Q, Liu X, Fu X, Zhang L, Sui H, Zhou L, Sun J, Cai J, Qin J, Ren J, et al: Resveratrol inhibits invasion and metastasis of colorectal cancer cells via MALAT1 mediated Wnt/β-catenin signal pathway. PLoS One. 8:e787002013. View Article : Google Scholar

160 

Huang SM, Mishina YM, Liu S, Cheung A, Stegmeier F, Michaud GA, Charlat O, Wiellette E, Zhang Y, Wiessner S, et al: Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature. 461:614–620. 2009. View Article : Google Scholar : PubMed/NCBI

161 

Waaler J, Machon O, Tumova L, Dinh H, Korinek V, Wilson SR, Paulsen JE, Pedersen NM, Eide TJ, Machonova O, et al: A novel tankyrase inhibitor decreases canonical Wnt signaling in colon carcinoma cells and reduces tumor growth in conditional APC mutant mice. Cancer Res. 72:2822–2832. 2012. View Article : Google Scholar : PubMed/NCBI

162 

Park HY, Toume K, Arai MA, Sadhu SK, Ahmed F and Ishibashi M: Calotropin: A cardenolide from calotropis gigantea that inhibits Wnt signaling by increasing casein kinase 1α in colon cancer cells. Chem Bio Chem. 15:872–878. 2014. View Article : Google Scholar

163 

Li B, Flaveny CA, Giambelli C, Fei DL, Han L, Hang BI, Bai F, Pei XH, Nose V, Burlingame O, et al: Repurposing the FDA-approved pinworm drug pyrvinium as a novel chemotherapeutic agent for intestinal polyposis. PLoS One. 9:e1019692014. View Article : Google Scholar : PubMed/NCBI

164 

Wei W, Chua MS, Grepper S and So S: Small molecule antagonists of Tcf4/beta-catenin complex inhibit the growth of HCC cells in vitro and in vivo. Int J Cancer. 126:2426–2436. 2010.

165 

Lee SB, Gong YD, Park YI and Dong MS: 2,3,6-Trisubstituted quinoxaline derivative, a small molecule inhibitor of the Wnt/beta-catenin signaling pathway, suppresses cell proliferation and enhances radiosensitivity in A549/Wnt2 cells. Biochem Biophys Res Commun. 431:746–752. 2013. View Article : Google Scholar : PubMed/NCBI

166 

Preet R, Mohapatra P, Das D, Satapathy SR, Choudhuri T, Wyatt MD and Kundu CN: Lycopene synergistically enhances quinacrine action to inhibit Wnt-TCF signaling in breast cancer cells through APC. Carcinogenesis. 34:277–286. 2013. View Article : Google Scholar

167 

Park S and Chun S: Streptonigrin inhibits β-catenin/Tcf signaling and shows cytotoxicity in β-catenin-activated cells. Biochim Biophys Acta. 1810:1340–1345. 2011. View Article : Google Scholar : PubMed/NCBI

168 

Emami KH, Nguyen C, Ma H, Kim DH, Jeong KW, Eguchi M, Moon RT, Teo JL, Kim HY, Moon SH, et al: A small molecule inhibitor of beta-catenin/CREB-binding protein transcription [corrected]. Proc Natl Acad Sci USA. 101:12682–12687. 2004. View Article : Google Scholar

169 

Yu SD, Liu FY and Wang QR: Notch inhibitor: A promising carcinoma radiosensitizer. Asian Pac J Cancer Prev. 13:5345–5351. 2012. View Article : Google Scholar

170 

Wei W, Chua MS, Grepper S and So SK: Blockade of Wnt-1 signaling leads to anti-tumor effects in hepatocellular carcinoma cells. Mol Cancer. 8:762009. View Article : Google Scholar : PubMed/NCBI

171 

Mazieres J, You L, He B, Xu Z, Twogood S, Lee AY, Reguart N, Batra S, Mikami I and Jablons DM: Wnt2 as a new therapeutic target in malignant pleural mesothelioma. Int J Cancer. 117:326–332. 2005. View Article : Google Scholar : PubMed/NCBI

172 

Pode-Shakked N, Harari-Steinberg O, Haberman-Ziv Y, Rom-Gross E, Bahar S, Omer D, Metsuyanim S, Buzhor E, Jacob-Hirsch J, Goldstein RS, et al: Resistance or sensitivity of Wilms' tumor to anti-FZD7 antibody highlights the Wnt pathway as a possible therapeutic target. Oncogene. 30:1664–1680. 2011. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

February 2016
Volume 48 Issue 2

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Xiao, Y., Yong, X., Tang, B., Qin, Y., Zhang, J., Zhang, D. ... Yang, S. (2016). Notch and Wnt signaling pathway in cancer: Crucial role and potential therapeutic targets (Review). International Journal of Oncology, 48, 437-449. https://doi.org/10.3892/ijo.2015.3280
MLA
Xiao, Y., Yong, X., Tang, B., Qin, Y., Zhang, J., Zhang, D., Xie, R., Yang, S."Notch and Wnt signaling pathway in cancer: Crucial role and potential therapeutic targets (Review)". International Journal of Oncology 48.2 (2016): 437-449.
Chicago
Xiao, Y., Yong, X., Tang, B., Qin, Y., Zhang, J., Zhang, D., Xie, R., Yang, S."Notch and Wnt signaling pathway in cancer: Crucial role and potential therapeutic targets (Review)". International Journal of Oncology 48, no. 2 (2016): 437-449. https://doi.org/10.3892/ijo.2015.3280