miR-512-5p induces apoptosis and inhibits glycolysis by targeting p21 in non-small cell lung cancer cells

  • Authors:
    • Kaili Chu
    • Guanghui Gao
    • Xiufang Yang
    • Shengxiang Ren
    • Yao Li
    • Hai Wu
    • Yan Huang
    • Caicun Zhou
  • View Affiliations

  • Published online on: December 7, 2015     https://doi.org/10.3892/ijo.2015.3279
  • Pages: 577-586
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

MicroRNAs are a family of small non-coding RNAs that constitute a prevalent gene regulation. In this study, we showed the expression of miR-512-5p is downregulated in non-small cell lung cancer (NSCLC) patient tumor samples compared to its paired normal lung tissues. Moreover, expression of miR-512-5p was increased by retinoic acid treatment. Overexpression of miR-512-5p induced apoptosis of NSCLC cell lines A549 and H1299, and miR-512-5p inhibitor reversed this effect in H1299 cells stably expressing miR-512. miR-512-5p inhibited glycolysis and migration in NSCLC cells, but shows no effect on cell proliferation. We identified p21 as a target gene of miR-512-5p. Overexpression of miR-512-5p led to the decrease of p21 protein and mRNA level. Knockdown of p21 resulted in similar effects on apoptosis and glycolysis as that observed of miR-512-5p overexpression, as well as rescued the effect of miR-512-5p inhibitor on cell apoptosis in H1299 cells stably expressing miR-512. In conclusion, our present study revealed miR-512-5p was able to target p21 to induce apoptosis and inhibit glycolysis in A549 and H1299 cell lines.

References

1 

Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI

2 

Li J, Bi L, Sun Y, Lu Z, Lin Y, Bai O and Shao H: Text mining and network analysis of molecular interaction in non-small cell lung cancer by using natural language processing. Mol Biol Rep. 41:8071–8079. 2014. View Article : Google Scholar : PubMed/NCBI

3 

Joshi P, Jeon YJ, Laganà A, Middleton J, Secchiero P, Garofalo M and Croce CM: MicroRNA-148a reduces tumorigenesis and increases TRAIL-induced apoptosis in NSCLC. Proc Natl Acad Sci USA. 112:8650–8655. 2015. View Article : Google Scholar : PubMed/NCBI

4 

Li Y, Zhang D, Chen C, Ruan Z, Li Y and Huang Y: MicroRNA-212 displays tumor-promoting properties in non-small cell lung cancer cells and targets the hedgehog pathway receptor PTCH1. Mol Biol Cell. 23:1423–1434. 2012. View Article : Google Scholar : PubMed/NCBI

5 

Mendell JT: miRiad roles for the miR-17-92 cluster in development and disease. Cell. 133:217–222. 2008. View Article : Google Scholar : PubMed/NCBI

6 

Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D and Slack FJ: RAS is regulated by the let-7 microRNA family. Cell. 120:635–647. 2005. View Article : Google Scholar : PubMed/NCBI

7 

Loo JM, Scherl A, Nguyen A, Man FY, Weinberg E, Zeng Z, Saltz L, Paty PB and Tavazoie SF: Extracellular metabolic energetics can promote cancer progression. Cell. 160:393–406. 2015. View Article : Google Scholar : PubMed/NCBI

8 

Okazawa H, Shimizu J, Kamei M, Imafuku I, Hamada H and Kanazawa I: Bcl-2 inhibits retinoic acid-induced apoptosis during the neural differentiation of embryonal stem cells. J Cell Biol. 132:955–968. 1996. View Article : Google Scholar : PubMed/NCBI

9 

Burnett A, Wetzler M and Löwenberg B: Therapeutic advances in acute myeloid leukemia. J Clin Oncol. 29:487–494. 2011. View Article : Google Scholar : PubMed/NCBI

10 

Fisher JN, Terao M, Fratelli M, Kurosaki M, Paroni G, Zanetti A, Gianni M, Bolis M, Lupi M, Tsykin A, et al: MicroRNA networks regulated by all-trans retinoic acid and Lapatinib control the growth, survival and motility of breast cancer cells. Oncotarget. 6:13176–13200. 2015. View Article : Google Scholar : PubMed/NCBI

11 

Khan S, Wall D, Curran C, Newell J, Kerin MJ and Dwyer RM: MicroRNA-10a is reduced in breast cancer and regulated in part through retinoic acid. BMC Cancer. 15:3452015. View Article : Google Scholar : PubMed/NCBI

12 

Lichner Z, Páll E, Kerekes A, Pállinger E, Maraghechi P, Bosze Z and Gócza E: The miR-290–295 cluster promotes pluripotency maintenance by regulating cell cycle phase distribution in mouse embryonic stem cells. Differentiation. 81:11–24. 2011. View Article : Google Scholar

13 

Cheung TH, Man KN, Yu MY, Yim SF, Siu NS, Lo KW, Doran G, Wong RR, Wang VW, Smith DI, et al: Dysregulated microRNAs in the pathogenesis and progression of cervical neoplasm. Cell Cycle. 11:2876–2884. 2012. View Article : Google Scholar : PubMed/NCBI

14 

Saito Y, Suzuki H, Tsugawa H, Nakagawa I, Matsuzaki J, Kanai Y and Hibi T: Chromatin remodeling at Alu repeats by epigenetic treatment activates silenced microRNA-512-5p with down-regulation of Mcl-1 in human gastric cancer cells. Oncogene. 28:2738–2744. 2009. View Article : Google Scholar : PubMed/NCBI

15 

Sherr CJ and Roberts JM: CDK inhibitors: Positive and negative regulators of G1-phase progression. Genes Dev. 13:1501–1512. 1999. View Article : Google Scholar : PubMed/NCBI

16 

Deng C, Zhang P, Harper JW, Elledge SJ and Leder P: Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell. 82:675–684. 1995. View Article : Google Scholar : PubMed/NCBI

17 

Harper JW, Adami GR, Wei N, Keyomarsi K and Elledge SJ: The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell. 75:805–816. 1993. View Article : Google Scholar : PubMed/NCBI

18 

Abbas T and Dutta A: p21 in cancer: Intricate networks and multiple activities. Nat Rev Cancer. 9:400–414. 2009. View Article : Google Scholar : PubMed/NCBI

19 

Zhu X, Gao G, Chu K, Yang X, Ren S, Li Y, Wu H, Huang Y and Zhou C: Inhibition of RAC1-GEF DOCK3 by miR-512-3p contributes to suppression of metastasis in non-small cell lung cancer. Int J Biochem Cell Biol. 61:103–114. 2015. View Article : Google Scholar : PubMed/NCBI

20 

Vander Heiden MG, Cantley LC and Thompson CB: Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science. 324:1029–1033. 2009. View Article : Google Scholar : PubMed/NCBI

21 

Chen J and Thompson LU: Lignans and tamoxifen, alone or in combination, reduce human breast cancer cell adhesion, invasion and migration in vitro. Breast Cancer Res Treat. 80:163–170. 2003. View Article : Google Scholar : PubMed/NCBI

22 

Zhang J, Attar E, Cohen K, Crumpacker C and Scadden D: Silencing p21(Waf1/Cip1/Sdi1) expression increases gene transduction efficiency in primitive human hematopoietic cells. Gene Ther. 12:1444–1452. 2005. View Article : Google Scholar : PubMed/NCBI

23 

Rao A, Coan A, Welsh JE, Barclay WW, Koumenis C and Cramer SD: Vitamin D receptor and p21/WAF1 are targets of genistein and 1,25-dihydroxyvitamin D3 in human prostate cancer cells. Cancer Res. 64:2143–2147. 2004. View Article : Google Scholar : PubMed/NCBI

24 

Adi Harel S, Bossel Ben-Moshe N, Aylon Y, Bublik DR, Moskovits N, Toperoff G, Azaiza D, Biagoni F, Fuchs G, Wilder S, et al: Reactivation of epigenetically silenced miR-512 and miR-373 sensitizes lung cancer cells to cisplatin and restricts tumor growth. Cell Death Differ. 22:1328–1340. 2015. View Article : Google Scholar : PubMed/NCBI

25 

di Masi A, Leboffe L, De Marinis E, Pagano F, Cicconi L, Rochette-Egly C, Lo-Coco F, Ascenzi P and Nervi C: Retinoic acid receptors: From molecular mechanisms to cancer therapy. Mol Aspects Med. 41:1–115. 2015. View Article : Google Scholar

26 

Chen F, Cao Y, Qian J, Shao F, Niederreither K and Cardoso WV: A retinoic acid-dependent network in the foregut controls formation of the mouse lung primordium. J Clin Invest. 120:2040–2048. 2010. View Article : Google Scholar : PubMed/NCBI

27 

Jones RG and Thompson CB: Tumor suppressors and cell metabolism: A recipe for cancer growth. Genes Dev. 23:537–548. 2009. View Article : Google Scholar : PubMed/NCBI

28 

Muñoz-Pinedo C, El Mjiyad N and Ricci JE: Cancer metabolism: Current perspectives and future directions. Cell Death Dis. 3:e2482012. View Article : Google Scholar : PubMed/NCBI

29 

El Mjiyad N, Caro-Maldonado A, Ramírez-Peinado S and Muñoz-Pinedo C: Sugar-free approaches to cancer cell killing. Oncogene. 30:253–264. 2011. View Article : Google Scholar

30 

Raina K, Agarwal C, Wadhwa R, Serkova NJ and Agarwal R: Energy deprivation by silibinin in colorectal cancer cells: A double-edged sword targeting both apoptotic and autophagic machineries. Autophagy. 9:697–713. 2013. View Article : Google Scholar : PubMed/NCBI

31 

Li R, Waga S, Hannon GJ, Beach D and Stillman B: Differential effects by the p21 CDK inhibitor on PCNA-dependent DNA replication and repair. Nature. 371:534–537. 1994. View Article : Google Scholar : PubMed/NCBI

32 

Delavaine L and La Thangue NB: Control of E2F activity by p21Waf1/Cip1. Oncogene. 18:5381–5392. 1999. View Article : Google Scholar : PubMed/NCBI

33 

Coqueret O and Gascan H: Functional interaction of STAT3 transcription factor with the cell cycle inhibitor p21WAF1/CIP1/SDI1. J Biol Chem. 275:18794–18800. 2000. View Article : Google Scholar : PubMed/NCBI

34 

Kitaura H, Shinshi M, Uchikoshi Y, Ono T, Iguchi-Ariga SM and Ariga H: Reciprocal regulation via protein-protein interaction between c-Myc and p21(cip1/waf1/sdi1) in DNA replication and transcription. J Biol Chem. 275:10477–10483. 2000. View Article : Google Scholar : PubMed/NCBI

35 

Roninson IB: Oncogenic functions of tumour suppressor p21(Waf1/Cip1/Sdi1): Association with cell senescence and tumour-promoting activities of stromal fibroblasts. Cancer Lett. 179:1–14. 2002. View Article : Google Scholar : PubMed/NCBI

36 

Dotto GP: p21(WAF1/Cip1): More than a break to the cell cycle? Biochim Biophys Acta. 1471:M43–M56. 2000.PubMed/NCBI

37 

Gartel AL: The conflicting roles of the cdk inhibitor p21(CIP1/WAF1) in apoptosis. Leuk Res. 29:1237–1238. 2005. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

February 2016
Volume 48 Issue 2

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Chu, K., Gao, G., Yang, X., Ren, S., Li, Y., Wu, H. ... Zhou, C. (2016). miR-512-5p induces apoptosis and inhibits glycolysis by targeting p21 in non-small cell lung cancer cells. International Journal of Oncology, 48, 577-586. https://doi.org/10.3892/ijo.2015.3279
MLA
Chu, K., Gao, G., Yang, X., Ren, S., Li, Y., Wu, H., Huang, Y., Zhou, C."miR-512-5p induces apoptosis and inhibits glycolysis by targeting p21 in non-small cell lung cancer cells". International Journal of Oncology 48.2 (2016): 577-586.
Chicago
Chu, K., Gao, G., Yang, X., Ren, S., Li, Y., Wu, H., Huang, Y., Zhou, C."miR-512-5p induces apoptosis and inhibits glycolysis by targeting p21 in non-small cell lung cancer cells". International Journal of Oncology 48, no. 2 (2016): 577-586. https://doi.org/10.3892/ijo.2015.3279