Molecular basis of antibody binding to mucin glycopeptides in lung cancer

  • Authors:
    • Jin Qu
    • Hongtao Yu
    • Fenge Li
    • Chunlei Zhang
    • Ahmad Trad
    • Cory Brooks
    • Bin Zhang
    • Ting Gong
    • Zhi Guo
    • Yunsen Li
    • Govind Ragupathi
    • Yanyan Lou
    • Patrick Hwu
    • Wei Huang
    • Dapeng Zhou
  • View Affiliations

  • Published online on: December 18, 2015     https://doi.org/10.3892/ijo.2015.3302
  • Pages: 587-594
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Glycopeptides bearing Tn epitopes are emerging targets for cancer diagnosis and immunotherapy. In this study, we analyzed membrane proteins containing O-glycosylated tandem repeat (TR) sequences in lung cancer patients of different types and stages, using gene microarray data in public domain. The expression of Tn and glycopeptide epitopes on the surface of lung cancer cell lines were studied by monoclonal IgG antibodies 14A, 16A, and B72.3. The binding of mAbs to synthetic glycopeptides were studied by surface plasmon resonance. Nine mucin mRNAs were found to be expressed in lung cancer patients but at similar level to healthy individuals. At protein level, a glycopeptide epitope on cancer cell surface is preferably recognized by mAb 16A, as compared to peptide-alone (14A) or sugar-alone epitopes (B72.3). 14A and 16A favor clustered TR containing more than three TR sequences, with 10-fold lower Kd than two consecutive TR. B72.3 preferrably recognized clustered sialyl-Tn displayed on MUC1 but not other O-glycoproteins, with 100-fold stronger binding when MUC1 is transfected as a sugar carrier, while the total sugar epitopes remain unchanged. These findings indicate that clusters of both TR backbones and sugars are essential for mAb binding to mucin glycopeptides. Three rules of antibody binding to mucin glycopeptides at molecular level are presented here: first, the peptide backbone of a glycopeptide is preferentially recognized by B cells through mutations in complementarity determining regions (CDRs) of B cell receptor, and the sugar-binding specificity is acquired through mutations in frame work of heavy chain; secondly, consecutive tandem repeats (TR) of peptides and glycopeptides are preferentially recognized by B cells, which favor clustered TR containing more than three TR sequences; thirdly, certain sugar-specific B cells recognize and accommodate clustered Tn and sialyl-Tn displayed on the surface of a mucin but not other membrane proteins.

References

1 

Hamid O, Robert C, Daud A, Hodi FS, Hwu WJ, Kefford R, Wolchok JD, Hersey P, Joseph RW, Weber JS, et al: Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med. 369:134–144. 2013. View Article : Google Scholar : PubMed/NCBI

2 

Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, Drake CG, Camacho LH, Kauh J, Odunsi K, et al: Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 366:2455–2465. 2012. View Article : Google Scholar : PubMed/NCBI

3 

Ahmad R, Alam M, Rajabi H and Kufe D: The MUC1-C oncoprotein binds to the BH3 domain of the pro-apoptotic BAX protein and blocks BAX function. J Biol Chem. 287:20866–20875. 2012. View Article : Google Scholar : PubMed/NCBI

4 

Xu X, Wells A, Padilla MT, Kato K, Kim KC and Lin Y: A signaling pathway consisting of miR-551b, catalase and MUC1 contributes to acquired apoptosis resistance and chemoresistance. Carcinogenesis. 35:2457–2466. 2014. View Article : Google Scholar : PubMed/NCBI

5 

Zhang K, Sikut R and Hansson GC: A MUC1 mucin secreted from a colon carcinoma cell line inhibits target cell lysis by natural killer cells. Cell Immunol. 176:158–165. 1997. View Article : Google Scholar : PubMed/NCBI

6 

Ogata S, Maimonis PJ and Itzkowitz SH: Mucins bearing the cancer-associated sialosyl-Tn antigen mediate inhibition of natural killer cell cytotoxicity. Cancer Res. 52:4741–4746. 1992.PubMed/NCBI

7 

Moreno M, Bontkes HJ, Scheper RJ, Kenemans P, Verheijen RH and von Mensdorff-Pouilly S: High level of MUC1 in serum of ovarian and breast cancer patients inhibits huHMFG-1 dependent cell-mediated cytotoxicity (ADCC). Cancer Lett. 257:47–55. 2007. View Article : Google Scholar : PubMed/NCBI

8 

Belisle JA, Horibata S, Jennifer GA, Petrie S, Kapur A, André S, Gabius HJ, Rancourt C, Connor J, Paulson JC, et al: Identification of Siglec-9 as the receptor for MUC16 on human NK cells, B cells, and monocytes. Mol Cancer. 9:1182010. View Article : Google Scholar : PubMed/NCBI

9 

Kuemmel A, Single K, Bittinger F, Faldum A, Schmidt LH, Sebastian M, Micke P, Taube C, Buhl R and Wiewrodt R: TA-MUC1 epitope in non-small cell lung cancer. Lung Cancer. 63:98–105. 2009. View Article : Google Scholar

10 

Devine PL, Birrell GW, Quin RJ and Shield PW: Monoclonal antibodies recognising sialyl-Tn: Production and application to immunochemistry. Dis Markers. 12:175–186. 1995. View Article : Google Scholar : PubMed/NCBI

11 

Longenecker BM, Willans DJ, MacLean GD, Selvaraj S, Suresh MR and Noujaim AA: Monoclonal antibodies and synthetic tumor-associated glycoconjugates in the study of the expression of Thomsen-Friedenreich-like and Tn-like antigens on human cancers. J Natl Cancer Inst. 78:489–496. 1987.PubMed/NCBI

12 

Nguyen PL, Niehans GA, Cherwitz DL, Kim YS and Ho SB: Membrane-bound (MUC1) and secretory (MUC2, MUC3, and MUC4) mucin gene expression in human lung cancer. Tumour Biol. 17:176–192. 1996. View Article : Google Scholar : PubMed/NCBI

13 

Snijdewint FG, von Mensdorff-Pouilly S, Karuntu-Wanamarta AH, Verstraeten AA, Livingston PO, Hilgers J and Kenemans P: Antibody-dependent cell-mediated cytotoxicity can be induced by MUC1 peptide vaccination of breast cancer patients. Int J Cancer. 93:97–106. 2001. View Article : Google Scholar : PubMed/NCBI

14 

Vassilaros S, Tsibanis A, Tsikkinis A, Pietersz GA, McKenzie IF and Apostolopoulos V: Up to 15-year clinical follow-up of a pilot Phase III immunotherapy study in stage II breast cancer patients using oxidized mannan-MUC1. Immunotherapy. 5:1177–1182. 2013. View Article : Google Scholar : PubMed/NCBI

15 

Kimura T, McKolanis JR, Dzubinski LA, Islam K, Potter DM, Salazar AM, Schoen RE and Finn OJ: MUC1 vaccine for individuals with advanced adenoma of the colon: A cancer immunoprevention feasibility study. Cancer Prev Res (Phila). 6:18–26. 2013. View Article : Google Scholar

16 

Ramanathan RK, Lee KM, McKolanis J, Hitbold E, Schraut W, Moser AJ, Warnick E, Whiteside T, Osborne J, Kim H, et al: Phase I study of a MUC1 vaccine composed of different doses of MUC1 peptide with SB-AS2 adjuvant in resected and locally advanced pancreatic cancer. Cancer Immunol Immunother. 54:254–264. 2005. View Article : Google Scholar

17 

Shedden K, Taylor JM, Enkemann SA, Tsao MS, Yeatman TJ, Gerald WL, Eschrich S, Jurisica I, Giordano TJ, Misek DE, et al; Director's Challenge Consortium for the Molecular Classification of Lung Adenocarcinoma. Gene expression-based survival prediction in lung adenocarcinoma: A multi-site, blinded validation study. Nat Med. 14:822–827. 2008. View Article : Google Scholar : PubMed/NCBI

18 

Wilson CL and Miller CJ: Simpleaffy: A BioConductor package for Affymetrix Quality Control and data analysis. Bioinformatics. 21:3683–3685. 2005. View Article : Google Scholar : PubMed/NCBI

19 

Bhattacharjee A, Richards WG, Staunton J, Li C, Monti S, Vasa P, Ladd C, Beheshti J, Bueno R, Gillette M, et al: Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc Natl Acad Sci USA. 98:13790–13795. 2001. View Article : Google Scholar : PubMed/NCBI

20 

Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B and Speed TP: Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res. 31:e152003. View Article : Google Scholar : PubMed/NCBI

21 

R Development Core Team. R: A Language and Environment for Statistical Computing: the R Foundation for Statistical Computing. Vienna: 2011

22 

Song W, Delyria ES, Chen J, Huang W, Lee JS, Mittendorf EA, Ibrahim N, Radvanyi LG, Li Y, Lu H, et al: MUC1 glycopeptide epitopes predicted by computational glycomics. Int J Oncol. 41:1977–1984. 2012.PubMed/NCBI

23 

Reddish MA, Jackson L, Koganty RR, Qiu D, Hong W and Longenecker BM: Specificities of anti-sialyl-Tn and anti-Tn monoclonal antibodies generated using novel clustered synthetic glycopeptide epitopes. Glycoconj J. 14:549–560. 1997. View Article : Google Scholar : PubMed/NCBI

24 

Colcher D, Hand PH, Nuti M and Schlom J: A spectrum of monoclonal antibodies reactive with human mammary tumor cells. Proc Natl Acad Sci USA. 78:3199–3203. 1981. View Article : Google Scholar : PubMed/NCBI

25 

Schietinger A, Philip M, Yoshida BA, Azadi P, Liu H, Meredith SC and Schreiber H: A mutant chaperone converts a wild-type protein into a tumor-specific antigen. Science. 314:304–308. 2006. View Article : Google Scholar : PubMed/NCBI

26 

Vierbuchen MJ, Fruechtnicht W, Brackrock S, Krause KT and Zienkiewicz TJ: Quantitative lectin-histochemical and immunohistochemical studies on the occurrence of alpha(2,3)- and alpha(2,6)-linked sialic acid residues in colorectal carcinomas. Relation to clinicopathologic features. Cancer. 76:727–735. 1995. View Article : Google Scholar : PubMed/NCBI

27 

Steentoft C, Vakhrushev SY, Joshi HJ, Kong Y, Vester-Christensen MB, Schjoldager KT, Lavrsen K, Dabelsteen S, Pedersen NB, Marcos-Silva L, et al: Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. EMBO J. 32:1478–1488. 2013. View Article : Google Scholar : PubMed/NCBI

28 

Yang Z, Halim A, Narimatsu Y, Jitendra Joshi H, Steentoft C, Schjoldager KT, Alder Schulz M, Sealover NR, Kayser KJ, Paul Bennett E, et al: The GalNAc-type O-Glycoproteome of CHO cells characterized by the SimpleCell strategy. Mol Cell Proteomics. 13:3224–3235. 2014. View Article : Google Scholar : PubMed/NCBI

29 

Levery SB, Steentoft C, Halim A, Narimatsu Y, Clausen H and Vakhrushev SY: Advances in mass spectrometry driven O-glycoproteomics. Biochim Biophys Acta. 1850.33–42. 2015.

30 

Lakshminarayanan V, Thompson P, Wolfert MA, Buskas T, Bradley JM, Pathangey LB, Madsen CS, Cohen PA, Gendler SJ and Boons GJ: Immune recognition of tumor-associated mucin MUC1 is achieved by a fully synthetic aberrantly glycosylated MUC1 tripartite vaccine. Proc Natl Acad Sci USA. 109:261–266. 2012. View Article : Google Scholar :

31 

Dokurno P, Bates PA, Band HA, Stewart LM, Lally JM, Burchell JM, Taylor-Papadimitriou J, Snary D, Sternberg MJ and Freemont PS: Crystal structure at 1.95 A resolution of the breast tumour-specific antibody SM3 complexed with its peptide epitope reveals novel hypervariable loop recognition. J Mol Biol. 284:713–728. 1998. View Article : Google Scholar : PubMed/NCBI

32 

Möller H, Serttas N, Paulsen H, Burchell JM, Taylor-Papadimitriou J and Meyer Bernd: NMR-based determination of the binding epitope and conformational analysis of MUC-1 glycopeptides and peptides bound to the breast cancer-selective monoclonal antibody SM3. Eur J Biochem. 269:1444–1455. 2002. View Article : Google Scholar : PubMed/NCBI

33 

Spencer DI, Missailidis S, Denton G, Murray A, Brady K, Matteis CI, Searle MS, Tendler SJ and Price MR: Structure/activity studies of the anti-MUC1 monoclonal antibody C595 and synthetic MUC1 mucin-core-related peptides and glycopeptides. Biospectroscopy. 5:79–91. 1999. View Article : Google Scholar : PubMed/NCBI

34 

Matsumoto-Takasaki A, Hanashima S, Aoki A, Yuasa N, Ogawa H, Sato R, Kawakami H, Mizuno M, Nakada H, Yamaguchi Y, et al: Surface plasmon resonance and NMR analyses of anti Tn-antigen MLS128 monoclonal antibody binding to two or three consecutive Tn-antigen clusters. J Biochem. 151:273–282. 2012. View Article : Google Scholar

35 

Ibrahim NK, Murray JL, Zhou D, Mittendorf EA, Sample D, Tautchin M and Miles D: Survival Advantage in Patients with Metastatic Breast Cancer Receiving Endocrine Therapy plus Sialyl Tn-KLH Vaccine: Post Hoc Analysis of a Large Randomized Trial. J Cancer. 4:577–584. 2013. View Article : Google Scholar : PubMed/NCBI

36 

Forsström B, Axnäs BB, Stengele KP, Bühler J, Albert TJ, Richmond TA, Hu FJ, Nilsson P, Hudson EP, Rockberg J, et al: Proteome-wide epitope mapping of antibodies using ultra-dense peptide arrays. Mol Cell Proteomics. 13:1585–1597. 2014. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

February 2016
Volume 48 Issue 2

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Qu, J., Yu, H., Li, F., Zhang, C., Trad, A., Brooks, C. ... Zhou, D. (2016). Molecular basis of antibody binding to mucin glycopeptides in lung cancer. International Journal of Oncology, 48, 587-594. https://doi.org/10.3892/ijo.2015.3302
MLA
Qu, J., Yu, H., Li, F., Zhang, C., Trad, A., Brooks, C., Zhang, B., Gong, T., Guo, Z., Li, Y., Ragupathi, G., Lou, Y., Hwu, P., Huang, W., Zhou, D."Molecular basis of antibody binding to mucin glycopeptides in lung cancer". International Journal of Oncology 48.2 (2016): 587-594.
Chicago
Qu, J., Yu, H., Li, F., Zhang, C., Trad, A., Brooks, C., Zhang, B., Gong, T., Guo, Z., Li, Y., Ragupathi, G., Lou, Y., Hwu, P., Huang, W., Zhou, D."Molecular basis of antibody binding to mucin glycopeptides in lung cancer". International Journal of Oncology 48, no. 2 (2016): 587-594. https://doi.org/10.3892/ijo.2015.3302