In vitro antitumor effects of two novel oligostilbenes, cis- and trans-suffruticosol D, isolated from Paeonia suffruticosa seeds

  • Authors:
    • Nadin Marwan Almosnid
    • Ying Gao
    • Chunnian He
    • Hyo Sim Park
    • Elliot Altman
  • View Affiliations

  • Published online on: November 26, 2015     https://doi.org/10.3892/ijo.2015.3269
  • Pages: 646-656
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Naturally derived stilbenes have been shown to elicit cytotoxic, anti-steroidal, anti-mutagenic, anti-oxidative, anti-inflammatory, and antitumor bioactivities. Previous phytochemical studies revealed that the seeds of Paeonia suffruticosa are rich in natural stilbenes. In this study the antitumor effects and mechanism of action of the oligostilbene isomers, cis- and trans-suffruticosol D, isolated from the seeds of P. suffruticosa were examined. cis- and trans-suffruticosol D exhibited remarkable cytotoxicity against the human cancer cell lines A549 (lung), BT20 (breast), MCF-7 (breast), and U2OS (osteosarcoma), but showed significantly less toxicity to the normal human cell lines HMEC (breast) and HPL1A (lung). We also demonstrated that cis- and trans-suffruticosol D exerted their antitumor effects by provoking oxidative stress, stimulating apoptosis, decreasing the mitochondrial membrane potential, inhibiting cell motility, and blocking the NF-κB pathway in human lung cancer cells. In addition, we evaluated their respective bioefficacy and found that trans-suffruticosol D is more potent than cis-suffruticosol D. Collectively, our results suggest that cis- and trans-suffruticosol D could be promising chemotherapeutic agents against cancer.

References

1 

Cai Y, Luo Q, Sun M and Corke H: Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci. 74:2157–2184. 2004. View Article : Google Scholar : PubMed/NCBI

2 

Zhang Q and Gong H: Clinical Practice of Anticancer Traditional Chinese Medicines. People's Health Publishing House; Beijing: 1998

3 

Bo QM, Wu ZY, Shun QS, Bao XS, Mao ZS, Ha SQ, Lu SY and Huang JM: A Selection of the Illustrated Chinese Anti-Cancer Herbal Medicines. Shanghai Science and Technology Literature Press; Shanghai: 2002

4 

Parekh HS, Liu G and Wei MQ: A new dawn for the use of traditional Chinese medicine in cancer therapy. Mol Cancer. 8:212009. View Article : Google Scholar : PubMed/NCBI

5 

He CN, Peng Y, Xu LJ, Liu ZA, Gu J, Zhong AG and Xiao PG: Three new oligostilbenes from the seeds of Paeonia suffruticosa. Chem Pharm Bull (Tokyo). 58:843–847. 2010. View Article : Google Scholar

6 

Chinese Pharmacopoeia Commission. Chinese Pharmacopoeia. China Medical Scientific and Technological Press; Beijing: pp. 160–161. 2010

7 

He CN, Peng Y, Wu QL, Xiao W, Peng B, Wang Z and Xiao PG: Simultaneous determination of ten stilbenes in the seeds of Paeonia species using HPLC-DAD. J Liquid Chromatogr Relat Technol. 36:1708–1724. 2013.

8 

He CN, Peng Y, Zhang YC, Xu LJ, Gu J and Xiao PG: Phytochemical and biological studies of Paeoniaceae. Chem Biodivers. 7:805–838. 2010. View Article : Google Scholar : PubMed/NCBI

9 

Shen T, Xie CF, Wang XN and Lou HX: Stilbenoids. Natural Products. Springer; pp. 1901–1949. 2013, View Article : Google Scholar

10 

Cai T and Cai Y: cis-Ampelopsin E, a stilbene isolated from the seeds of Paeonia suffruticosa, inhibits lipopolysaccharide-stimulated nitric oxide production in RAW 264.7 macrophages via blockade of nuclear factor-kappa B signaling pathway. Biol Pharm Bull. 34:1501–1507. 2011. View Article : Google Scholar : PubMed/NCBI

11 

Yuk HJ, Ryu HW, Jeong SH, Curtis-Long MJ, Kim HJ, Wang Y, Song YH and Park KH: Profiling of neuraminidase inhibitory polyphenols from the seeds of Paeonia lactiflora. Food Chem Toxicol. 55:144–149. 2013. View Article : Google Scholar : PubMed/NCBI

12 

Hussain S, Slevin M, Ahmed N, West D, Choudhary MI, Naz H and Gaffney J: Stilbene glycosides are natural product inhibitors of FGF-2-induced angiogenesis. BMC Cell Biol. 10:302009. View Article : Google Scholar : PubMed/NCBI

13 

Simoni D, Invidiata FP, Eleopra M, Marchetti P, Rondanin R, Baruchello R, Grisolia G, Tripathi A, Kellogg GE, Durrant D, et al: Design, synthesis and biological evaluation of novel stilbene-based antitumor agents. Bioorg Med Chem. 17:512–522. 2009. View Article : Google Scholar : PubMed/NCBI

14 

He S, Lu Y, Jiang L, Wu B, Zhang F and Pan Y: Preparative isolation and purification of antioxidative stilbene oligomers from Vitis chunganeniss using high-speed counter-current chromatography in stepwise elution mode. J Sep Sci. 32:2339–2345. 2009. View Article : Google Scholar : PubMed/NCBI

15 

Jung M, Park WH, Jung JC, Lim E, Lee Y, Oh S and Moon HI: Synthesis, structural characterization and biological evaluation of novel stilbene derivatives as potential antimalarial agents. Chem Biol Drug Des. 73:346–354. 2009. View Article : Google Scholar : PubMed/NCBI

16 

Lee K, Lee JH, Ryu SY, Cho MH and Lee J: Stilbenes reduce Staphylococcus aureus hemolysis, biofilm formation, and virulence. Foodborne Pathog Dis. 11:710–717. 2014. View Article : Google Scholar : PubMed/NCBI

17 

Shukla Y and Singh R: Resveratrol and cellular mechanisms of cancer prevention. Ann NY Acad Sci. 1215:1–8. 2011. View Article : Google Scholar : PubMed/NCBI

18 

Whitlock NC and Baek SJ: The anticancer effects of resveratrol: Modulation of transcription factors. Nutr Cancer. 64:493–502. 2012. View Article : Google Scholar : PubMed/NCBI

19 

Pettit GR, Grealish MP, Jung MK, Hamel E, Pettit RK, Chapuis JC and Schmidt JM: Antineoplastic agents. 465. Structural modification of resveratrol: Sodium resverastatin phosphate. J Med Chem. 45:2534–2542. 2002. View Article : Google Scholar : PubMed/NCBI

20 

Kasibhatla S and Tseng B: Why target apoptosis in cancer treatment? Mol Cancer Ther. 2:573–580. 2003.PubMed/NCBI

21 

Cheah SC, Appleton DR, Lee ST, Lam ML, Hadi AHA and Mustafa MR: Panduratin A inhibits the growth of A549 cells through induction of apoptosis and inhibition of NF-kappaB translocation. Molecules. 16:2583–2598. 2011. View Article : Google Scholar : PubMed/NCBI

22 

Ly JD, Grubb DR and Lawen A: The mitochondrial membrane potential (Δψm) in apoptosis; an update. Apoptosis. 8:115–128. 2003. View Article : Google Scholar : PubMed/NCBI

23 

Kannan K and Jain SK: Oxidative stress and apoptosis. Pathophysiology. 7:153–163. 2000. View Article : Google Scholar : PubMed/NCBI

24 

Ozben T: Oxidative stress and apoptosis: Impact on cancer therapy. J Pharm Sci. 96:2181–2196. 2007. View Article : Google Scholar : PubMed/NCBI

25 

Sosa V, Moliné T, Somoza R, Paciucci R, Kondoh H and LLeonart ME: Oxidative stress and cancer: An overview. Ageing Res Rev. 12:376–390. 2013. View Article : Google Scholar

26 

Suzuki Y, Nakabayashi Y, Nakata K, Reed JC and Takahashi R: X-linked inhibitor of apoptosis protein (XIAP) inhibits caspase-3 and −7 in distinct modes. J Biol Chem. 276:27058–27063. 2001. View Article : Google Scholar : PubMed/NCBI

27 

Schimmer AD, Dalili S, Batey RA and Riedl SJ: Targeting XIAP for the treatment of malignancy. Cell Death Differ. 13:179–188. 2006. View Article : Google Scholar

28 

Ryan BM, O'Donovan N and Duffy MJ: Survivin: A new target for anti-cancer therapy. Cancer Treat Rev. 35:553–562. 2009. View Article : Google Scholar : PubMed/NCBI

29 

Hu Y, Cherton-Horvat G, Dragowska V, Baird S, Korneluk RG, Durkin JP, Mayer LD and LaCasse EC: Antisense oligonucleotides targeting XIAP induce apoptosis and enhance chemotherapeutic activity against human lung cancer cells in vitro and in vivo. Clin Cancer Res. 9:2826–2836. 2003.PubMed/NCBI

30 

He X, Khurana A, Maguire JL, Chien J and Shridhar V: HtrA1 sensitizes ovarian cancer cells to cisplatin-induced cytotoxicity by targeting XIAP for degradation. Int J Cancer. 130:1029–1035. 2012. View Article : Google Scholar

31 

Oost TK, Sun C, Armstrong RC, Al-Assaad AS, Betz SF, Deckwerth TL, Ding H, Elmore SW, Meadows RP, Olejniczak ET, et al: Discovery of potent antagonists of the antiapoptotic protein XIAP for the treatment of cancer. J Med Chem. 47:4417–4426. 2004. View Article : Google Scholar : PubMed/NCBI

32 

Mita AC, Mita MM, Nawrocki ST and Giles FJ: Survivin: Key regulator of mitosis and apoptosis and novel target for cancer therapeutics. Clin Cancer Res. 14:5000–5005. 2008. View Article : Google Scholar : PubMed/NCBI

33 

Cappello F, Conway de Macario E, Marasà L, Zummo G and Macario AJ: Hsp60 expression, new locations, functions and perspectives for cancer diagnosis and therapy. Cancer Biol Ther. 7:801–809. 2008. View Article : Google Scholar : PubMed/NCBI

34 

Murphy ME: The HSP70 family and cancer. Carcinogenesis. 34:1181–1188. 2013. View Article : Google Scholar : PubMed/NCBI

35 

Luo X, Budihardjo I, Zou H, Slaughter C and Wang X: Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell. 94:481–490. 1998. View Article : Google Scholar : PubMed/NCBI

36 

Yamamoto H, Soh JW, Shirin H, Xing WQ, Lim JT, Yao Y, Slosberg E, Tomita N, Schieren I and Weinstein IB: Comparative effects of overexpression of p27Kip1 and p21Cip1/Waf1 on growth and differentiation in human colon carcinoma cells. Oncogene. 18:103–115. 1999. View Article : Google Scholar : PubMed/NCBI

37 

Nickeleit I, Zender S, Kossatz U and Malek NP: p27kip1: A target for tumor therapies? Cell Div. 2:132007. View Article : Google Scholar : PubMed/NCBI

38 

Kasof GM, Lu JJ, Liu D, Speer B, Mongan KN, Gomes BC and Lorenzi MV: Tumor necrosis factor-alpha induces the expression of DR6, a member of the TNF receptor family, through activation of NF-kappaB. Oncogene. 20:7965–7975. 2001. View Article : Google Scholar : PubMed/NCBI

39 

Yamazaki D, Kurisu S and Takenawa T: Regulation of cancer cell motility through actin reorganization. Cancer Sci. 96:379–386. 2005. View Article : Google Scholar : PubMed/NCBI

40 

Olson MF and Sahai E: The actin cytoskeleton in cancer cell motility. Clin Exp Metastasis. 26:273–287. 2009. View Article : Google Scholar

41 

Wells A, Grahovac J, Wheeler S, Ma B and Lauffenburger D: Targeting tumor cell motility as a strategy against invasion and metastasis. Trends Pharmacol Sci. 34:283–289. 2013. View Article : Google Scholar : PubMed/NCBI

42 

Levin EG: Cancer therapy through control of cell migration. Curr Cancer Drug Targets. 5:505–518. 2005. View Article : Google Scholar : PubMed/NCBI

43 

Monika SA, Sharma A, Suthar SK, Aggarwal V, Lee HB and Sharma M: Synthesis of lantadene analogs with marked in vitro inhibition of lung adenocarcinoma and TNF-α induced nuclear factor-kappa B (NF-κB) activation. Bioorg Med Chem Lett. 24:3814–3818. 2014. View Article : Google Scholar : PubMed/NCBI

44 

Nakanishi C and Toi M: Nuclear factor-kappaB inhibitors as sensitizers to anticancer drugs. Nat Rev Cancer. 5:297–309. 2005. View Article : Google Scholar : PubMed/NCBI

45 

Reuter S, Gupta SC, Chaturvedi MM and Aggarwal BB: Oxidative stress, inflammation, and cancer: How are they linked? Free Radic Biol Med. 49:1603–1616. 2010. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

February 2016
Volume 48 Issue 2

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Almosnid, N.M., Gao, Y., He, C., Park, H.S., & Altman, E. (2016). In vitro antitumor effects of two novel oligostilbenes, cis- and trans-suffruticosol D, isolated from Paeonia suffruticosa seeds. International Journal of Oncology, 48, 646-656. https://doi.org/10.3892/ijo.2015.3269
MLA
Almosnid, N. M., Gao, Y., He, C., Park, H. S., Altman, E."In vitro antitumor effects of two novel oligostilbenes, cis- and trans-suffruticosol D, isolated from Paeonia suffruticosa seeds". International Journal of Oncology 48.2 (2016): 646-656.
Chicago
Almosnid, N. M., Gao, Y., He, C., Park, H. S., Altman, E."In vitro antitumor effects of two novel oligostilbenes, cis- and trans-suffruticosol D, isolated from Paeonia suffruticosa seeds". International Journal of Oncology 48, no. 2 (2016): 646-656. https://doi.org/10.3892/ijo.2015.3269