Oncogenic role of the TP53-induced glycolysis and apoptosis regulator in nasopharyngeal carcinoma through NF-κB pathway modulation

  • Authors:
    • Ming Zhao
    • Juan Fan
    • Yong Liu
    • Yanxin Yu
    • Jinhui Xu
    • Qinglian Wen
    • Jianwen Zhang
    • Shaozhi Fu
    • Biqiong Wang
    • Li Xiang
    • Jing Feng
    • Jingbo Wu
    • Linglin Yang
  • View Affiliations

  • Published online on: December 17, 2015     https://doi.org/10.3892/ijo.2015.3297
  • Pages: 756-764
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The TP53-induced glycolysis and apoptosis regulator (TIGAR) is a p53 target gene, which functions to suppress reactive oxygen species (ROS) damage and protect cells from apoptosis. In this study, we investigated the role of TIGAR in nasopharyngeal carcinoma (NPC) tumorigenesis. Imnunohistochemical analysis of the tissue specimens from nasopharyngeal carcinoma patients showed a higher expression level of TIGAR in tumor tissues, compared with normal nasopharyngeal epithelium. Knockdown of TIGAR by lentivirus-shRNA in CNE-2 or 5-8F cells resulted in decreased cell growth, colony formation, migration, invasion, and induced apoptosis. TIGAR overexpression exerted the opposite effects except for apoptosis reduction. In the xenograft tumor models, TIGAR knockdown reduced tumor growth rate and weight, whereas TIGAR overexpression showed the opposite effects. In addition, the NF-κB signaling pathway was decreased in TIGAR silenced cells. In conclusion, our data demonstrated that TIGAR acted as an oncogene in NPC tumorigenesis, and knockdown of TIGAR inhibited NPC tumor growth through the NF-κB pathway.

References

1 

Li XJ, Ong CK, Cao Y, Xiang YQ, Shao JY, Ooi A, Peng LX, Lu WH, Zhang Z, Petillo D, et al: Serglycin is a theranostic target in nasopharyngeal carcinoma that promotes metastasis. Cancer Res. 71:3162–3172. 2011. View Article : Google Scholar : PubMed/NCBI

2 

Xiao WW, Huang SM, Han F, Wu SX, Lu LX, Lin CG, Deng XW, Lu TX, Cui NJ and Zhao C: Local control, survival, and late toxicities of locally advanced nasopharyngeal carcinoma treated by simultaneous modulated accelerated radiotherapy combined with cisplatin concurrent chemotherapy: Long-term results of a phase 2 study. Cancer. 117:1874–1883. 2011. View Article : Google Scholar : PubMed/NCBI

3 

Lee AW, Lin JC and Ng WT: Current management of nasopharyngeal cancer. Semin Radiat Oncol. 22:233–244. 2012. View Article : Google Scholar : PubMed/NCBI

4 

Bensaad K, Tsuruta A, Selak MA, Vidal MN, Nakano K, Bartrons R, Gottlieb E and Vousden KH: TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell. 126:107–120. 2006. View Article : Google Scholar : PubMed/NCBI

5 

Vousden KH and Ryan KM: p53 and metabolism. Nat Rev Cancer. 9:691–700. 2009. View Article : Google Scholar : PubMed/NCBI

6 

Won KY, Lim SJ, Kim GY, Kim YW, Han SA, Song JY and Lee DK: Regulatory role of p53 in cancer metabolism via SCO2 and TIGAR in human breast cancer. Hum Pathol. 43:221–228. 2012. View Article : Google Scholar

7 

Ye L, Zhao X, Lu J, Qian G, Zheng JC and Ge S: Knockdown of TIGAR by RNA interference induces apoptosis and autophagy in HepG2 hepatocellular carcinoma cells. Biochem Biophys Res Commun. 437:300–306. 2013. View Article : Google Scholar : PubMed/NCBI

8 

Cheung EC, Athineos D, Lee P, Ridgway RA, Lambie W, Nixon C, Strathdee D, Blyth K, Sansom OJ and Vousden KH: TIGAR is required for efficient intestinal regeneration and tumorigenesis. Dev Cell. 25:463–477. 2013. View Article : Google Scholar : PubMed/NCBI

9 

Wanka C, Steinbach JP and Rieger J: Tp53-induced glycolysis and apoptosis regulator (TIGAR) protects glioma cells from starvation-induced cell death by up-regulating respiration and improving cellular redox homeostasis. J Biol Chem. 287:33436–33446. 2012. View Article : Google Scholar : PubMed/NCBI

10 

Sinha S, Ghildiyal R, Mehta VS and Sen E: ATM-NFκB axis-driven TIGAR regulates sensitivity of glioma cells to radio-mimetics in the presence of TNFα. Cell Death Dis. 4:e6152013. View Article : Google Scholar

11 

Pena-Rico MA, Calvo-Vidal MN, Villalonga-Planells R, Martinez-Soler F, Gimenez-Bonafe P, Navarro-Sabate A, Tortosa A, Bartrons R and Manzano A: TP53 induced glycolysis and apoptosis regulator (TIGAR) knockdown results in radio-sensitization of glioma cells. Radiother Oncol. 101:132–139. 2011. View Article : Google Scholar

12 

Wang L, Wei D, Huang S, Peng Z, Le X, Wu TT, et al: Transcription factor Sp1 expression is a significant predictor of survival in human gastric cancer. Clin Cancer Res. 9:6371–6380. 2003.PubMed/NCBI

13 

Somasundaram K and El-Deiry WS: Inhibition of p53-mediated transactivation and cell cycle arrest by E1A through its p300/CBP-interacting region. Oncogene. 14:1047–1057. 1997. View Article : Google Scholar : PubMed/NCBI

14 

Kimata M, Matoba S, Iwai-Kanai E, Nakamura H, Hoshino A, Nakaoka M, Katamura M, Okawa Y, Mita Y, Okigaki M, et al: p53 and TIGAR regulate cardiac myocyte energy homeostasis under hypoxic stress. Am J Physiol Heart Circ Physiol. 299:H1908–H1916. 2010. View Article : Google Scholar : PubMed/NCBI

15 

Lui VW, Lau CP, Cheung CS, Ho K, Ng MH, Cheng SH, Hong B, Tsao SW, Tsang CM, Lei KI, et al: An RNA-directed nucleoside anti-metabolite, 1- (3-C-ethynyl-beta-d-ribo-pentofuranosyl) cytosine (ECyd), elicits antitumor effect via TP53-induced Glycolysis and Apoptosis Regulator (TIGAR) downregulation. Biochem Pharmacol. 79:1772–1780. 2010. View Article : Google Scholar : PubMed/NCBI

16 

Lui VW, Wong EY, Ho K, Ng PK, Lau CP, Tsui SK, Tsang CM, Tsao SW, Cheng SH, Ng MH, et al: Inhibition of c-Met down-regulates TIGAR expression and reduces NADPH production leading to cell death. Oncogene. 30:1127–1134. 2011. View Article : Google Scholar

17 

Yin L, Kosugi M and Kufe D: Inhibition of the MUC1-C oncoprotein induces multiple myeloma cell death by down-regulating TIGAR expression and depleting NADPH. Blood. 119:810–816. 2012. View Article : Google Scholar :

18 

Bensaad K, Cheung EC and Vousden KH: Modulation of intra-cellular ROS levels by TIGAR controls autophagy. EMBO J. 28:3015–3026. 2009. View Article : Google Scholar : PubMed/NCBI

19 

Napetschnig J and Wu H: Molecular basis of NF-κB signaling. Annu Rev Biophys. 42:443–468. 2013. View Article : Google Scholar :

20 

Jacobs MD and Harrison SC: Structure of an IkappaBalpha/NF-kappaB complex. Cell. 95:749–758. 1998. View Article : Google Scholar : PubMed/NCBI

21 

Perkins ND and Gilmore TD: Good cop, bad cop: The different faces of NF-kappaB. Cell Death Differ. 13:759–772. 2006. View Article : Google Scholar : PubMed/NCBI

22 

Karin M, Cao Y, Greten FR and Li ZW: NF-kappaB in cancer: From innocent bystander to major culprit. Nat Rev Cancer. 2:301–310. 2002. View Article : Google Scholar : PubMed/NCBI

23 

Li F, Zhang J, Arfuso F, Chinnathambi A, Zayed ME, Alharbi SA, Kumar AP, Ahn KS and Sethi G: NF-κB in cancer therapy. Arch Toxicol. 89:711–731. 2015. View Article : Google Scholar : PubMed/NCBI

24 

Ren Q, Sato H, Murono S, Furukawa M and Yoshizaki T: Epstein-Barr virus (EBV) latent membrane protein 1 induces interleukin-8 through the nuclear factor-kappa B signaling pathway in EBV-infected nasopharyngeal carcinoma cell line. Laryngoscope. 114:855–859. 2004. View Article : Google Scholar : PubMed/NCBI

25 

Lo AK, Lo KW, Tsao SW, Wong HL, Hui JW, To KF, Hayward DS, Chui YL, Lau YL, Takada K, et al: Epstein-Barr virus infection alters cellular signal cascades in human nasopharyngeal epithelial cells. Neoplasia. 8:173–180. 2006. View Article : Google Scholar : PubMed/NCBI

26 

Cheung AK, Ko JM, Lung HL, Chan KW, Stanbridge EJ, Zabarovsky E, Tokino T, Kashima L, Suzuki T, Kwong DL, et al: Cysteine-rich intestinal protein 2 (CRIP2) acts as a repressor of NF-kappaB-mediated proangiogenic cytokine transcription to suppress tumorigenesis and angiogenesis. Proc Natl Acad Sci USA. 108:8390–8395. 2011. View Article : Google Scholar : PubMed/NCBI

27 

Sun W, Guo MM, Han P, Lin JZ, Liang FY, Tan GM, Li HB, Zeng M and Huang XM: Id-1 and the p65 subunit of NF-κB promote migration of nasopharyngeal carcinoma cells and are correlated with poor prognosis. Carcinogenesis. 33:810–817. 2012. View Article : Google Scholar : PubMed/NCBI

28 

Kan R, Shuen WH, Lung HL, Cheung AK, Dai W, Kwong DL, Ng WT, Lee AW, Yau CC, Ngan RK, et al: NF-κB p65 subunit is modulated by latent transforming growth factor-β binding protein 2 (LTBP2) in nasopharyngeal carcinoma HONE1 and HK1 cells. PLoS One. 10:e01272392015. View Article : Google Scholar

29 

Pawlik TM and Keyomarsi K: Role of cell cycle in mediating sensitivity to radiotherapy. Int J Radiat Oncol Biol Phys. 59:928–942. 2004. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

February 2016
Volume 48 Issue 2

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Zhao, M., Fan, J., Liu, Y., Yu, Y., Xu, J., Wen, Q. ... Yang, L. (2016). Oncogenic role of the TP53-induced glycolysis and apoptosis regulator in nasopharyngeal carcinoma through NF-κB pathway modulation. International Journal of Oncology, 48, 756-764. https://doi.org/10.3892/ijo.2015.3297
MLA
Zhao, M., Fan, J., Liu, Y., Yu, Y., Xu, J., Wen, Q., Zhang, J., Fu, S., Wang, B., Xiang, L., Feng, J., Wu, J., Yang, L."Oncogenic role of the TP53-induced glycolysis and apoptosis regulator in nasopharyngeal carcinoma through NF-κB pathway modulation". International Journal of Oncology 48.2 (2016): 756-764.
Chicago
Zhao, M., Fan, J., Liu, Y., Yu, Y., Xu, J., Wen, Q., Zhang, J., Fu, S., Wang, B., Xiang, L., Feng, J., Wu, J., Yang, L."Oncogenic role of the TP53-induced glycolysis and apoptosis regulator in nasopharyngeal carcinoma through NF-κB pathway modulation". International Journal of Oncology 48, no. 2 (2016): 756-764. https://doi.org/10.3892/ijo.2015.3297