Apoptotic activity of 5-fluorouracil in breast cancer cells transformed by low doses of ionizing α-particle radiation

  • Authors:
    • Richard Ponce-Cusi
    • Gloria M. Calaf
  • View Affiliations

  • Published online on: December 18, 2015     https://doi.org/10.3892/ijo.2015.3298
  • Pages: 774-782
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Globally, breast cancer in women is the leading cause of cancer death. This fact has generated an interest to obtain insight into breast tumorigenesis and also to develop drugs to control the disease. Ras is a proto-oncogene that is activated as a response to extracellular signals. As a member of the Ras GTPase superfamily, Rho-A is an oncogenic and a critical component of signaling pathways leading to downstream gene regulation. In chemotherapy, apoptosis is the predominant mechanism by which cancer cells die. However, even when the apoptotic machinery remains intact, survival signaling may antagonize the cell death by signals. The aim of this study was to evaluate 5-fluorouracil (5-FU) in cells transformed by low doses of ionizing α-particle radiation, in breast cancer cell lines on these genes, as well as apoptotic activity. We used two cell lines from an in vitro experimental breast cancer model. The MCF-10F and Tumor2 cell lines. MCF-10F was exposed to low doses of high linear energy transfer (LET) α-particles radiation (150 keV/µm). Tumor2, is a malignant and tumorigenic cell line obtained from Alpha5 (60cGy+E/60cGy+E) injected into the nude mice. Results indicated that 5-FU decreased H-ras, Rho-A, p53, Stat1 and increased Bax gene expression in Tumor2 and decreased Rac1, Rho-A, NF-κB and increased Bax and caspase-3 protein expression in Tumor2. 5-FU decreased H-ras, Bcl-xL and NF-κB and increased Bax gene expression. 5-FU decreased Rac1, Rho-A protein expression and increased Bax and caspase-3 protein expression in MDA-MB-231. Flow cytometry indicated 21.5% of cell death in the control MCF-10F and 80% in Tumor2 cell lines. It can be concluded that 5-FU may exert apoptotic activity in breast cancer cells transformed by low doses of ionizing α-particles in vitro regulating genes of Ras family and related to apoptosis such as Bax, Bcl-xL and NF-κB expression.

References

1 

Jemal A, Bray F, Center MM, Ferlay J, Ward E and Forman D: Global cancer statistics. CA Cancer J Clin. 61:69–90. 2011. View Article : Google Scholar : PubMed/NCBI

2 

Campbell SL, Khosravi-Far R, Rossman KL, Clark GJ and Der CJ: Increasing complexity of Ras signaling. Oncogene. 17:1395–1413. 1998. View Article : Google Scholar : PubMed/NCBI

3 

Bos JL, Fearon ER, Hamilton SR, Verlaan-de Vries M, van Boom JH, van der Eb AJ and Vogelstein B: Prevalence of ras gene mutations in human colorectal cancers. Nature. 327:293–297. 1987. View Article : Google Scholar : PubMed/NCBI

4 

Finkelstein SD, Sayegh R, Christensen S and Swalsky PA: Genotypic classification of colorectal adenocarcinoma. Biologic behavior correlates with K-ras-2 mutation type. Cancer. 71:3827–3838. 1993. View Article : Google Scholar : PubMed/NCBI

5 

Bourne HR, Sanders DA and McCormick F: The GTPase superfamily: Conserved structure and molecular mechanism. Nature. 349:117–127. 1991. View Article : Google Scholar : PubMed/NCBI

6 

Khosravi-Far R, Solski PA, Clark GJ, Kinch MS and Der CJ: Activation of Rac1, RhoA, and mitogen-activated protein kinases is required for Ras transformation. Mol Cell Biol. 15:6443–6453. 1995. View Article : Google Scholar : PubMed/NCBI

7 

Moorman JP, Bobak DA and Hahn CS: Inactivation of the small GTP binding protein Rho induces multinucleate cell formation and apoptosis in murine T lymphoma EL4. J Immunol. 156:4146–4153. 1996.PubMed/NCBI

8 

Perona R, Esteve P, Jiménez B, Ballestero RP, Ramón y Cajal S and Lacal JC: Tumorigenic activity of rho genes from Aplysia californica. Oncogene. 8:1285–1292. 1993.PubMed/NCBI

9 

Prendergast GC, Khosravi-Far R, Solski PA, Kurzawa H, Lebowitz PF and Der CJ: Critical role of Rho in cell transformation by oncogenic Ras. Oncogene. 10:2289–2296. 1995.PubMed/NCBI

10 

Etienne-Manneville S and Hall A: Rho GTPases in cell biology. Nature. 420:629–635. 2002. View Article : Google Scholar : PubMed/NCBI

11 

Sahai E and Marshall CJ: RHO-GTPases and cancer. Nat Rev Cancer. 2:133–142. 2002. View Article : Google Scholar

12 

Wherlock M and Mellor H: The Rho GTPase family: A Racs to Wrchs story. J Cell Sci. 115:239–240. 2002.PubMed/NCBI

13 

Yoshioka K, Nakamori S and Itoh K: Overexpression of small GTP-binding protein RhoA promotes invasion of tumor cells. Cancer Res. 59:2004–2010. 1999.PubMed/NCBI

14 

Paterson HF, Self AJ, Garrett MD, Just I, Aktories K and Hall A: Microinjection of recombinant p21rho induces rapid changes in cell morphology. J Cell Biol. 111:1001–1007. 1990. View Article : Google Scholar : PubMed/NCBI

15 

Ramakers GJ and Moolenaar WH: Regulation of astrocyte morphology by RhoA and lysophosphatidic acid. Exp Cell Res. 245:252–262. 1998. View Article : Google Scholar : PubMed/NCBI

16 

Soga N, Namba N, McAllister S, Cornelius L, Teitelbaum SL, Dowdy SF, Kawamura J and Hruska KA: Rho family GTPases regulate VEGF-stimulated endothelial cell motility. Exp Cell Res. 269:73–87. 2001. View Article : Google Scholar : PubMed/NCBI

17 

Sahai E, Olson MF and Marshall CJ: Cross-talk between Ras and Rho signalling pathways in transformation favours proliferation and increased motility. EMBO J. 20:755–766. 2001. View Article : Google Scholar : PubMed/NCBI

18 

Senger DL, Tudan C, Guiot MC, Mazzoni IE, Molenkamp G, LeBlanc R, Antel J, Olivier A, Snipes GJ and Kaplan DR: Suppression of Rac activity induces apoptosis of human glioma cells but not normal human astrocytes. Cancer Res. 62:2131–2140. 2002.PubMed/NCBI

19 

Embade N, Valerón PF, Aznar S, López-Collazo E and Lacal JC: Apoptosis induced by Rac GTPase correlates with induction of FasL and ceramides production. Mol Biol Cell. 11:4347–4358. 2000. View Article : Google Scholar : PubMed/NCBI

20 

Abraham MT, Kuriakose MA, Sacks PG, Yee H, Chiriboga L, Bearer EL and Delacure MD: Motility-related proteins as markers for head and neck squamous cell cancer. Laryngoscope. 111:1285–1289. 2001. View Article : Google Scholar : PubMed/NCBI

21 

Fritz G, Just I and Kaina B: Rho GTPases are over-expressed in human tumors. Int J Cancer. 81:682–687. 1999. View Article : Google Scholar : PubMed/NCBI

22 

Horiuchi A, Imai T, Wang C, Ohira S, Feng Y, Nikaido T and Konishi I: Up-regulation of small GTPases, RhoA and RhoC, is associated with tumor progression in ovarian carcinoma. Lab Invest. 83:861–870. 2003. View Article : Google Scholar : PubMed/NCBI

23 

Kamai T, Arai K, Tsujii T, Honda M and Yoshida K: Overexpression of RhoA mRNA is associated with advanced stage in testicular germ cell tumour. BJU Int. 87:227–231. 2001. View Article : Google Scholar : PubMed/NCBI

24 

Kamai T, Kawakami S, Koga F, Arai G, Takagi K, Arai K, Tsujii T and Yoshida KI: RhoA is associated with invasion and lymph node metastasis in upper urinary tract cancer. BJU Int. 91:234–238. 2003. View Article : Google Scholar : PubMed/NCBI

25 

Jaffe AB and Hall A: Rho GTPases: Biochemistry and biology. Annu Rev Cell Dev Biol. 21:247–269. 2005. View Article : Google Scholar : PubMed/NCBI

26 

Ellenbroek SI and Collard JG: Rho GTPases: Functions and association with cancer. Clin Exp Metastasis. 24:657–672. 2007. View Article : Google Scholar : PubMed/NCBI

27 

Vega FM and Ridley AJ: Rho GTPases in cancer cell biology. FEBS Lett. 582:2093–2101. 2008. View Article : Google Scholar : PubMed/NCBI

28 

Olivier M, Eeles R, Hollstein M, Khan MA, Harris CC and Hainaut P: The IARC TP53 database: New online mutation analysis and recommendations to users. Hum Mutat. 19:607–614. 2002. View Article : Google Scholar : PubMed/NCBI

29 

Huang S, Bucana CD, Van Arsdall M and Fidler IJ: Stat1 negatively regulates angiogenesis, tumorigenicity and metastasis of tumor cells. Oncogene. 21:2504–2512. 2002. View Article : Google Scholar : PubMed/NCBI

30 

Schindler C, Levy DE and Decker T: JAK-STAT signaling: From interferons to cytokines. J Biol Chem. 282:20059–20063. 2007. View Article : Google Scholar : PubMed/NCBI

31 

Stark GR and Darnell JE Jr: The JAK-STAT pathway at twenty. Immunity. 36:503–514. 2012. View Article : Google Scholar : PubMed/NCBI

32 

McKenna SL, McGowan AJ and Cotter TG: Molecular mechanisms of programmed cell death. Adv Biochem Eng Biotechnol. 62:1–31. 1998.PubMed/NCBI

33 

Leist M and Jäättelä M: Four deaths and a funeral: From caspases to alternative mechanisms. Nat Rev Mol Cell Biol. 2:589–598. 2001. View Article : Google Scholar : PubMed/NCBI

34 

Carson JP, Kulik G and Weber MJ: Antiapoptotic signaling in LNCaP prostate cancer cells: A survival signaling pathway independent of phosphatidylinositol 3′-kinase and Akt/protein kinase B. Cancer Res. 59:1449–1453. 1999.PubMed/NCBI

35 

Lin J, Adam RM, Santiestevan E and Freeman MR: The phosphatidylinositol 3′-kinase pathway is a dominant growth factor-activated cell survival pathway in LNCaP human prostate carcinoma cells. Cancer Res. 59:2891–2897. 1999.PubMed/NCBI

36 

Beale PJ, Rogers P, Boxall F, Sharp SY and Kelland LR: BCL-2 family protein expression and platinum drug resistance in ovarian carcinoma. Br J Cancer. 82:436–440. 2000.PubMed/NCBI

37 

Moorehead RA and Singh G: Influence of the proto-oncogene c-fos on cisplatin sensitivity. Biochem Pharmacol. 59:337–345. 2000. View Article : Google Scholar : PubMed/NCBI

38 

Shimizu S, Narita M and Tsujimoto Y: Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature. 399:483–487. 1999. View Article : Google Scholar : PubMed/NCBI

39 

Kagawa S, Pearson SA, Ji L, Xu K, McDonnell TJ, Swisher SG, Roth JA and Fang B: A binary adenoviral vector system for expressing high levels of the proapoptotic gene bax. Gene Ther. 7:75–79. 2000. View Article : Google Scholar : PubMed/NCBI

40 

Rossé T, Olivier R, Monney L, Rager M, Conus S, Fellay I, Jansen B and Borner C: Bcl-2 prolongs cell survival after Bax-induced release of cytochrome c. Nature. 391:496–499. 1998. View Article : Google Scholar : PubMed/NCBI

41 

Finucane DM, Bossy-Wetzel E, Waterhouse NJ, Cotter TG and Green DR: Bax-induced caspase activation and apoptosis via cytochrome c release from mitochondria is inhibitable by Bcl-xL. J Biol Chem. 274:2225–2233. 1999. View Article : Google Scholar : PubMed/NCBI

42 

Kitanaka C, Namiki T, Noguchi K, Mochizuki T, Kagaya S, Chi S, Hayashi A, Asai A, Tsujimoto Y and Kuchino Y: Caspase-dependent apoptosis of COS-7 cells induced by Bax overexpression: Differential effects of Bcl-2 and Bcl-xL on Bax-induced caspase activation and apoptosis. Oncogene. 15:1763–1772. 1997. View Article : Google Scholar : PubMed/NCBI

43 

Xiang J, Chao DT and Korsmeyer SJ: BAX-induced cell death may not require interleukin 1 beta-converting enzyme-like proteases. Proc Natl Acad Sci USA. 93:14559–14563. 1996. View Article : Google Scholar : PubMed/NCBI

44 

Kagawa S, Gu J, Honda T, McDonnell TJ, Swisher SG, Roth JA and Fang B: Deficiency of caspase-3 in MCF7 cells blocks Bax-mediated nuclear fragmentation but not cell death. Clin Cancer Res. 7:1474–1480. 2001.PubMed/NCBI

45 

Sethi G, Ahn KS and Aggarwal BB: Targeting nuclear factor-kappa B activation pathway by thymoquinone: Role in suppression of antiapoptotic gene products and enhancement of apoptosis. Mol Cancer Res. 6:1059–1070. 2008. View Article : Google Scholar : PubMed/NCBI

46 

Bellarosa D, Ciucci A, Bullo A, Nardelli F, Manzini S, Maggi CA and Goso C: Apoptotic events in a human ovarian cancer cell line exposed to anthracyclines. J Pharmacol Exp Ther. 296:276–283. 2001.PubMed/NCBI

47 

Keane MM, Ettenberg SA, Nau MM, Russell EK and Lipkowitz S: Chemotherapy augments TRAIL-induced apoptosis in breast cell lines. Cancer Res. 59:734–741. 1999.PubMed/NCBI

48 

Kottke TJ, Blajeski AL, Martins LM, Mesner PW Jr, Davidson NE, Earnshaw WC, Armstrong DK and Kaufmann SH: Comparison of paclitaxel-, 5-fluoro-2′-deoxyuridine-, and epidermal growth factor (EGF)-induced apoptosis. Evidence for EGF-induced anoikis. J Biol Chem. 274:15927–15936. 1999. View Article : Google Scholar : PubMed/NCBI

49 

Staudt LM: Oncogenic activation of NF-kappaB. Cold Spring Harb Perspect Biol. 2:a0001092010. View Article : Google Scholar : PubMed/NCBI

50 

DiDonato JA, Mercurio F and Karin M: NF-κB and the link between inflammation and cancer. Immunol Rev. 246:379–400. 2012. View Article : Google Scholar : PubMed/NCBI

51 

Longley DB, Harkin DP and Johnston PG: 5-fluorouracil: Mechanisms of action and clinical strategies. Nat Rev Cancer. 3:330–338. 2003. View Article : Google Scholar : PubMed/NCBI

52 

Calaf GM and Hei TK: Establishment of a radiation- and estrogen-induced breast cancer model. Carcinogenesis. 21:769–776. 2000. View Article : Google Scholar : PubMed/NCBI

53 

Koh MS and Moon A: Activation of H-Ras and Rac1 correlates with epidermal growth factor-induced invasion in Hs578T and MDA-MB-231 breast carcinoma cells. Biochem Biophys Res Commun. 406:25–29. 2011. View Article : Google Scholar : PubMed/NCBI

54 

Parri M and Chiarugi P: Rac and Rho GTPases in cancer cell motility control. Cell Commun Signal. 8:232010. View Article : Google Scholar : PubMed/NCBI

55 

Zhang B, Zhang Y and Shacter E: Caspase 3-mediated inactivation of rac GTPases promotes drug-induced apoptosis in human lymphoma cells. Mol Cell Biol. 23:5716–5725. 2003. View Article : Google Scholar : PubMed/NCBI

56 

Osaki M, Tatebe S, Goto A, Hayashi H, Oshimura M and Ito H: 5-Fluorouracil (5-FU) induced apoptosis in gastric cancer cell lines: Role of the p53 gene. Apoptosis. 2:221–226. 1997. View Article : Google Scholar : PubMed/NCBI

57 

Violette S, Poulain L, Dussaulx E, Pepin D, Faussat AM, Chambaz J, Lacorte JM, Staedel C and Lesuffleur T: Resistance of colon cancer cells to long-term 5-fluorouracil exposure is correlated to the relative level of Bcl-2 and Bcl-X(L) in addition to Bax and p53 status. Int J Cancer. 98:498–504. 2002. View Article : Google Scholar : PubMed/NCBI

58 

Lu Y, Zhang Z, Yan Z, Chen L, Deng W, Lotze M, Wang Z, Lin X and Li LY: Recombinant GnRH-p53 protein sensitizes breast cancer cells to 5-fluorouracil-induced apoptosis in vitro and in vivo. Apoptosis. 18:1214–1223. 2013. View Article : Google Scholar : PubMed/NCBI

59 

Shen Y, Devgan G, Darnell JE Jr and Bromberg JF: Constitutively activated Stat3 protects fibroblasts from serum withdrawal and UV-induced apoptosis and antagonizes the proapoptotic effects of activated Stat1. Proc Natl Acad Sci USA. 98:1543–1548. 2001. View Article : Google Scholar : PubMed/NCBI

60 

Uetsuka H, Haisa M, Kimura M, Gunduz M, Kaneda Y, Ohkawa T, Takaoka M, Murata T, Nobuhisa T, Yamatsuji T, et al: Inhibition of inducible NF-kappaB activity reduces chemoresistance to 5-fluorouracil in human stomach cancer cell line. Exp Cell Res. 289:27–35. 2003. View Article : Google Scholar : PubMed/NCBI

61 

Kodach LL, Bos CL, Durán N, Peppelenbosch MP, Ferreira CV and Hardwick JC: Violacein synergistically increases 5-fluorouracil cytotoxicity, induces apoptosis and inhibits Akt-mediated signal transduction in human colorectal cancer cells. Carcinogenesis. 27:508–516. 2006. View Article : Google Scholar

62 

Wang W, McLeod HL and Cassidy J: Disulfiram-mediated inhibition of NF-kappaB activity enhances cytotoxicity of 5-fluorouracil in human colorectal cancer cell lines. Int J Cancer. 104:504–511. 2003. View Article : Google Scholar : PubMed/NCBI

63 

Wu H, Li W, Wang T, Shu Y and Liu P: Paeoniflorin suppress NF-kappaB activation through modulation of I kappaB alpha and enhances 5-fluorouracil-induced apoptosis in human gastric carcinoma cells. Biomed Pharmacother. 62:659–666. 2008. View Article : Google Scholar : PubMed/NCBI

64 

Vinod BS, Antony J, Nair HH, Puliyappadamba VT, Saikia M, Narayanan SS, Bevin A and Anto RJ: Mechanistic evaluation of the signaling events regulating curcumin-mediated chemosensitization of breast cancer cells to 5-fluorouracil. Cell Death Dis. 4:e5052013. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

February 2016
Volume 48 Issue 2

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Ponce-Cusi, R., & Ponce-Cusi, R. (2016). Apoptotic activity of 5-fluorouracil in breast cancer cells transformed by low doses of ionizing α-particle radiation. International Journal of Oncology, 48, 774-782. https://doi.org/10.3892/ijo.2015.3298
MLA
Ponce-Cusi, R., Calaf, G. M."Apoptotic activity of 5-fluorouracil in breast cancer cells transformed by low doses of ionizing α-particle radiation". International Journal of Oncology 48.2 (2016): 774-782.
Chicago
Ponce-Cusi, R., Calaf, G. M."Apoptotic activity of 5-fluorouracil in breast cancer cells transformed by low doses of ionizing α-particle radiation". International Journal of Oncology 48, no. 2 (2016): 774-782. https://doi.org/10.3892/ijo.2015.3298