Open Access

Detection of metastatic tumors after γ-irradiation using longitudinal molecular imaging and gene expression profiling of metastatic tumor nodules

  • Authors:
    • Su Jin Jang
    • Joo Hyun Kang
    • Yong Jin Lee
    • Kwang Il Kim
    • Tae Sup Lee
    • Jae Gol Choe
    • Sang Moo Lim
  • View Affiliations

  • Published online on: February 8, 2016     https://doi.org/10.3892/ijo.2016.3384
  • Pages: 1361-1368
  • Copyright: © Jang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

A few recent reports have indicated that metastatic growth of several human cancer cells could be promoted by radiotherapy. C6-L cells expressing the firefly luciferase (fLuc) gene were implanted subcutaneously into the right thigh of BALB/c nu/nu mice. C6-L xenograft mice were treated locally with 50-Gy γ-irradiation (γ-IR) in five 10-Gy fractions. Metastatic tumors were evaluated after γ-IR by imaging techniques. Total RNA from non-irradiated primary tumor (NRPT), γ-irradiated primary tumor (RPT), and three metastatic lung nodule was isolated and analyzed by microarray. Metastatic lung nodules were detected by BLI and PET/CT after 6-9 weeks of γ-IR in 6 (17.1%) of the 35 mice. The images clearly demonstrated high [18F]FLT and [18F]FDG uptake into metastatic lung nodules. Whole mRNA expression patterns were analyzed by microarray to elucidate the changes among NRPT, RPT and metastatic lung nodules after γ-IR. In particular, expression changes in the cancer stem cell markers were highly significant in RPT. We observed the metastatic tumors after γ-IR in a tumor-bearing animal model using molecular imaging methods and analyzed the gene expression profile to elucidate genetic changes after γ-IR.

References

1 

Dirks PB: Brain tumor stem cells: Bringing order to the chaos of brain cancer. J Clin Oncol. 26:2916–2924. 2008. View Article : Google Scholar : PubMed/NCBI

2 

Lawrence TS, Haffty BG and Harris JR: Milestones in the use of combined-modality radiation therapy and chemotherapy. J Clin Oncol. 32:1173–1179. 2014. View Article : Google Scholar : PubMed/NCBI

3 

Govindan R, Bogart J and Vokes EE: Locally advanced non-small cell lung cancer: The past, present, and future. J Thorac Oncol. 3:917–928. 2008. View Article : Google Scholar : PubMed/NCBI

4 

Cognetti DM, Weber RS and Lai SY: Head and neck cancer: An evolving treatment paradigm. Cancer. 113(Suppl): 1911–1932. 2008. View Article : Google Scholar : PubMed/NCBI

5 

Gold KA, Lee HY and Kim ES: Targeted therapies in squamous cell carcinoma of the head and neck. Cancer. 115:922–935. 2009. View Article : Google Scholar : PubMed/NCBI

6 

Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, et al; European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups; National Cancer Institute of Canada Clinical Trials Group. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 352:987–996. 2005. View Article : Google Scholar : PubMed/NCBI

7 

Eifel PJ, Winter K, Morris M, Levenback C, Grigsby PW, Cooper J, Rotman M, Gershenson D and Mutch DG: Pelvic irradiation with concurrent chemotherapy versus pelvic and para-aortic irradiation for high-risk cervical cancer: An update of radiation therapy oncology group trial (RTOG) 90-01. J Clin Oncol. 22:872–880. 2004. View Article : Google Scholar : PubMed/NCBI

8 

Baskar R, Lee KA, Yeo R and Yeoh KW: Cancer and radiation therapy: Current advances and future directions. Int J Med Sci. 9:193–199. 2012. View Article : Google Scholar : PubMed/NCBI

9 

Prasanna A, Ahmed MM, Mohiuddin M and Coleman CN: Exploiting sensitization windows of opportunity in hyper and hypo-fractionated radiation therapy. J Thorac Dis. 6:287–302. 2014.PubMed/NCBI

10 

Suit HD: Local control and patient survival. Int J Radiat Oncol Biol Phys. 23:653–660. 1992. View Article : Google Scholar : PubMed/NCBI

11 

Balasubramaniam A, Shannon P, Hodaie M, Laperriere N, Michaels H and Guha A: Glioblastoma multiforme after stereo-tactic radiotherapy for acoustic neuroma: Case report and review of the literature. Neuro Oncol. 9:447–453. 2007. View Article : Google Scholar : PubMed/NCBI

12 

Kaplan HS and Murphy ED: The effect of local roentgen irradiation on the biological behavior of a transplantable mouse carcinoma; increased frequency of pulmonary metastasis. J Natl Cancer Inst. 9:407–413. 1949.PubMed/NCBI

13 

von Essen CF: Radiation enhancement of metastasis: A review. Clin Exp Metastasis. 9:77–104. 1991. View Article : Google Scholar : PubMed/NCBI

14 

Núñez MI, McMillan TJ, Valenzuela MT, Ruiz de Almodóvar JM and Pedraza V: Relationship between DNA damage, rejoining and cell killing by radiation in mammalian cells. Radiother Oncol. 39:155–165. 1996. View Article : Google Scholar : PubMed/NCBI

15 

Barcellos-Hoff MH, Park C and Wright EG: Radiation and the microenvironment - tumorigenesis and therapy. Nat Rev Cancer. 5:867–875. 2005. View Article : Google Scholar : PubMed/NCBI

16 

Moulder JE and Rockwell S: Hypoxic fractions of solid tumors: Experimental techniques, methods of analysis, and a survey of existing data. Int J Radiat Oncol Biol Phys. 10:695–712. 1984. View Article : Google Scholar : PubMed/NCBI

17 

Ghisolfi L, Keates AC, Hu X, Lee DK and Li CJ: Ionizing radiation induces stemness in cancer cells. PLoS One. 7:e436282012. View Article : Google Scholar : PubMed/NCBI

18 

Zhou YC, Liu JY, Li J, Zhang J, Xu YQ, Zhang HW, Qiu LB, Ding GR, Su XM, Mei-Shi, et al: Ionizing radiation promotes migration and invasion of cancer cells through transforming growth factor-beta-mediated epithelial-mesenchymal transition. Int J Radiat Oncol Biol Phys. 81:1530–1537. 2011. View Article : Google Scholar : PubMed/NCBI

19 

Gomez-Casal R, Bhattacharya C, Ganesh N, Bailey L, Basse P, Gibson M, Epperly M and Levina V: Non-small cell lung cancer cells survived ionizing radiation treatment display cancer stem cell and epithelial-mesenchymal transition phenotypes. Mol Cancer. 12:942013. View Article : Google Scholar : PubMed/NCBI

20 

Adseshaiah PP, Patel NL, Ileva LV, Kalen JD, Haines DC and McNeil SE: Longitudinal imaging of cancer cell metastases in two preclinical models: A correlation of noninvasive imaging to histopathology. Int J Mol Imaging. 102702:20142014.

21 

Kang JH and Chung JK: Molecular-genetic imaging based on reporter gene expression. J Nucl Med. 49(Suppl 2): 164S–179S. 2008. View Article : Google Scholar : PubMed/NCBI

22 

Park JH, Kim KI, Lee YJ, Lee TS, Kim KM, Nahm SS, Park YS, Cheon GJ, Lim SM and Kang JH: Non-invasive monitoring of hepatocellular carcinoma in transgenic mouse with bioluminescent imaging. Cancer Lett. 310:53–60. 2011.PubMed/NCBI

23 

Kim KI, Park JH, Lee YJ, Lee TS, Park JJ, Song I, Nahm SS, Cheon GJ, Lim SM, Chung JK, et al: In vivo bioluminescent imaging of α-fetoprotein-producing hepatocellular carcinoma in the diethylnitrosamine-treated mouse using recombinant adeno-viral vector. J Gene Med. 14:513–520. 2012. View Article : Google Scholar : PubMed/NCBI

24 

Park JH, Kang JH, Lee YJ, Kim KI, Lee TS, Kim KM, Park JA, Ko YO, Yu DY, Nahm SS, et al: Evaluation of diethylnitrosamine- or hepatitis B virus X gene-induced hepatocellular carcinoma with 18F-FDG PET/CT: A preclinical study. Oncol Rep. 33:347–353. 2015.

25 

Gown AM: Current issues in ER and HER2 testing by IHC in breast cancer. Mod Pathol. 21(Suppl 2): S8–S15. 2008. View Article : Google Scholar : PubMed/NCBI

26 

Park JK, Jang SJ, Kang SW, Park S, Hwang SG, Kim WJ, Kang JH and Um HD: Establishment of animal model for the analysis of cancer cell metastasis during radiotherapy. Radiat Oncol. 7:153–163. 2012. View Article : Google Scholar : PubMed/NCBI

27 

Vasiliou V, Thompson DC, Smith C, Fujita M and Chen Y: Aldehyde dehydrogenases: From eye crystallins to metabolic disease and cancer stem cells. Chem Biol Interact. 202:2–10. 2013. View Article : Google Scholar

28 

Marchitti SA, Brocker C, Stagos D and Vasiliou V: Non-P450 aldehyde oxidizing enzymes: The aldehyde dehydrogenase superfamily. Expert Opin Drug Metab Toxicol. 4:697–720. 2008. View Article : Google Scholar : PubMed/NCBI

29 

Chute JP, Muramoto GG, Whitesides J, Colvin M, Safi R, Chao NJ and McDonnell DP: Inhibition of aldehyde dehydrogenase and retinoid signaling induces the expansion of human hematopoietic stem cells. Proc Natl Acad Sci USA. 103:11707–11712. 2006. View Article : Google Scholar : PubMed/NCBI

30 

Muramoto GG, Russell JL, Safi R, Salter AB, Himburg HA, Daher P, Meadows SK, Doan P, Storms RW, Chao NJ, et al: Inhibition of aldehyde dehydrogenase expands hematopoietic stem cells with radioprotective capacity. Stem Cells. 28:523–534. 2010.PubMed/NCBI

31 

Rasper M, Schäfer A, Piontek G, Teufel J, Brockhoff G, Ringel F, Heindl S, Zimmer C and Schlegel J: Aldehyde dehydrogenase 1 positive glioblastoma cells show brain tumor stem cell capacity. Neuro Oncol. 12:1024–1033. 2010. View Article : Google Scholar : PubMed/NCBI

32 

Camphausen K, Moses MA, Beecken WD, Khan MK, Folkman J and O'Reilly MS: Radiation therapy to a primary tumor accelerates metastatic growth in mice. Cancer Res. 61:2207–2211. 2001.PubMed/NCBI

33 

Murayama C, Harada N, Kakiuchi T, Fukumoto D, Kamijo A, Kawaguchi AT and Tsukada H: Evaluation of D-18F-FMT, 18F-FDG, L-11C-MET, and 18F-FLT for monitoring the response of tumors to radiotherapy in mice. J Nucl Med. 50:290–295. 2009. View Article : Google Scholar : PubMed/NCBI

34 

Molthoff CF, Klabbers BM, Berkhof J, Felten JT, van Gelder M, Windhorst AD, Slotman BJ and Lammertsma AA: Monitoring response to radiotherapy in human squamous cell cancer bearing nude mice: comparison of 2′-deoxy-2′-[18F]fluoro-D-glucose (FDG) and 3′-[18F]fluoro-3′-deoxythymidine (FLT). Mol Imaging Biol. 9:340–347. 2007. View Article : Google Scholar : PubMed/NCBI

35 

Yang YJ, Ryu JS, Kim SY, Oh SJ, Im KC, Lee H, Lee SW, Cho KJ, Cheon GJ and Moon DH: Use of 3′-deoxy-3′-[18F]fluo-rothymidine PET to monitor early responses to radiation therapy in murine SCCVII tumors. Eur J Nucl Med Mol Imaging. 33:412–419. 2006. View Article : Google Scholar : PubMed/NCBI

36 

Sugiyama M, Sakahara H, Sato K, Harada N, Fukumoto D, Kakiuchi T, Hirano T, Kohno E and Tsukada H: Evaluation of 3′-deoxy-3′-18F-fluorothymidine for monitoring tumor response to radiotherapy and photodynamic therapy in mice. J Nucl Med. 45:1754–1758. 2004.PubMed/NCBI

37 

Wang H, Liu B, Tian J, Xu B, Zhang J, Qu B and Chen Y: Evaluation of 18F-FDG and 18F-FLT for monitoring therapeutic responses of colorectal cancer cells to radiotherapy. Eur J Radiol. 82:e484–e491. 2013. View Article : Google Scholar : PubMed/NCBI

38 

Hess DA, Craft TP, Wirthlin L, Hohm S, Zhou P, Eades WC, Creer MH, Sands MS and Nolta JA: Widespread nonhematopoietic tissue distribution by transplanted human progenitor cells with high aldehyde dehydrogenase activity. Stem Cells. 26:611–620. 2008. View Article : Google Scholar

39 

Douville J, Beaulieu R and Balicki D: ALDH1 as a functional marker of cancer stem and progenitor cells. Stem Cells Dev. 18:17–25. 2009. View Article : Google Scholar

40 

Zhao JS, Li WJ, Ge D, Zhang PJ, Li JJ, Lu CL, Ji XD, Guan DX, Gao H, Xu LY, et al: Tumor initiating cells in esophageal squamous cell carcinomas express high levels of CD44. PLoS One. 6:e214192011. View Article : Google Scholar : PubMed/NCBI

41 

Zhao R, Quaroni L and Casson AG: Identification and characterization of stemlike cells in human esophageal adenocarcinoma and normal epithelial cell lines. J Thorac Cardiovasc Surg. 144:1192–1199. 2012. View Article : Google Scholar : PubMed/NCBI

42 

Meng J, Li P, Zhang Q, Yang Z and Fu S: A radiosensitivity gene signature in predicting glioma prognostic via EMT pathway. Oncotarget. 5:4683–4693. 2014. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

April 2016
Volume 48 Issue 4

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Jang, S.J., Kang, J.H., Lee, Y.J., Kim, K.I., Lee, T.S., Choe, J.G., & Lim, S.M. (2016). Detection of metastatic tumors after γ-irradiation using longitudinal molecular imaging and gene expression profiling of metastatic tumor nodules. International Journal of Oncology, 48, 1361-1368. https://doi.org/10.3892/ijo.2016.3384
MLA
Jang, S. J., Kang, J. H., Lee, Y. J., Kim, K. I., Lee, T. S., Choe, J. G., Lim, S. M."Detection of metastatic tumors after γ-irradiation using longitudinal molecular imaging and gene expression profiling of metastatic tumor nodules". International Journal of Oncology 48.4 (2016): 1361-1368.
Chicago
Jang, S. J., Kang, J. H., Lee, Y. J., Kim, K. I., Lee, T. S., Choe, J. G., Lim, S. M."Detection of metastatic tumors after γ-irradiation using longitudinal molecular imaging and gene expression profiling of metastatic tumor nodules". International Journal of Oncology 48, no. 4 (2016): 1361-1368. https://doi.org/10.3892/ijo.2016.3384