Impaired mitophagy activates mtROS/HIF-1α interplay and increases cancer aggressiveness in gastric cancer cells under hypoxia

  • Authors:
    • Masaaki Shida
    • Yoshihiko Kitajima
    • Jun Nakamura
    • Kazuyoshi Yanagihara
    • Koichi Baba
    • Kota Wakiyama
    • Hirokazu Noshiro
  • View Affiliations

  • Published online on: January 26, 2016     https://doi.org/10.3892/ijo.2016.3359
  • Pages: 1379-1390
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Mitochondrial autophagy (mitophagy) is a selective form of autophagy and a critical step in excluding mitochondria damaged by stress, including hypoxia. This study aimed to determine whether the integrity of mitophagy affected production of the mitochondrial reactive oxygen species (mtROS), hypoxia inducible factor (HIF)-1α expression and aggressive characteristics in GC cells under hypoxia. Three GC cell lines, 44As3, 58As9 and MKN45, were investigated in this study. HIF-1α expression was induced in the three GC cell lines under hypoxia, with higher expression observed in 44As3 and 58As9 cells compared with MKN45 cells. Cell survival and invasion abilities under hypoxia were significantly stronger in 44As3 and 58As9 cells than MKN45 cells. Moreover, mtROS accumulated in a time-dependent manner in 44As3 and 58As9 cells, but not in MKN45 cells. ROS scavenger N-acetyl-L-cysteine (NAC) treatment resulted in strong attenuation of HIF-1α expression, whereas HIF-1α knockdown increased ROS production in the three GC cell lines under hypoxia. These results suggested that the mtROS/HIF-1α interplay affected the hypoxia-induced cancer aggressiveness. Assessment of mitophagy by LC3-I/II conversion, SQSTM1/p62 degradation and specific fluorescence markers demonstrated that hypoxia-induced mitophagy was observed only in MKN45 cells, while the process was impaired in the other two cell lines. Treatment with the autophagy inhibitor chloroquine conversely increased HIF-1α expression, mtROS generation, cell survival and invasion in hypoxic MKN45 cells. The present study revealed a novel mechanism in which the integrity of mitophagy might determine cancer aggressiveness via mtROS/HIF-1α interplay in GC cells under hypoxic conditions.

References

1 

Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI

2 

Shiraishi N, Inomata M, Osawa N, Yasuda K, Adachi Y and Kitano S: Early and late recurrence after gastrectomy for gastric carcinoma. Univariate and multivariate analyses. Cancer. 89:255–261. 2000. View Article : Google Scholar : PubMed/NCBI

3 

Macdonald JS, Smalley SR, Benedetti J, Hundahl SA, Estes NC, Stemmermann GN, Haller DG, Ajani JA, Gunderson LL, Jessup JM, et al: Chemoradiotherapy after surgery compared with surgery alone for adenocarcinoma of the stomach or gastro-esophageal junction. N Engl J Med. 345:725–730. 2001. View Article : Google Scholar : PubMed/NCBI

4 

Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH, Gassmann M, Gearhart JD, Lawler AM, Yu AY, et al: Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev. 12:149–162. 1998. View Article : Google Scholar : PubMed/NCBI

5 

Harris AL: Hypoxia - a key regulatory factor in tumour growth. Nat Rev Cancer. 2:38–47. 2002. View Article : Google Scholar : PubMed/NCBI

6 

Vaupel P, Mayer A and Höckel M: Tumor hypoxia and malignant progression. Methods Enzymol. 381:335–354. 2004. View Article : Google Scholar : PubMed/NCBI

7 

Lu X and Kang Y: Hypoxia and hypoxia-inducible factors: Master regulators of metastasis. Clin Cancer Res. 16:5928–5935. 2010. View Article : Google Scholar : PubMed/NCBI

8 

Höckel M and Vaupel P: Tumor hypoxia: Definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst. 93:266–276. 2001. View Article : Google Scholar : PubMed/NCBI

9 

Jiang BH, Semenza GL, Bauer C and Marti HH: Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am J Physiol. 271:C1172–C1180. 1996.PubMed/NCBI

10 

Semenza GL: Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene. 29:625–634. 2010. View Article : Google Scholar :

11 

Semenza GL: Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 3:721–732. 2003. View Article : Google Scholar : PubMed/NCBI

12 

Semenza GL: HIF-1 and tumor progression: Pathophysiology and therapeutics. Trends Mol Med. 8(Suppl): S62–S67. 2002. View Article : Google Scholar : PubMed/NCBI

13 

Semenza GL: HIF-1: Upstream and downstream of cancer metabolism. Curr Opin Genet Dev. 20:51–56. 2010. View Article : Google Scholar :

14 

Kitajima Y and Miyazaki K: The critical impact of HIF-1α on gastric cancer biology. Cancers (Basel). 5:15–26. 2013. View Article : Google Scholar

15 

Ide T, Kitajima Y, Miyoshi A, Ohtsuka T, Mitsuno M, Ohtaka K, Koga Y and Miyazaki K: Tumor-stromal cell interaction under hypoxia increases the invasiveness of pancreatic cancer cells through the hepatocyte growth factor/c-Met pathway. Int J Cancer. 119:2750–2759. 2006. View Article : Google Scholar : PubMed/NCBI

16 

Sumiyoshi Y, Kakeji Y, Egashira A, Mizokami K, Orita H and Maehara Y: Overexpression of hypoxia-inducible factor 1alpha and p53 is a marker for an unfavorable prognosis in gastric cancer. Clin Cancer Res. 12:5112–5117. 2006. View Article : Google Scholar : PubMed/NCBI

17 

Nam SY, Ko YS, Jung J, Yoon J, Kim YH, Choi YJ, Park JW, Chang MS, Kim WH and Lee BL: A hypoxia-dependent upregulation of hypoxia-inducible factor-1 by nuclear factor-κB promotes gastric tumour growth and angiogenesis. Br J Cancer. 104:166–174. 2011. View Article : Google Scholar :

18 

Stoeltzing O, McCarty MF, Wey JS, Fan F, Liu W, Belcheva A, Bucana CD, Semenza GL and Ellis LM: Role of hypoxia-inducible factor 1alpha in gastric cancer cell growth, angiogenesis, and vessel maturation. J Natl Cancer Inst. 96:946–956. 2004. View Article : Google Scholar : PubMed/NCBI

19 

Nakamura J, Kitajima Y, Kai K, Hashiguchi K, Hiraki M, Noshiro H and Miyazaki K: HIF-1alpha is an unfavorable determinant of relapse in gastric cancer patients who underwent curative surgery followed by adjuvant 5-FU chemotherapy. Int J Cancer. 127:1158–1171. 2010. View Article : Google Scholar

20 

Rohwer N and Cramer T: HIFs as central regulators of gastric cancer pathogenesis. Cancer Biol Ther. 10:383–385. 2010. View Article : Google Scholar : PubMed/NCBI

21 

Sena LA and Chandel NS: Physiological roles of mitochondrial reactive oxygen species. Mol Cell. 48:158–167. 2012. View Article : Google Scholar : PubMed/NCBI

22 

Zepeda AB, Pessoa A Jr, Castillo RL, Figueroa CA, Pulgar VM and Farías JG: Cellular and molecular mechanisms in the hypoxic tissue: Role of HIF-1 and ROS. Cell Biochem Funct. 31:451–459. 2013. View Article : Google Scholar : PubMed/NCBI

23 

Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, Rodriguez AM and Schumacker PT: Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: A mechanism of O2 sensing. J Biol Chem. 275:25130–25138. 2000. View Article : Google Scholar : PubMed/NCBI

24 

Gerald D, Berra E, Frapart YM, Chan DA, Giaccia AJ, Mansuy D, Pouysségur J, Yaniv M and Mechta-Grigoriou F: JunD reduces tumor angiogenesis by protecting cells from oxidative stress. Cell. 118:781–794. 2004. View Article : Google Scholar : PubMed/NCBI

25 

Zhao T, Zhu Y, Morinibu A, Kobayashi M, Shinomiya K, Itasaka S, Yoshimura M, Guo G, Hiraoka M and Harada H: HIF-1-mediated metabolic reprogramming reduces ROS levels and facilitates the metastatic colonization of cancers in lungs. Sci Rep. 4:37932014. View Article : Google Scholar : PubMed/NCBI

26 

Kaelin WG Jr: ROS: Really involved in oxygen sensing. Cell Metab. 1:357–358. 2005. View Article : Google Scholar : PubMed/NCBI

27 

Semenza GL: Hypoxia-inducible factor 1: Regulator of mitochondrial metabolism and mediator of ischemic preconditioning. Biochim Biophys Acta. 1813:1263–1268. 2011. View Article : Google Scholar

28 

Mizushima N, Yoshimori T and Levine B: Methods in mammalian autophagy research. Cell. 140:313–326. 2010. View Article : Google Scholar : PubMed/NCBI

29 

Mathew R, Karantza-Wadsworth V and White E: Role of autophagy in cancer. Nat Rev Cancer. 7:961–967. 2007. View Article : Google Scholar : PubMed/NCBI

30 

Mizushima N and Komatsu M: Autophagy: Renovation of cells and tissues. Cell. 147:728–741. 2011. View Article : Google Scholar : PubMed/NCBI

31 

Rogov V, Dötsch V, Johansen T and Kirkin V: Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Mol Cell. 53:167–178. 2014. View Article : Google Scholar : PubMed/NCBI

32 

Lemasters JJ: Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res. 8:3–5. 2005. View Article : Google Scholar : PubMed/NCBI

33 

Kim I, Rodriguez-Enriquez S and Lemasters JJ: Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys. 462:245–253. 2007. View Article : Google Scholar : PubMed/NCBI

34 

Chourasia AH, Boland ML and Macleod KF: Mitophagy and cancer. Cancer Metab. 3:42015. View Article : Google Scholar : PubMed/NCBI

35 

Liu L, Feng D, Chen G, Chen M, Zheng Q, Song P, Ma Q, Zhu C, Wang R, Qi W, et al: Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat Cell Biol. 14:177–185. 2012. View Article : Google Scholar : PubMed/NCBI

36 

Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB, Gonzalez FJ and Semenza GL: Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem. 283:10892–10903. 2008. View Article : Google Scholar : PubMed/NCBI

37 

Cesari R, Martin ES, Calin GA, Pentimalli F, Bichi R, McAdams H, Trapasso F, Drusco A, Shimizu M, Masciullo V, et al: Parkin, a gene implicated in autosomal recessive juvenile parkinsonism, is a candidate tumor suppressor gene on chromosome 6q25-q27. Proc Natl Acad Sci USA. 100:5956–5961. 2003. View Article : Google Scholar : PubMed/NCBI

38 

Gong Y, Zack TI, Morris LG, Lin K, Hukkelhoven E, Raheja R, Tan IL, Turcan S, Veeriah S, Meng S, et al: Pan-cancer genetic analysis identifies PARK2 as a master regulator of G1/S cyclins. Nat Genet. 46:588–594. 2014. View Article : Google Scholar : PubMed/NCBI

39 

Yanagihara K, Takigahira M, Tanaka H, Komatsu T, Fukumoto H, Koizumi F, Nishio K, Ochiya T, Ino Y and Hirohashi S: Development and biological analysis of peritoneal metastasis mouse models for human scirrhous stomach cancer. Cancer Sci. 96:323–332. 2005. View Article : Google Scholar : PubMed/NCBI

40 

Miyake S, Kitajima Y, Nakamura J, Kai K, Yanagihara K, Tanaka T, Hiraki M, Miyazaki K and Noshiro H: HIF-1α is a crucial factor in the development of peritoneal dissemination via natural metastatic routes in scirrhous gastric cancer. Int J Oncol. 43:1431–1440. 2013.PubMed/NCBI

41 

Tanaka T, Kitajima Y, Miyake S, Yanagihara K, Hara H, Nishijima-Matsunobu A, Baba K, Shida M, Wakiyama K, Nakamura J, et al: The apoptotic effect of HIF-1α inhibition combined with glucose plus insulin treatment on gastric cancer under hypoxic conditions. PLoS One. 10:e01372572015. View Article : Google Scholar

42 

Dolman NJ, Chambers KM, Mandavilli B, Batchelor RH and Janes MS: Tools and techniques to measure mitophagy using fluorescence microscopy. Autophagy. 9:1653–1662. 2013. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

April 2016
Volume 48 Issue 4

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Shida, M., Kitajima, Y., Nakamura, J., Yanagihara, K., Baba, K., Wakiyama, K., & Noshiro, H. (2016). Impaired mitophagy activates mtROS/HIF-1α interplay and increases cancer aggressiveness in gastric cancer cells under hypoxia. International Journal of Oncology, 48, 1379-1390. https://doi.org/10.3892/ijo.2016.3359
MLA
Shida, M., Kitajima, Y., Nakamura, J., Yanagihara, K., Baba, K., Wakiyama, K., Noshiro, H."Impaired mitophagy activates mtROS/HIF-1α interplay and increases cancer aggressiveness in gastric cancer cells under hypoxia". International Journal of Oncology 48.4 (2016): 1379-1390.
Chicago
Shida, M., Kitajima, Y., Nakamura, J., Yanagihara, K., Baba, K., Wakiyama, K., Noshiro, H."Impaired mitophagy activates mtROS/HIF-1α interplay and increases cancer aggressiveness in gastric cancer cells under hypoxia". International Journal of Oncology 48, no. 4 (2016): 1379-1390. https://doi.org/10.3892/ijo.2016.3359