Regorafenib as a potential adjuvant chemotherapy agent in disseminated small colon cancer: Drug selection outcome of a novel screening system using nanoimprinting 3-dimensional culture with HCT116-RFP cells

  • Authors:
    • Yukie Yoshii
    • Takako Furukawa
    • Hironori Aoyama
    • Naoya Adachi
    • Ming-Rong Zhang
    • Hidekatsu Wakizaka
    • Yasuhisa Fujibayashi
    • Tsuneo Saga
  • View Affiliations

  • Published online on: January 28, 2016     https://doi.org/10.3892/ijo.2016.3361
  • Pages: 1477-1484
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Colon cancer is one of the leading causes of cancer death worldwide. Adjuvant chemotherapy following primary surgical treatment is suggested to be beneficial in eradicating invisible disseminated small tumors in colon cancer; however, an effective drug remains to be developed. Recently, we reported a novel drug screening system using a nanoimprinting 3-dimensional (3D) culture that creates multicellular spheroids, which simulate in vivo conditions and, thereby, predict effective drugs in vivo. This study aimed to perform drug selection using our recently developed 3D culture system in a human colon cancer HCT116 cell line stably expressing red fluorescent protein (HCT116-RFP), to determine the most effective agent in a selection of clinically used antitumor agents for colon cancer. In addition, we confirmed the efficacy of the selected drug regorafenib, in vivo using a mouse model of disseminated small tumors. HCT116-RFP cells were cultured using a nanoimprinting 3D culture and in vitro drug selection was performed with 8 clinically used drugs [bevacizumab, capecitabine, cetuximab, 5-fluorouracil (5-FU), irinotecan, oxaliplatin, panitumumab and regorafenib]. An in vivo study was performed in mice bearing HCT116-RFP intraperitoneally disseminated small tumors using 3'-[18F]-fluoro-3'-deoxythymidine-positron emission tomography and fluorescence microscopy imaging to evaluate the therapeutic effects. Regorafenib was determined to be the most effective drug in the 3D culture, and significantly inhibited tumor growth in vivo, compared to the untreated control and 5-FU-treated group. The drug 5-FU is commonly used in colon cancer treatment and was used as a reference. Our results demonstrate that regorafenib is a potentially efficacious adjuvant chemotherapeutic agent for the treatment of disseminated small colon cancer and, therefore, warrants further preclinical and clinical studies.

References

1 

Jemal A, Siegel R, Xu J and Ward E: Cancer statistics, 2010. CA Cancer J Clin. 60:277–300. 2010. View Article : Google Scholar : PubMed/NCBI

2 

Moertel CG, Fleming TR, Macdonald JS, Haller DG, Laurie JA, Goodman PJ, Ungerleider JS, Emerson WA, Tormey DC, Glick JH, et al: Levamisole and fluorouracil for adjuvant therapy of resected colon carcinoma. N Engl J Med. 322:352–358. 1990. View Article : Google Scholar : PubMed/NCBI

3 

de Vos tot Nederveen Cappel WH, Meulenbeld HJ, Kleibeuker JH, Nagengast FM, Menko FH, Griffioen G, Cats A, Morreau H, Gelderblom H, Vasen HF, et al: Survival after adjuvant 5-FU treatment for stage III colon cancer in hereditary nonpolyposis colorectal cancer. Int J Cancer. 109:468–471. 2004. View Article : Google Scholar : PubMed/NCBI

4 

Vaillant JC, Nordlinger B, Deuffic S, Arnaud JP, Pelissier E, Favre JP, Jaeck D, Fourtanier G, Grandjean JP, Marre P, et al: Adjuvant intraperitoneal 5-fluorouracil in high-risk colon cancer: A multicenter phase III trial. Ann Surg. 231:449–456. 2000. View Article : Google Scholar : PubMed/NCBI

5 

Yoshii Y, Waki A, Yoshida K, Kakezuka A, Kobayashi M, Namiki H, Kuroda Y, Kiyono Y, Yoshii H, Furukawa T, et al: The use of nanoimprinted scaffolds as 3D culture models to facilitate spontaneous tumor cell migration and well-regulated spheroid formation. Biomaterials. 32:6052–6058. 2011. View Article : Google Scholar : PubMed/NCBI

6 

Yoshii Y, Furukawa T, Waki A, Okuyama H, Inoue M, Itoh M, Zhang MR, Wakizaka H, Sogawa C, Kiyono Y, et al: High-throughput screening with nanoimprinting 3D culture for efficient drug development by mimicking the tumor environment. Biomaterials. 51:278–289. 2015. View Article : Google Scholar : PubMed/NCBI

7 

Kawada M, Inoue H, Masuda T and Ikeda D: Insulin-like growth factor I secreted from prostate stromal cells mediates tumor-stromal cell interactions of prostate cancer. Cancer Res. 66:4419–4425. 2006. View Article : Google Scholar : PubMed/NCBI

8 

Wilhelm SM, Dumas J, Adnane L, Lynch M, Carter CA, Schütz G, Thierauch KH and Zopf D: Regorafenib (BAY 73-4506): A new oral multikinase inhibitor of angiogenic, stromal and oncogenic receptor tyrosine kinases with potent preclinical antitumor activity. Int J Cancer. 129:245–255. 2011. View Article : Google Scholar

9 

Schmieder R, Hoffmann J, Becker M, Bhargava A, Müller T, Kahmann N, Ellinghaus P, Adams R, Rosenthal A, Thierauch KH, et al: Regorafenib (BAY 73-4506): Antitumor and antimetastatic activities in preclinical models of colorectal cancer. Int J Cancer. 135:1487–1496. 2014. View Article : Google Scholar :

10 

Kehoe SM, Ma C, Rosales N, Rao T, Dupont J and Spriggs DR: Effect of combination inhibition of vascular endothelial growth factor (VEGF) and epidermal growth factor receptor (EGF-R) on ovarian cancer cell lines. J Clin Oncol. 24(Suppl 13112)2006.

11 

Kunnumakkara AB, Diagaradjane P, Anand P, Harikumar KB, Deorukhkar A, Gelovani J, Guha S, Krishnan S and Aggarwal BB: Curcumin sensitizes human colorectal cancer to capecitabine by modulation of cyclin D1, COX-2, MMP-9, VEGF and CXCR4 expression in an orthotopic mouse model. Int J Cancer. 125:2187–2197. 2009. View Article : Google Scholar : PubMed/NCBI

12 

Yamamoto Y, Fukuda K, Fuchimoto Y, Matsuzaki Y, Saikawa Y, Kitagawa Y, Morikawa Y and Kuroda T: Cetuximab promotes anticancer drug toxicity in rhabdomyosarcomas with EGFR amplification in vitro. Oncol Rep. 30:1081–1086. 2013.PubMed/NCBI

13 

Jiang P, Mukthavaram R, Chao Y, Bharati IS, Fogal V, Pastorino S, Cong X, Nomura N, Gallagher M, Abbasi T, et al: Novel anti-glioblastoma agents and therapeutic combinations identified from a collection of FDA approved drugs. J Transl Med. 12:132014. View Article : Google Scholar : PubMed/NCBI

14 

Dahan L, Sadok A, Formento JL, Seitz JF and Kovacic H: Modulation of cellular redox state underlies antagonism between oxaliplatin and cetuximab in human colorectal cancer cell lines. Br J Pharmacol. 158:610–620. 2009. View Article : Google Scholar : PubMed/NCBI

15 

Freeman DJ, Bush T, Ogbagabriel S, Belmontes B, Juan T, Plewa C, Van G, Johnson C and Radinsky R: Activity of panitumumab alone or with chemotherapy in non-small cell lung carcinoma cell lines expressing mutant epidermal growth factor receptor. Mol Cancer Ther. 8:1536–1546. 2009. View Article : Google Scholar : PubMed/NCBI

16 

Cordel S, Heymann MF, Boisteau O, Oliver L, Le Pendu J, Grégoire M and Meflah K: 5-Fluorouracil-resistant colonic tumors are highly responsive to sodium butyrate/interleukin-2 bitherapy in rats. Int J Cancer. 73:924–928. 1997. View Article : Google Scholar : PubMed/NCBI

17 

Van Looy T, Gebreyohannes YK, Wozniak A, Cornillie J, Wellens J, Li H, Vanleeuw U, Floris G, Debiec-Rychter M, Sciot R, et al: Characterization and assessment of the sensitivity and resistance of a newly established human gastrointestinal stromal tumour xenograft model to treatment with tyrosine kinase inhibitors. Clin Sarcoma Res. 4:102014. View Article : Google Scholar : PubMed/NCBI

18 

Gold GL, Hall TC, Shnider BJ, Selawry O, Colsky J, Owens AH Jr, Dederick MM, Holland JF, Brindley CO and Jones R: A clinical study of 5-fluorouracil. Cancer Res. 19:935–939. 1959.PubMed/NCBI

19 

Miyake M, Anai S, Fujimoto K, Ohnishi S, Kuwada M, Nakai Y, Inoue T, Tomioka A, Tanaka N and Hirao Y: 5-fluorouracil enhances the antitumor effect of sorafenib and sunitinib in a xenograft model of human renal cell carcinoma. Oncol Lett. 3:1195–1202. 2012.PubMed/NCBI

20 

Abou-Elkacem L, Arns S, Brix G, Gremse F, Zopf D, Kiessling F and Lederle W: Regorafenib inhibits growth, angiogenesis, and metastasis in a highly aggressive, orthotopic colon cancer model. Mol Cancer Ther. 12:1322–1331. 2013. View Article : Google Scholar : PubMed/NCBI

21 

Wieder HA, Geinitz H, Rosenberg R, Lordick F, Becker K, Stahl A, Rummeny E, Siewert JR, Schwaiger M and Stollfuss J: PET imaging with [18F]3′-deoxy-3′-fluorothymidine for prediction of response to neoadjuvant treatment in patients with rectal cancer. Eur J Nucl Med Mol Imaging. 34:878–883. 2007. View Article : Google Scholar

22 

Hong YS, Kim HO, Kim KP, Lee JL, Kim HJ, Lee SJ, Lee SJ, Oh SJ, Kim JS, Ryu JS, et al: 3′-Deoxy-3′-18F-fluorothymidine PET for the early prediction of response to leucovorin, 5-fluo-rouracil, and oxaliplatin therapy in patients with metastatic colorectal cancer. J Nucl Med. 54:1209–1216. 2013. View Article : Google Scholar : PubMed/NCBI

23 

Wodarski CEJ, Weber K, Henze M, Haberkorn U and Eisenhut M: Synthesis of 3′-deoxy-3′-[18F]fluoro-thymidine with 2,3′-anhydro-5′-O-(4,4′-dimethoxytrityl)-thymidine. J Labelled Comp Radiopharm. 43:1211–1218. 2000. View Article : Google Scholar

24 

Tsuji AB, Kato K, Sugyo A, Okada M, Sudo H, Yoshida C, Wakizaka H, Zhang MR and Saga T: Comparison of 2-amino-[3-11C]isobutyric acid and 2-deoxy-2-[18F]fluoro-D-glucose in nude mice with xenografted tumors and acute inflammation. Nucl Med Commun. 33:1058–1064. 2012. View Article : Google Scholar : PubMed/NCBI

25 

Tsuji AB, Morita M, Li XK, Sogawa C, Sudo H, Sugyo A, Fujino M, Sugioka A, Koizumi M and Saga T: 18F-FDG PET for semiquantitative evaluation of acute allograft rejection and immunosuppressive therapy efficacy in rat models of liver transplantation. J Nucl Med. 50:827–830. 2009. View Article : Google Scholar : PubMed/NCBI

26 

Sugarbaker PH: Colorectal cancer: Prevention and management of metastatic disease. BioMed Res Int. 2014:7828902014. View Article : Google Scholar : PubMed/NCBI

27 

Thomassen I, van Gestel YR, Lemmens VE and de Hingh IH: Incidence, prognosis, and treatment options for patients with synchronous peritoneal carcinomatosis and liver metastases from colorectal origin. Dis Colon Rectum. 56:1373–1380. 2013. View Article : Google Scholar : PubMed/NCBI

28 

Brodowicz T, Liegl-Atzwager B, Tresch E, Taieb S, Kramar A, Gruenwald V, Vanseymortier M, Clisant S, Blay JY, Le Cesne A, et al: Study protocol of REGOSARC trial: activity and safety of regorafenib in advanced soft tissue sarcoma: a multinational, randomized, placebo-controlled, phase II trial. BMC Cancer. 15:1272015. View Article : Google Scholar : PubMed/NCBI

29 

Grothey A, Van Cutsem E, Sobrero A, Siena S, Falcone A, Ychou M, Humblet Y, Bouché O, Mineur L, Barone C, et al: CORRECT Study Group: Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): An international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet. 381:303–312. 2013. View Article : Google Scholar

30 

Li J, Qin S, Xu R, Yau TC, Ma B, Pan H, Xu J, Bai Y, Chi Y, Wang L, et al: CONCUR Investigators: Regorafenib plus best supportive care versus placebo plus best supportive care in Asian patients with previously treated metastatic colorectal cancer (CONCUR): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 16:619–629. 2015. View Article : Google Scholar : PubMed/NCBI

31 

Jitawatanarat P and Wee W: Update on antiangiogenic therapy in colorectal cancer: Aflibercept and regorafenib. J Gastrointest Oncol. 4:231–238. 2013.PubMed/NCBI

32 

Boyer J, McLean EG, Aroori S, Wilson P, McCulla A, Carey PD, Longley DB and Johnston PG: Characterization of p53 wild-type and null isogenic colorectal cancer cell lines resistant to 5-fluorouracil, oxaliplatin, and irinotecan. Clin Cancer Res. 10:2158–2167. 2004. View Article : Google Scholar : PubMed/NCBI

33 

Fan LC, Teng HW, Shiau CW, Lin H, Hung MH, Chen YL, Huang JW, Tai WT, Yu HC and Chen KF: SHP-1 is a target of regorafenib in colorectal cancer. Oncotarget. 5:6243–6251. 2014. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

April 2016
Volume 48 Issue 4

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Yoshii, Y., Furukawa, T., Aoyama, H., Adachi, N., Zhang, M., Wakizaka, H. ... Saga, T. (2016). Regorafenib as a potential adjuvant chemotherapy agent in disseminated small colon cancer: Drug selection outcome of a novel screening system using nanoimprinting 3-dimensional culture with HCT116-RFP cells. International Journal of Oncology, 48, 1477-1484. https://doi.org/10.3892/ijo.2016.3361
MLA
Yoshii, Y., Furukawa, T., Aoyama, H., Adachi, N., Zhang, M., Wakizaka, H., Fujibayashi, Y., Saga, T."Regorafenib as a potential adjuvant chemotherapy agent in disseminated small colon cancer: Drug selection outcome of a novel screening system using nanoimprinting 3-dimensional culture with HCT116-RFP cells". International Journal of Oncology 48.4 (2016): 1477-1484.
Chicago
Yoshii, Y., Furukawa, T., Aoyama, H., Adachi, N., Zhang, M., Wakizaka, H., Fujibayashi, Y., Saga, T."Regorafenib as a potential adjuvant chemotherapy agent in disseminated small colon cancer: Drug selection outcome of a novel screening system using nanoimprinting 3-dimensional culture with HCT116-RFP cells". International Journal of Oncology 48, no. 4 (2016): 1477-1484. https://doi.org/10.3892/ijo.2016.3361