Overexpression of microRNA-5100 decreases the aggressive phenotype of pancreatic cancer cells by targeting PODXL

  • Authors:
    • Yoshiro Chijiiwa
    • Taiki Moriyama
    • Kenoki Ohuchida
    • Toshinaga Nabae
    • Takao Ohtsuka
    • Yoshihiro Miyasaka
    • Hayato Fujita
    • Ryo Maeyama
    • Tatsuya Manabe
    • Atsushi Abe
    • Yusuke Mizuuchi
    • Yoshinao Oda
    • Kazuhiro Mizumoto
    • Masafumi Nakamura
  • View Affiliations

  • Published online on: February 12, 2016     https://doi.org/10.3892/ijo.2016.3389
  • Pages: 1688-1700
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Metastasis is the main cause of cancer-associated death, and metastasis of pancreatic cancer remains difficult to treat because of its aggressiveness. MicroRNAs (miRNAs) play crucial roles in the regulation of various human transcripts, and many miRNAs have been reported to correlate with cancer metastasis. We identified an anti-metastatic miRNA, miR-5100, by investigating differences in miRNA profiling between highly metastatic pancreatic cancer cells and their parental cells. Overexpression of miR-5100 inhibited colony formation (P<0.05), cell migration (P<0.0001) and invasion (P<0.0001) of pancreatic cancer cells. In addition, we identified a possible target of miR-5100, podocalyxin-like 1 (PODXL), and demonstrated miR-5100 directly binds to the 3' untranslated region of PODXL and post-transcriptionally regulates its expression in pancreatic cancer cells. Silencing PODXL resulted in diminished cell migration (P<0.0001) and invasion (P<0.05). We also clarified the close relationship between expression of PODXL in human pancreatic cancer specimens and liver metastasis (P=0.0003), and determined that post-operative survival was longer in the low-PODXL expression group than in the high-PODXL expression group (P<0.05). These results indicate that miR-5100 and PODXL have considerable therapeutic potential for anti-metastatic therapy and could be potential indicators for cancer metastases in patients with pancreatic cancer.

References

1 

Singh D, Upadhyay G, Srivastava RK and Shankar S: Recent advances in pancreatic cancer: Biology, treatment, and prevention. Biochim Biophys Acta. 1856:13–27. 2015.PubMed/NCBI

2 

Mirus JE, Zhang Y, Li CI, Lokshin AE, Prentice RL, Hingorani SR and Lampe PD: Cross-species antibody microarray interrogation identifies a 3-protein panel of plasma biomarkers for early diagnosis of pancreas cancer. Clin Cancer Res. 21:1764–1771. 2015. View Article : Google Scholar : PubMed/NCBI

3 

Fukushige S and Horii A: Road to early detection of pancreatic cancer: Attempts to utilize epigenetic biomarkers. Cancer Lett. 342:231–237. 2014. View Article : Google Scholar

4 

Güngör C, Hofmann BT, Wolters-Eisfeld G and Bockhorn M: Pancreatic cancer. Br J Pharmacol. 171:849–858. 2014. View Article : Google Scholar :

5 

Collins A and Bloomston M: Diagnosis and management of pancreatic cancer. Minerva Gastroenterol Dietol. 55:445–454. 2009.PubMed/NCBI

6 

Michl P and Gress TM: Current concepts and novel targets in advanced pancreatic cancer. Gut. 62:317–326. 2013. View Article : Google Scholar

7 

Sweeney AD, Fisher WE, Wu MF, Hilsenbeck SG and Brunicardi FC: Value of pancreatic resection for cancer meta-static to the pancreas. J Surg Res. 160:268–276. 2010. View Article : Google Scholar : PubMed/NCBI

8 

Werner J, Combs SE, Springfeld C, Hartwig W, Hackert T and Büchler MW: Advanced-stage pancreatic cancer: Therapy options. Nat Rev Clin Oncol. 10:323–333. 2013. View Article : Google Scholar : PubMed/NCBI

9 

Khoja L, Backen A, Sloane R, Menasce L, Ryder D, Krebs M, Board R, Clack G, Hughes A, Blackhall F, et al: A pilot study to explore circulating tumour cells in pancreatic cancer as a novel biomarker. Br J Cancer. 106:508–516. 2012. View Article : Google Scholar :

10 

Liu L, Xu H, Wang W, Wu C, Chen Y, Yang J, Cen P, Xu J, Liu C, Long J, et al: A preoperative serum signature of CEA+/CA125+/CA19-9 ≥1000 U/mL indicates poor outcome to pancreatectomy for pancreatic cancer. Int J Cancer. 136:2216–2227. 2015. View Article : Google Scholar

11 

Sergeant G, van Eijsden R, Roskams T, Van Duppen V and Topal B: Pancreatic cancer circulating tumour cells express a cell motility gene signature that predicts survival after surgery. BMC Cancer. 12:5272012. View Article : Google Scholar : PubMed/NCBI

12 

Pasquinelli AE: MicroRNAs and their targets: Recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet. 13:271–282. 2012.PubMed/NCBI

13 

Chen X, Liang H, Zhang J, Zen K and Zhang CY: Secreted microRNAs: A new form of intercellular communication. Trends Cell Biol. 22:125–132. 2012. View Article : Google Scholar : PubMed/NCBI

14 

Amirkhah R, Schmitz U, Linnebacher M, Wolkenhauer O and Farazmand A: MicroRNA-mRNA interactions in colorectal cancer and their role in tumor progression. Genes Chromosomes Cancer. 54:129–141. 2015. View Article : Google Scholar : PubMed/NCBI

15 

Jansson MD and Lund AH: MicroRNA and cancer. Mol Oncol. 6:590–610. 2012. View Article : Google Scholar : PubMed/NCBI

16 

Lin S and Gregory RI: MicroRNA biogenesis pathways in cancer. Nat Rev Cancer. 15:321–333. 2015. View Article : Google Scholar : PubMed/NCBI

17 

Reddy KB: MicroRNA (miRNA) in cancer. Cancer Cell Int. 15:382015. View Article : Google Scholar : PubMed/NCBI

18 

Shen J, Stass SA and Jiang F: MicroRNAs as potential biomarkers in human solid tumors. Cancer Lett. 329:125–136. 2013. View Article : Google Scholar :

19 

Zhang B, Pan X, Cobb GP and Anderson TA: microRNAs as oncogenes and tumor suppressors. Dev Biol. 302:1–12. 2007. View Article : Google Scholar

20 

Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y and Goodall GJ: The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 10:593–601. 2008. View Article : Google Scholar : PubMed/NCBI

21 

Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H, Patrawala L, Yan H, Jeter C, Honorio S, et al: The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med. 17:211–215. 2011. View Article : Google Scholar : PubMed/NCBI

22 

Wellner U, Schubert J, Burk UC, Schmalhofer O, Zhu F, Sonntag A, Waldvogel B, Vannier C, Darling D, zur Hausen A, et al: The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol. 11:1487–1495. 2009. View Article : Google Scholar : PubMed/NCBI

23 

Weiss FU, Marques IJ, Woltering JM, Vlecken DH, Aghdassi A, Partecke LI, Heidecke CD, Lerch MM and Bagowski CP: Retinoic acid receptor antagonists inhibit miR-10a expression and block metastatic behavior of pancreatic cancer. Gastroenterology. 137:2136–2145.e1-7. 2009. View Article : Google Scholar : PubMed/NCBI

24 

Mees ST, Mardin WA, Wendel C, Baeumer N, Willscher E, Senninger N, Schleicher C, Colombo-Benkmann M and Haier J: EP300 - a miRNA-regulated metastasis suppressor gene in ductal adenocarcinomas of the pancreas. Int J Cancer. 126:114–124. 2010. View Article : Google Scholar

25 

Kerjaschki D, Sharkey DJ and Farquhar MG: Identification and characterization of podocalyxin - the major sialoprotein of the renal glomerular epithelial cell. J Cell Biol. 98:1591–1596. 1984. View Article : Google Scholar : PubMed/NCBI

26 

Kershaw DB, Thomas PE, Wharram BL, Goyal M, Wiggins JE, Whiteside CI and Wiggins RC: Molecular cloning, expression, and characterization of podocalyxin-like protein 1 from rabbit as a transmembrane protein of glomerular podocytes and vascular endothelium. J Biol Chem. 270:29439–29446. 1995. View Article : Google Scholar : PubMed/NCBI

27 

Chan JY and Watt SM: Adhesion receptors on haematopoietic progenitor cells. Br J Haematol. 112:541–557. 2001. View Article : Google Scholar : PubMed/NCBI

28 

Horvat R, Hovorka A, Dekan G, Poczewski H and Kerjaschki D: Endothelial cell membranes contain podocalyxin - the major sialoprotein of visceral glomerular epithelial cells. J Cell Biol. 102:484–491. 1986. View Article : Google Scholar : PubMed/NCBI

29 

Doyonnas R, Nielsen JS, Chelliah S, Drew E, Hara T, Miyajima A and McNagny KM: Podocalyxin is a CD34-related marker of murine hematopoietic stem cells and embryonic erythroid cells. Blood. 105:4170–4178. 2005. View Article : Google Scholar : PubMed/NCBI

30 

Miettinen A, Solin ML, Reivinen J, Juvonen E, Väisänen R and Holthöfer H: Podocalyxin in rat platelets and megakaryocytes. Am J Pathol. 154:813–822. 1999. View Article : Google Scholar : PubMed/NCBI

31 

Takeda T, Go WY, Orlando RA and Farquhar MG: Expression of podocalyxin inhibits cell-cell adhesion and modifies junctional properties in Madin-Darby canine kidney cells. Mol Biol Cell. 11:3219–3232. 2000. View Article : Google Scholar : PubMed/NCBI

32 

Nielsen JS and McNagny KM: The role of podocalyxin in health and disease. J Am Soc Nephrol. 20:1669–1676. 2009. View Article : Google Scholar : PubMed/NCBI

33 

Dallas MR, Chen SH, Streppel MM, Sharma S, Maitra A and Konstantopoulos K: Sialofucosylated podocalyxin is a functional E- and L-selectin ligand expressed by metastatic pancreatic cancer cells. Am J Physiol Cell Physiol. 303:C616–C624. 2012. View Article : Google Scholar : PubMed/NCBI

34 

Thomas SN, Schnaar RL and Konstantopoulos K: Podocalyxin-like protein is an E-/L-selectin ligand on colon carcinoma cells: Comparative biochemical properties of selectin ligands in host and tumor cells. Am J Physiol Cell Physiol. 296:C505–C513. 2009. View Article : Google Scholar : PubMed/NCBI

35 

Konstantopoulos K and Thomas SN: Cancer cells in transit: The vascular interactions of tumor cells. Annu Rev Biomed Eng. 11:177–202. 2009. View Article : Google Scholar : PubMed/NCBI

36 

Cipollone JA, Graves ML, Köbel M, Kalloger SE, Poon T, Gilks CB, McNagny KM and Roskelley CD: The anti-adhesive mucin podocalyxin may help initiate the transperitoneal metastasis of high grade serous ovarian carcinoma. Clin Exp Metastasis. 29:239–252. 2012. View Article : Google Scholar : PubMed/NCBI

37 

Somasiri A, Nielsen JS, Makretsov N, McCoy ML, Prentice L, Gilks CB, Chia SK, Gelmon KA, Kershaw DB, Huntsman DG, et al: Overexpression of the anti-adhesin podocalyxin is an independent predictor of breast cancer progression. Cancer Res. 64:5068–5073. 2004. View Article : Google Scholar : PubMed/NCBI

38 

Forse CL, Yilmaz YE, Pinnaduwage D, O'Malley FP, Mulligan AM, Bull SB and Andrulis IL: Elevated expression of podocalyxin is associated with lymphatic invasion, basal-like phenotype, and clinical outcome in axillary lymph node-negative breast cancer. Breast Cancer Res Treat. 137:709–719. 2013. View Article : Google Scholar : PubMed/NCBI

39 

Kaprio T, Fermér C, Hagström J, Mustonen H, Böckelman C, Nilsson O and Haglund C: Podocalyxin is a marker of poor prognosis in colorectal cancer. BMC Cancer. 14:4932014. View Article : Google Scholar : PubMed/NCBI

40 

Larsson A, Johansson ME, Wangefjord S, Gaber A, Nodin B, Kucharzewska P, Welinder C, Belting M, Eberhard J, Johnsson A, et al: Overexpression of podocalyxin-like protein is an independent factor of poor prognosis in colorectal cancer. Br J Cancer. 105:666–672. 2011. View Article : Google Scholar : PubMed/NCBI

41 

Saukkonen K, Hagström J, Mustonen H, Juuti A, Nordling S, Fermér C, Nilsson O, Seppänen H and Haglund C: Podocalyxin is a marker of poor prognosis in pancreatic ductal adenocarcinoma. PLoS One. 10:e01290122015. View Article : Google Scholar : PubMed/NCBI

42 

Du P, Kibbe WA and Lin SM: lumi: A pipeline for processing Illumina microarray. Bioinformatics. 24:1547–1548. 2008. View Article : Google Scholar : PubMed/NCBI

43 

Bolstad BM, Irizarry RA, Astrand M and Speed TP: A comparison of normalization methods for high density oligo-nucleotide array data based on variance and bias. Bioinformatics. 19:185–193. 2003. View Article : Google Scholar : PubMed/NCBI

44 

Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, et al: Bioconductor: Open software development for computational biology and bioinformatics. Genome Biol. 5:R802004. View Article : Google Scholar : PubMed/NCBI

45 

Quackenbush J: Microarray data normalization and transformation. Nat Genet. 32(Suppl): 496–501. 2002. View Article : Google Scholar : PubMed/NCBI

46 

Khan S, Ansarullah, Kumar D, Jaggi M and Chauhan SC: Targeting microRNAs in pancreatic cancer: Microplayers in the big game. Cancer Res. 73:6541–6547. 2013. View Article : Google Scholar : PubMed/NCBI

47 

Singh S, Chitkara D, Kumar V, Behrman SW and Mahato RI: miRNA profiling in pancreatic cancer and restoration of chemo-sensitivity. Cancer Lett. 334:211–220. 2013. View Article : Google Scholar

48 

Shi S, Lu Y, Qin Y, Li W, Cheng H, Xu Y, Xu J, Long J, Liu L, Liu C, et al: miR-1247 is correlated with prognosis of pancreatic cancer and inhibits cell proliferation by targeting neuropilins. Curr Mol Med. 14:316–327. 2014. View Article : Google Scholar : PubMed/NCBI

49 

Ben Q, Zheng J, Fei J, An W, Li P, Li Z and Yuan Y: High neuropilin 1 expression was associated with angiogenesis and poor overall survival in resected pancreatic ductal adenocarcinoma. Pancreas. 43:744–749. 2014. View Article : Google Scholar : PubMed/NCBI

50 

Cao Y, Hoeppner LH, Bach S, EG, Guo Y, Wang E, Wu J, Cowley MJ, Chang DK, Waddell N, et al: Neuropilin-2 promotes extravasation and metastasis by interacting with endothelial α5 integrin. Cancer Res. 73:4579–4590. 2013. View Article : Google Scholar : PubMed/NCBI

51 

Shen J, Wan R, Hu G, Yang L, Xiong J, Wang F, Shen J, He S, Guo X, Ni J, et al: miR-15b and miR-16 induce the apoptosis of rat activated pancreatic stellate cells by targeting Bcl-2 in vitro. Pancreatology. 12:91–99. 2012. View Article : Google Scholar : PubMed/NCBI

52 

Batchu RB, Gruzdyn OV, Qazi AM, Kaur J, Mahmud EM, Weaver DW and Gruber SA: Enhanced phosphorylation of p53 by microRNA-26a leading to growth inhibition of pancreatic cancer. Surgery. 158:981–986; discussion 986–987. 2015. View Article : Google Scholar : PubMed/NCBI

53 

Ali S, Ahmad A, Aboukameel A, Bao B, Padhye S, Philip PA and Sarkar FH: Increased Ras GTPase activity is regulated by miRNAs that can be attenuated by CDF treatment in pancreatic cancer cells. Cancer Lett. 319:173–181. 2012. View Article : Google Scholar : PubMed/NCBI

54 

Bera A, Venkata Subba Rao K, Manoharan MS, Hill P and Freeman JW: A miRNA signature of chemoresistant mesenchymal phenotype identifies novel molecular targets associated with advanced pancreatic cancer. PLoS One. 9:e1063432014. View Article : Google Scholar : PubMed/NCBI

55 

Huang H, Jiang Y, Wang Y, Chen T, Yang L, He H, Lin Z, Liu T, Yang T, Kamp DW, et al: miR-5100 promotes tumor growth in lung cancer by targeting Rab6. Cancer Lett. 362:15–24. 2015. View Article : Google Scholar : PubMed/NCBI

56 

Snyder KA, Hughes MR, Hedberg B, Brandon J, Hernaez DC, Bergqvist P, Cruz F, Po K, Graves ML, Turvey ME, et al: Podocalyxin enhances breast tumor growth and metastasis and is a target for monoclonal antibody therapy. Breast Cancer Res. 17:462015. View Article : Google Scholar : PubMed/NCBI

57 

Sizemore S, Cicek M, Sizemore N, Ng KP and Casey G: Podocalyxin increases the aggressive phenotype of breast and prostate cancer cells in vitro through its interaction with ezrin. Cancer Res. 67:6183–6191. 2007. View Article : Google Scholar : PubMed/NCBI

58 

Lin CW, Sun MS and Wu HC: Podocalyxin-like 1 is associated with tumor aggressiveness and metastatic gene expression in human oral squamous cell carcinoma. Int J Oncol. 45:710–718. 2014.PubMed/NCBI

59 

Wu H, Yang L, Liao D, Chen Y, Wang W and Fang J: Podocalyxin regulates astrocytoma cell invasion and survival against temozolomide. Exp Ther Med. 5:1025–1029. 2013.PubMed/NCBI

60 

Hsu YH, Lin WL, Hou YT, Pu YS, Shun CT, Chen CL, Wu YY, Chen JY, Chen TH and Jou TS: Podocalyxin EBP50 ezrin molecular complex enhances the metastatic potential of renal cell carcinoma through recruiting Rac1 guanine nucleotide exchange factor ARHGEF7. Am J Pathol. 176:3050–3061. 2010. View Article : Google Scholar : PubMed/NCBI

61 

Lin CW, Sun MS, Liao MY, Chung CH, Chi YH, Chiou LT, Yu J, Lou KL and Wu HC: Podocalyxin-like 1 promotes invadopodia formation and metastasis through activation of Rac1/Cdc42/cortactin signaling in breast cancer cells. Carcinogenesis. 35:2425–2435. 2014. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

April 2016
Volume 48 Issue 4

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Chijiiwa, Y., Moriyama, T., Ohuchida, K., Nabae, T., Ohtsuka, T., Miyasaka, Y. ... Nakamura, M. (2016). Overexpression of microRNA-5100 decreases the aggressive phenotype of pancreatic cancer cells by targeting PODXL. International Journal of Oncology, 48, 1688-1700. https://doi.org/10.3892/ijo.2016.3389
MLA
Chijiiwa, Y., Moriyama, T., Ohuchida, K., Nabae, T., Ohtsuka, T., Miyasaka, Y., Fujita, H., Maeyama, R., Manabe, T., Abe, A., Mizuuchi, Y., Oda, Y., Mizumoto, K., Nakamura, M."Overexpression of microRNA-5100 decreases the aggressive phenotype of pancreatic cancer cells by targeting PODXL". International Journal of Oncology 48.4 (2016): 1688-1700.
Chicago
Chijiiwa, Y., Moriyama, T., Ohuchida, K., Nabae, T., Ohtsuka, T., Miyasaka, Y., Fujita, H., Maeyama, R., Manabe, T., Abe, A., Mizuuchi, Y., Oda, Y., Mizumoto, K., Nakamura, M."Overexpression of microRNA-5100 decreases the aggressive phenotype of pancreatic cancer cells by targeting PODXL". International Journal of Oncology 48, no. 4 (2016): 1688-1700. https://doi.org/10.3892/ijo.2016.3389