Open Access

Competing endogenous RNA analysis reveals the regulatory potency of circRNA_036186 in HNSCC

  • Authors:
    • Wen-Long Wang
    • Zhi Yang
    • Yi-Juan Zhang
    • Ping Lu
    • You-Kang Ni
    • Chang-Fu Sun
    • Fa-Yu Liu
  • View Affiliations

  • Published online on: July 24, 2018     https://doi.org/10.3892/ijo.2018.4499
  • Pages: 1529-1543
  • Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

This study aimed to characterize circular RNA (circRNA) expression profiles and biological functions in head and neck squamous cell carcinoma (HNSCC). Differentially expressed circRNAs were screened using an Arraystar Human CircRNA Array and verified by reverse transcription-quantitative polymerase chain reaction. Multiple bioinformatics methods and a hypergeometric test were employed to predict the interactions between RNAs and the functional circRNA‑microRNA (miRNA)-mRNA axes in HNSCC. As a result, 287 circRNAs and 1,053 mRNAs were determined to be differentially expressed in HNSCC compared with the adjacent tissue. In addition, the expression levels of circRNA_036186 and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, ζ polypeptide (14‑3‑3ζ) were identified to be significantly different. A competing endogenous RNA (ceRNA) network was constructed, consisting of 5 circRNAs, 385 miRNAs and 96 mRNAs. Furthermore, we predicted that miR‑193b‑3p exerts a significant effect on 14‑3‑3ζ, and was significantly associated with the Hippo signaling pathway in HNSCC. On the whole, these findings suggest that circRNA_036186 likely regulates 14‑3‑3ζ expression by functioning as a ceRNA in the development and progression of HNSCC.

References

1 

Marur S and Forastiere AA: Head and neck squamous cell carcinoma: Update on epidemiology, diagnosis, and treatment. Mayo Clin Proc. 91:386–396. 2016. View Article : Google Scholar : PubMed/NCBI

2 

Siegel RL, Miller KD and Jemal A: Cancer statistics, 2016. CA Cancer J Clin. 66:7–30. 2016. View Article : Google Scholar : PubMed/NCBI

3 

Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ and He J: Cancer statistics in China, 2015. CA Cancer J Clin. 66:115–132. 2016. View Article : Google Scholar : PubMed/NCBI

4 

Fabian MR, Sonenberg N and Filipowicz W: Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem. 79:351–379. 2010. View Article : Google Scholar : PubMed/NCBI

5 

Li H, Xie S, Liu M, Chen Z, Liu X, Wang L, Li D and Zhou Y: The clinical significance of downregulation of mir-124-3p, mir-146a-5p, mir-155-5p and mir-335-5p in gastric cancer tumorigenesis. Int J Oncol. 45:197–208. 2014. View Article : Google Scholar : PubMed/NCBI

6 

Cao J, Cai J, Huang D, Han Q, Yang Q, Li T, Ding H and Wang Z: miR-335 represents an invasion suppressor gene in ovarian cancer by targeting Bcl-w. Oncol Rep. 30:701–706. 2013. View Article : Google Scholar : PubMed/NCBI

7 

Croce CM: Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet. 10:704–714. 2009. View Article : Google Scholar : PubMed/NCBI

8 

Esquela-Kerscher A and Slack FJ: Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer. 6:259–269. 2006. View Article : Google Scholar : PubMed/NCBI

9 

Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ and Pandolfi PP: A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature. 465:1033–1038. 2010. View Article : Google Scholar : PubMed/NCBI

10 

Salmena L, Poliseno L, Tay Y, Kats L and Pandolfi PP: A ceRNA hypothesis: The Rosetta Stone of a hidden RNA language? Cell. 146:353–358. 2011. View Article : Google Scholar : PubMed/NCBI

11 

Rybak-Wolf A, Stottmeister C, Glažar P, Jens M, Pino N, Giusti S, Hanan M, Behm M, Bartok O, Ashwal-Fluss R, et al: Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell. 58:870–885. 2015. View Article : Google Scholar : PubMed/NCBI

12 

Qu S, Yang X, Li X, Wang J, Gao Y, Shang R, Sun W, Dou K and Li H: Circular RNA: A new star of noncoding RNAs. Cancer Lett. 365:141–148. 2015. View Article : Google Scholar : PubMed/NCBI

13 

Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF and Sharpless NE: Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 19:141–157. 2013. View Article : Google Scholar :

14 

Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH, Zhu S, Yang L and Chen LL: Circular intronic long noncoding RNAs. Mol Cell. 51:792–806. 2013. View Article : Google Scholar : PubMed/NCBI

15 

Shen T, Han M, Wei G and Ni T: An intriguing RNA species - perspectives of circularized RNA. Protein Cell. 6:871–880. 2015. View Article : Google Scholar : PubMed/NCBI

16 

Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, Zhong G, Yu B, Hu W, Dai L, et al: Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol. 22:256–264. 2015. View Article : Google Scholar : PubMed/NCBI

17 

Chen LL: The biogenesis and emerging roles of circular RNAs. Nat Rev Mol Cell Biol. 17:205–211. 2016. View Article : Google Scholar : PubMed/NCBI

18 

Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N and Kadener S: circRNA biogenesis competes with pre-mRNA splicing. Mol Cell. 56:55–66. 2014. View Article : Google Scholar : PubMed/NCBI

19 

Wilusz JE and Sharp PA: Molecular biology. A circuitous route to noncoding RNA. Science. 340:440–441. 2013. View Article : Google Scholar : PubMed/NCBI

20 

Vicens Q and Westhof E: Biogenesis of circular RNAs. Cell. 159:13–14. 2014. View Article : Google Scholar : PubMed/NCBI

21 

Zhang XO, Wang HB, Zhang Y, Lu X, Chen LL and Yang L: Complementary sequence-mediated exon circularization. Cell. 159:134–147. 2014. View Article : Google Scholar : PubMed/NCBI

22 

Westholm JO, Miura P, Olson S, Shenker S, Joseph B, Sanfilippo P, Celniker SE, Graveley BR and Lai EC: Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Reports. 9:1966–1980. 2014. View Article : Google Scholar : PubMed/NCBI

23 

Suzuki H, Aoki Y, Kameyama T, Saito T, Masuda S, Tanihata J, Nagata T, Mayeda A, Takeda S and Tsukahara T: Endogenous multiple exon skipping and back-splicing at the DMD mutation hotspot. Int J Mol Sci. 17:172016. View Article : Google Scholar

24 

Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK and Kjems J: Natural RNA circles function as efficient microRNA sponges. Nature. 495:384–388. 2013. View Article : Google Scholar : PubMed/NCBI

25 

Zheng Q, Bao C, Guo W, Li S, Chen J, Chen B, Luo Y, Lyu D, Li Y, Shi G, et al: Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat Commun. 7:112152016. View Article : Google Scholar : PubMed/NCBI

26 

Guo JU, Agarwal V, Guo H and Bartel DP: Expanded identification and characterization of mammalian circular RNAs. Genome Biol. 15:4092014. View Article : Google Scholar : PubMed/NCBI

27 

Tay Y, Rinn J and Pandolfi PP: The multilayered complexity of ceRNA crosstalk and competition. Nature. 505:344–352. 2014. View Article : Google Scholar : PubMed/NCBI

28 

Ghosal S, Das S, Sen R, Basak P and Chakrabarti J: Circ2Traits: A comprehensive database for circular RNA potentially associated with disease and traits. Front Genet. 4:2832013. View Article : Google Scholar : PubMed/NCBI

29 

Lukiw WJ: Circular RNA (circRNA) in Alzheimer's disease (AD). Front Genet. 4:3072013. View Article : Google Scholar

30 

Hansen TB, Kjems J and Damgaard CK: Circular RNA and miR-7 in cancer. Cancer Res. 73:5609–5612. 2013. View Article : Google Scholar : PubMed/NCBI

31 

Enright AJ, John B, Gaul U, Tuschl T, Sander C and Marks DS: MicroRNA targets in Drosophila. Genome Biol. 5:R12003. View Article : Google Scholar

32 

Pasquinelli AE: MicroRNAs and their targets: Recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet. 13:271–282. 2012. View Article : Google Scholar : PubMed/NCBI

33 

Assenov Y, Ramírez F, Schelhorn SE, Lengauer T and Albrecht M: Computing topological parameters of biological networks. Bioinformatics. 24:282–284. 2008. View Article : Google Scholar

34 

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B and Ideker T: Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13:2498–2504. 2003. View Article : Google Scholar : PubMed/NCBI

35 

Wong NW, Chen Y, Chen S and Wang X: OncomiR: An online resource for exploring pan-cancer microRNA dysregulation. Bioinformatics. 34:713–715. 2018. View Article : Google Scholar

36 

Chandrashekar DS, Bashel B, Balasubramanya SAH, Creighton CJ, Ponce-Rodriguez I, Chakravarthi BVSK and Varambally S: UALCAN: A portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia. 19:649–658. 2017. View Article : Google Scholar : PubMed/NCBI

37 

Vlachos IS, Zagganas K, Paraskevopoulou MD, Georgakilas G, Karagkouni D, Vergoulis T, Dalamagas T and Hatzigeorgiou AG: DIANA-miRPath v3.0: Deciphering microRNA function with experimental support. Nucleic Acids Res. 43W1:W460–W466. 2015. View Article : Google Scholar

38 

Li JH, Liu S, Zhou H, Qu LH and Yang JH: starBase v2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 42D1:D92–D97. 2014. View Article : Google Scholar

39 

Vlachos IS, Paraskevopoulou MD, Karagkouni D, Georgakilas G, Vergoulis T, Kanellos I, Anastasopoulos IL, Maniou S, Karathanou K, Kalfakakou D, et al: DIANA-TarBase v7.0: indexing more than half a million experimentally supported miRNA:mRNA interactions. Nucleic Acids Res. 43D:D153–D159. 2015. View Article : Google Scholar

40 

Paraskevopoulou MD, Georgakilas G, Kostoulas N, Vlachos IS, Vergoulis T, Reczko M, Filippidis C, Dalamagas T and Hatzigeorgiou AG: DIANA-microT web server v5.0: Service integration into miRNA functional analysis workflows. Nucleic Acids Res. 41W:W169–W173. 2013. View Article : Google Scholar

41 

Reczko M, Maragkakis M, Alexiou P, Grosse I and Hatzigeorgiou AG: Functional microRNA targets in protein coding sequences. Bioinformatics. 28:771–776. 2012. View Article : Google Scholar : PubMed/NCBI

42 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 25:402–408. 2001. View Article : Google Scholar

43 

Alexander RP, Fang G, Rozowsky J, Snyder M and Gerstein MB: Annotating non-coding regions of the genome. Nat Rev Genet. 11:559–571. 2010. View Article : Google Scholar : PubMed/NCBI

44 

Mercer TR, Dinger ME and Mattick JS: Long non-coding RNAs: Insights into functions. Nat Rev Genet. 10:155–159. 2009. View Article : Google Scholar : PubMed/NCBI

45 

Mei Y, Yang JP and Qian CN: For robust big data analyses: A collection of 150 important pro-metastatic genes. Chin J Cancer. 36:162017. View Article : Google Scholar : PubMed/NCBI

46 

Qian CN, Mei Y and Zhang J: Cancer metastasis: Issues and challenges. Chin J Cancer. 36:382017. View Article : Google Scholar : PubMed/NCBI

47 

Carthew RW and Sontheimer EJ: Origins and mechanisms of miRNAs and siRNAs. Cell. 136:642–655. 2009. View Article : Google Scholar : PubMed/NCBI

48 

He L and Hannon GJ: MicroRNAs: Small RNAs with a big role in gene regulation. Nat Rev Genet. 5:522–531. 2004. View Article : Google Scholar : PubMed/NCBI

49 

Caiment F, Gaj S, Claessen S and Kleinjans J: High-throughput data integration of RNA-miRNA-circRNA reveals novel insights into mechanisms of benzo[a]pyrene-induced carcinogenicity. Nucleic Acids Res. 43:2525–2534. 2015. View Article : Google Scholar : PubMed/NCBI

50 

Xia S, Feng J, Lei L, Hu J, Xia L, Wang J, Xiang Y, Liu L, Zhong S, Han L, et al: Comprehensive characterization of tissue-specific circular RNAs in the human and mouse genomes. Brief Bioinform. 18:984–992. 2017.

51 

Salzman J, Chen RE, Olsen MN, Wang PL and Brown PO: Cell-type specific features of circular RNA expression. PLoS Genet. 9:e10037772013. View Article : Google Scholar : PubMed/NCBI

52 

Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, et al: Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 495:333–338. 2013. View Article : Google Scholar : PubMed/NCBI

53 

Granados-Riveron JT and Aquino-Jarquin G: The complexity of the translation ability of circRNAs. Biochim Biophys Acta. 1859:1245–1251. 2016. View Article : Google Scholar : PubMed/NCBI

54 

Wang Y and Wang Z: Efficient backsplicing produces translatable circular mRNAs. RNA. 21:172–179. 2015. View Article : Google Scholar :

55 

Sannigrahi MK, Sharma R, Panda NK and Khullar M: Role of non-coding RNAs in head and neck squamous cell carcinoma: A narrative review. Oral Dis. Sep 21–2017.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI

56 

Koshizuka K, Hanazawa T, Kikkawa N, Katada K, Okato A, Arai T, Idichi T, Osako Y, Okamoto Y and Seki N: Antitumor miR-150-5p and miR-150-3p inhibit cancer cell aggressiveness by targeting SPOCK1 in head and neck squamous cell carcinoma. Auris Nasus Larynx. 45:854–865. 2018. View Article : Google Scholar

57 

Liu F, Zhao X, Qian Y, Zhang J, Zhang Y and Yin R: miR-206 inhibits head and neck squamous cell carcinoma cell progression by targeting HDAC6 via PTEN/AKT/mTOR pathway. Biomed Pharmacother. 96:229–237. 2017. View Article : Google Scholar : PubMed/NCBI

58 

Miao L, Wang L, Zhu L, Du J, Zhu X, Niu Y, Wang R, Hu Z, Chen N, Shen H, et al: Association of microRNA polymorphisms with the risk of head and neck squamous cell carcinoma in a Chinese population: A case-control study. Chin J Cancer. 35:772016. View Article : Google Scholar : PubMed/NCBI

59 

Chen L, Zhang S, Wu J, Cui J, Zhong L, Zeng L and Ge S: circRNA_100290 plays a role in oral cancer by functioning as a sponge of the miR-29 family. Oncogene. 36:4551–4561. 2017. View Article : Google Scholar : PubMed/NCBI

60 

Rauhala HE, Jalava SE, Isotalo J, Bracken H, Lehmusvaara S, Tammela TL, Oja H and Visakorpi T: miR-193b is an epigenetically regulated putative tumor suppressor in prostate cancer. Int J Cancer. 127:1363–1372. 2010. View Article : Google Scholar : PubMed/NCBI

61 

Leivonen SK, Rokka A, Ostling P, Kohonen P, Corthals GL, Kallioniemi O and Perälä M: Identification of miR-193b targets in breast cancer cells and systems biological analysis of their functional impact. Mol Cell Proteomics. 10:M110.0053222011. View Article : Google Scholar : PubMed/NCBI

62 

Mitra AK, Chiang CY, Tiwari P, Tomar S, Watters KM, Peter ME and Lengyel E: Microenvironment-induced downregulation of miR-193b drives ovarian cancer metastasis. Oncogene. 34:5923–5932. 2015. View Article : Google Scholar : PubMed/NCBI

63 

Zhao GY, Ding JY, Lu CL, Lin ZW and Guo J: The overexpression of 143-3ζ and Hsp27 promotes non-small cell lung cancer progression. Cancer. 120:652–663. 2014. View Article : Google Scholar : PubMed/NCBI

64 

Rehman SK, Li SH, Wyszomierski SL, Wang Q, Li P, Sahin O, Xiao Y, Zhang S, Xiong Y, Yang J, et al: 14-3-3ζ orchestrates mammary tumor onset and progression via miR-221-mediated cell proliferation. Cancer Res. 74:363–373. 2014. View Article : Google Scholar

65 

Li J, Kong F, Wu K, Song K, He J and Sun W: miR-193b directly targets STMN1 and uPA genes and suppresses tumor growth and metastasis in pancreatic cancer. Mol Med Rep. 10:2613–2620. 2014. View Article : Google Scholar : PubMed/NCBI

66 

Mets E, Van der Meulen J, Van Peer G, Boice M, Mestdagh P, Van de Walle I, Lammens T, Goossens S, De Moerloose B, Benoit Y, et al: MicroRNA-193b-3p acts as a tumor suppressor by targeting the MYB oncogene in T-cell acute lymphoblastic leukemia. Leukemia. 29:798–806. 2015. View Article : Google Scholar

67 

Zhang J, Qin J and Su Y: miR-193b-3p possesses anti-tumor activity in ovarian carcinoma cells by targeting p21-activated kinase 3. Biomed Pharmacother. 96:1275–1282. 2017. View Article : Google Scholar : PubMed/NCBI

68 

Matta A, Bahadur S, Duggal R, Gupta SD and Ralhan R: Over-expression of 14-3-3zeta is an early event in oral cancer. BMC Cancer. 7:1692007. View Article : Google Scholar : PubMed/NCBI

69 

Nishimura Y, Komatsu S, Ichikawa D, Nagata H, Hirajima S, Takeshita H, Kawaguchi T, Arita T, Konishi H, Kashimoto K, et al: Overexpression of YWHAZ relates to tumor cell proliferation and malignant outcome of gastric carcinoma. Br J Cancer. 108:1324–1331. 2013. View Article : Google Scholar : PubMed/NCBI

70 

Murata T, Takayama K, Urano T, Fujimura T, Ashikari D, Obinata D, Horie-Inoue K, Takahashi S, Ouchi Y, Homma Y, et al: 14-3-3zeta, a novel androgen-responsive gene, is upregulated in prostate cancer and promotes prostate cancer cell proliferation and survival. Clin Cancer Res. 18:5617–5627. 2012. View Article : Google Scholar : PubMed/NCBI

71 

Lin M, Morrison CD, Jones S, Mohamed N, Bacher J and Plass C: Copy number gain and oncogenic activity of YWHAZ/14-3-3zeta in head and neck squamous cell carcinoma. Int J Cancer. 125:603–611. 2009. View Article : Google Scholar : PubMed/NCBI

72 

Yao CB, Zhou X, Chen CS and Lei QY: The regulatory mechanisms and functional roles of the Hippo signaling pathway in breast cancer. Yi Chuan. 39:617–629. 2017.PubMed/NCBI

73 

Patel SH, Camargo FD and Yimlamai D: Hippo signaling in the liver regulates organ size, cell fate, and carcinogenesis. Gastroenterology. 152:533–545. 2017. View Article : Google Scholar :

74 

Ji XY, Zhong G and Zhao B: Molecular mechanisms of the mammalian Hippo signaling pathway. Yi Chuan. 39:546–567. 2017.PubMed/NCBI

75 

Pan D: The hippo signaling pathway in development and cancer. Dev Cell. 19:491–505. 2010. View Article : Google Scholar : PubMed/NCBI

76 

Zhang B, Gong A, Shi H, Bie Q, Liang Z, Wu P, Mao F, Qian H and Xu W: Identification of a novel YAP-14-3-3ζ negative feedback loop in gastric cancer. Oncotarget. 8:71894–71910. 2017.PubMed/NCBI

Related Articles

Journal Cover

October 2018
Volume 53 Issue 4

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Wang, W., Yang, Z., Zhang, Y., Lu, P., Ni, Y., Sun, C., & Liu, F. (2018). Competing endogenous RNA analysis reveals the regulatory potency of circRNA_036186 in HNSCC. International Journal of Oncology, 53, 1529-1543. https://doi.org/10.3892/ijo.2018.4499
MLA
Wang, W., Yang, Z., Zhang, Y., Lu, P., Ni, Y., Sun, C., Liu, F."Competing endogenous RNA analysis reveals the regulatory potency of circRNA_036186 in HNSCC". International Journal of Oncology 53.4 (2018): 1529-1543.
Chicago
Wang, W., Yang, Z., Zhang, Y., Lu, P., Ni, Y., Sun, C., Liu, F."Competing endogenous RNA analysis reveals the regulatory potency of circRNA_036186 in HNSCC". International Journal of Oncology 53, no. 4 (2018): 1529-1543. https://doi.org/10.3892/ijo.2018.4499