Modulation of G6PD affects bladder cancer via ROS accumulation and the AKT pathway in vitro

  • Authors:
    • Xiaoyi Chen
    • Zhijie Xu
    • Zhijian Zhu
    • Anqi Chen
    • Guanghou Fu
    • Yimin Wang
    • Hao Pan
    • Baiye Jin
  • View Affiliations

  • Published online on: July 25, 2018     https://doi.org/10.3892/ijo.2018.4501
  • Pages: 1703-1712
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Glucose-6-phosphate dehydrogenase (G6PD) is a rate-limiting enzyme of the pentose phosphate pathway. Multiple studies have previously revealed that elevated G6PD levels promote cancer progression in numerous tumor types; however, the underlying mechanism remains unclear. In the present study, it was demonstrated that high G6PD expression is a poor prognostic factor in bladder cancer, and the levels of G6PD expression increase with increasing tumor stage. Patients with bladder cancer with high G6PD expression had worse survival rates compared with those with lower G6PD expression in resected tumors. In vitro experiments revealed that knockdown of G6PD suppressed cell viability and growth in Cell Counting Kit-8 and colony formation assays, and increased apoptosis in bladder cancer cell lines compared with normal cells. Further experiments indicated that the weakening of the survival ability in G6PD-knockdown bladder cancer cells may be explained by intracellular reactive oxygen species accumulation and protein kinase B pathway suppression. Furthermore, it was additionally revealed that 6-aminonicotinamide (6-AN), a competitive G6PD inhibitor, may be a potential therapy for bladder cancer, particularly in cases with high G6PD expression, and that the combination of cisplatin and 6-AN may optimize the clinical dose or minimize the side effects of cisplatin.

References

1 

Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ and He J: Cancer statistics in China, 2015. CA Cancer J Clin. 66:115–132. 2016. View Article : Google Scholar : PubMed/NCBI

2 

Bellmunt J, Orsola A, Leow JJ, Wiegel T, De Santis M and Horwich A; Group EGW; ESMO Guidelines Working Group: Bladder cancer: ESMO Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 25(Suppl 3): iii40–iii48. 2014. View Article : Google Scholar : PubMed/NCBI

3 

Riganti C, Gazzano E, Polimeni M, Aldieri E and Ghigo D: The pentose phosphate pathway: An antioxidant defense and a crossroad in tumor cell fate. Free Radic Biol Med. 53:421–436. 2012. View Article : Google Scholar : PubMed/NCBI

4 

Tian WN, Braunstein LD, Pang J, Stuhlmeier KM, Xi QC, Tian X and Stanton RC: Importance of glucose-6-phosphate dehydrogenase activity for cell growth. J Biol Chem. 273:10609–10617. 1998. View Article : Google Scholar : PubMed/NCBI

5 

Hu T, Zhang C, Tang Q, Su Y, Li B, Chen L, Zhang Z, Cai T and Zhu Y: Variant G6PD levels promote tumor cell proliferation or apoptosis via the STAT3/5 pathway in the human melanoma xenograft mouse model. BMC Cancer. 13:2512013. View Article : Google Scholar : PubMed/NCBI

6 

Batetta B, Pulisci D, Bonatesta RR, Sanna F, Piras S, Mulas MF, Spano O, Putzolu M, Broccia G and Dessì S: G6PD activity and gene expression in leukemic cells from G6PD-deficient subjects. Cancer Lett. 140:53–58. 1999. View Article : Google Scholar : PubMed/NCBI

7 

Van Driel BE, Valet GK, Lyon H, Hansen U, Song JY and Van Noorden CJ: Prognostic estimation of survival of colorectal cancer patients with the quantitative histochemical assay of G6PDH activity and the multiparameter classification program CLASSIF1. Cytometry. 38:176–183. 1999. View Article : Google Scholar : PubMed/NCBI

8 

Polat MF, Taysi S, Gul M, Cikman O, Yilmaz I, Bakan E and Erdogan F: Oxidant/antioxidant status in blood of patients with malignant breast tumour and benign breast disease. Cell Biochem Funct. 20:327–331. 2002. View Article : Google Scholar : PubMed/NCBI

9 

Philipson KA, Elder MG and White JO: The effects of medroxyprogesterone acetate on enzyme activities in human endometrial carcinoma. J Steroid Biochem. 23A:1059–1064. 1985. View Article : Google Scholar

10 

Zhang C, Zhang Z, Zhu Y and Qin S: Glucose-6-phosphate dehydrogenase: A biomarker and potential therapeutic target for cancer. Anticancer Agents Med Chem. 14:280–289. 2014. View Article : Google Scholar

11 

Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, Barrette T, Pandey A and Chinnaiyan AM: ONCOMINE: A cancer microarray database and integrated data-mining platform. Neoplasia. 6:1–6. 2004. View Article : Google Scholar : PubMed/NCBI

12 

Dyrskjøt L, Kruhøffer M, Thykjaer T, Marcussen N, Jensen JL, Møller K and Ørntoft TF: Gene expression in the urinary bladder: A common carcinoma in situ gene expression signature exists disregarding histopathological classification. Cancer Res. 64:4040–4048. 2004. View Article : Google Scholar : PubMed/NCBI

13 

Lee JS, Leem SH, Lee SY, Kim SC, Park ES, Kim SB, Kim SK, Kim YJ, Kim WJ and Chu IS: Expression signature of E2F1 and its associated genes predict superficial to invasive progression of bladder tumors. J Clin Oncol. 28:2660–2667. 2010. View Article : Google Scholar : PubMed/NCBI

14 

Fogh J: Cultivation, characterization, and identification of human tumor cells with emphasis on kidney, testis, and bladder tumors. Natl Cancer Inst Monogr. 49:5–9. 1978.

15 

Bubeník J, Baresová M, Viklický V, Jakoubková J, Sainerová H and Donner J: Established cell line of urinary bladder carcinoma (T24) containing tumour-specific antigen. Int J Cancer. 11:765–773. 1973. View Article : Google Scholar : PubMed/NCBI

16 

Christian BJ, Loretz LJ, Oberley TD and Reznikoff CA: Characterization of human uroepithelial cells immortalized in vitro by simian virus 40. Cancer Res. 47:6066–6073. 1987.PubMed/NCBI

17 

Graham FL and van der Eb AJ: A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology. 52:456–467. 1973. View Article : Google Scholar : PubMed/NCBI

18 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)). Method. 25:402–408. 2001. View Article : Google Scholar

19 

Loewe S: The problem of synergism and antagonism of combined drugs. Arzneimittelforschung. 3:285–290. 1953.PubMed/NCBI

20 

Tallarida RJ: An overview of drug combination analysis with isobolograms. J Pharmacol Exp Ther. 319:1–7. 2006. View Article : Google Scholar : PubMed/NCBI

21 

Ichijo H, Nishida E, Irie K, ten Dijke P, Saitoh M, Moriguchi T, Takagi M, Matsumoto K, Miyazono K and Gotoh Y: Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science. 275:90–94. 1997. View Article : Google Scholar : PubMed/NCBI

22 

Moon DO, Kim MO, Choi YH, Hyun JW, Chang WY and Kim GY: Butein induces G(2)/M phase arrest and apoptosis in human hepatoma cancer cells through ROS generation. Cancer Lett. 288:204–213. 2010. View Article : Google Scholar

23 

Moloney JN and Cotter TG: ROS signalling in the biology of cancer. Semin Cell Dev Biol. 80:50–64. 2018. View Article : Google Scholar

24 

Vivanco I and Sawyers CL: The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer. 2:489–501. 2002. View Article : Google Scholar : PubMed/NCBI

25 

Nogueira V, Park Y, Chen CC, Xu PZ, Chen ML, Tonic I, Unterman T and Hay N: Akt determines replicative senescence and oxidative or oncogenic premature senescence and sensitizes cells to oxidative apoptosis. Cancer Cell. 14:458–470. 2008. View Article : Google Scholar : PubMed/NCBI

26 

Calderaro J, Rebouissou S, de Koning L, Masmoudi A, Hérault A, Dubois T, Maille P, Soyeux P, Sibony M, de la Taille A, et al: PI3K/AKT pathway activation in bladder carcinogenesis. Int J Cancer. 134:1776–1784. 2014. View Article : Google Scholar

27 

Street JC, Alfieri AA and Koutcher JA: Quantitation of metabolic and radiobiological effects of 6-aminonicotinamide in RIF-1 tumor cells in vitro. Cancer Res. 57:3956–3962. 1997.PubMed/NCBI

28 

Ward PS and Thompson CB: Metabolic reprogramming: A cancer hallmark even warburg did not anticipate. Cancer Cell. 21:297–308. 2012. View Article : Google Scholar : PubMed/NCBI

29 

Wittig R and Coy JF: The role of glucose metabolism and glucose-associated signalling in cancer. Perspect Medicin Chem. 1:64–82. 2008.PubMed/NCBI

30 

Giorgio M, Trinei M, Migliaccio E and Pelicci PG: Hydrogen peroxide: A metabolic by-product or a common mediator of ageing signals? Nat Rev Mol Cell Biol. 8:722–728. 2007. View Article : Google Scholar : PubMed/NCBI

31 

Zorov DB, Juhaszova M and Sollott SJ: Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev. 94:909–950. 2014. View Article : Google Scholar : PubMed/NCBI

32 

Vander Heiden MG, Cantley LC and Thompson CB: Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science. 324:1029–1033. 2009. View Article : Google Scholar : PubMed/NCBI

33 

Kuo W, Lin J and Tang TK: Human glucose-6-phosphate dehydrogenase (G6PD) gene transforms NIH 3T3 cells and induces tumors in nude mice. Int J Cancer. 85:857–864. 2000. View Article : Google Scholar : PubMed/NCBI

34 

Jiang P, Du W and Yang X: A critical role of glucose-6-phosphate dehydrogenase in TAp73-mediated cell proliferation. Cell Cycle. 12:3720–3726. 2013. View Article : Google Scholar : PubMed/NCBI

35 

Rao X, Duan X, Mao W, Li X, Li Z, Li Q, Zheng Z, Xu H, Chen M, Wang PG, et al: O-GlcNAcylation of G6PD promotes the pentose phosphate pathway and tumor growth. Nat Commun. 6:84682015. View Article : Google Scholar : PubMed/NCBI

36 

Song G, Ouyang G and Bao S: The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med. 9:59–71. 2005. View Article : Google Scholar : PubMed/NCBI

37 

Goswami A, Burikhanov R, de Thonel A, Fujita N, Goswami M, Zhao Y, Eriksson JE, Tsuruo T and Rangnekar VM: Binding and phosphorylation of par-4 by akt is essential for cancer cell survival. Mol Cell. 20:33–44. 2005. View Article : Google Scholar : PubMed/NCBI

38 

Sun CH, Chang YH and Pan CC: Activation of the PI3K/Akt/mTOR pathway correlates with tumour progression and reduced survival in patients with urothelial carcinoma of the urinary bladder. Histopathology. 58:1054–1063. 2011. View Article : Google Scholar : PubMed/NCBI

39 

Hothersall JS, Gordge M and Noronha-Dutra AA: Inhibition of NADPH supply by 6-aminonicotinamide: Effect on glutathione, nitric oxide and superoxide in J774 cells. FEBS Lett. 434:97–100. 1998. View Article : Google Scholar : PubMed/NCBI

40 

Sharma PK and Varshney R: 2-Deoxy-D-glucose and 6-aminonicotinamide-mediated Nrf2 down regulation leads to radiosensitization of malignant cells via abrogation of GSH-mediated defense. Free Radic Res. 46:1446–1457. 2012. View Article : Google Scholar : PubMed/NCBI

41 

Sharma PK, Bhardwaj R, Dwarakanath BS and Varshney R: Metabolic oxidative stress induced by a combination of 2-DG and 6-AN enhances radiation damage selectively in malignant cells via non-coordinated expression of antioxidant enzymes. Cancer Lett. 295:154–166. 2010. View Article : Google Scholar : PubMed/NCBI

42 

Varshney R, Gupta S and Dwarakanath BS: Radiosensitization of murine Ehrlich ascites tumor by a combination of 2-deoxy-D-glucose and 6-aminonicotinamide. Technol Cancer Res Treat. 3:659–663. 2004. View Article : Google Scholar : PubMed/NCBI

43 

Stolfi RL, Colofiore JR, Nord LD, Koutcher JA and Martin DS: Biochemical modulation of tumor cell energy: Regression of advanced spontaneous murine breast tumors with a 5-fluoro-uracil-containing drug combination. Cancer Res. 52:4074–4081. 1992.PubMed/NCBI

44 

Koutcher JA, Alfieri AA, Stolfi RL, Devitt ML, Colofiore JR, Nord LD and Martin DS: Potentiation of a three drug chemotherapy regimen by radiation. Cancer Res. 53:3518–3523. 1993.PubMed/NCBI

45 

Poulain L, Sujobert P, Zylbersztejn F, Barreau S, Stuani L, Lambert M, Palama TL, Chesnais V, Birsen R, Vergez F, et al: High mTORC1 activity drives glycolysis addiction and sensitivity to G6PD inhibition in acute myeloid leukemia cells. Leukemia. 31:2326–2335. 2017. View Article : Google Scholar : PubMed/NCBI

46 

Alfred Witjes J, Lebret T, Compérat EM, Cowan NC, De Santis M, Bruins HM, Hernández V, Espinós EL, Dunn J, Rouanne M, et al: Updated 2016 EAU Guidelines on muscle-invasive and metastatic Bladder Cancer. Eur Urol. 71:462–475. 2017. View Article : Google Scholar

47 

Köberle B, Tomicic MT, Usanova S and Kaina B: Cisplatin resistance: Preclinical findings and clinical implications. Biochim Biophys Acta. 1806:172–182. 2010.PubMed/NCBI

48 

Liu H, Liu Y and Zhang JT: A new mechanism of drug resistance in breast cancer cells: Fatty acid synthase overexpression-mediated palmitate overproduction. Mol Cancer Ther. 7:263–270. 2008. View Article : Google Scholar : PubMed/NCBI

49 

Budihardjo II, Walker DL, Svingen PA, Buckwalter CA, Desnoyers S, Eckdahl S, Shah GM, Poirier GG, Reid JM, Ames MM, et al: 6-Aminonicotinamide sensitizes human tumor cell lines to cisplatin. Clin Cancer Res. 4:117–130. 1998.PubMed/NCBI

50 

Catanzaro D, Gaude E, Orso G, Giordano C, Guzzo G, Rasola A, Ragazzi E, Caparrotta L, Frezza C and Montopoli M: Inhibition of glucose-6-phosphate dehydrogenase sensitizes cisplatin-resistant cells to death. Oncotarget. 6:30102–30114. 2015. View Article : Google Scholar : PubMed/NCBI

51 

Zhelev Z, Ivanova D, Bakalova R, Aoki I and Higashi T: Inhibition of the pentose-phosphate pathway selectively sensitizes leukemia lymphocytes to chemotherapeutics by ROS-independent mechanism. Anticancer Res. 36:6011–6020. 2016. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

October 2018
Volume 53 Issue 4

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Chen, X., Xu, Z., Zhu, Z., Chen, A., Fu, G., Wang, Y. ... Jin, B. (2018). Modulation of G6PD affects bladder cancer via ROS accumulation and the AKT pathway in vitro. International Journal of Oncology, 53, 1703-1712. https://doi.org/10.3892/ijo.2018.4501
MLA
Chen, X., Xu, Z., Zhu, Z., Chen, A., Fu, G., Wang, Y., Pan, H., Jin, B."Modulation of G6PD affects bladder cancer via ROS accumulation and the AKT pathway in vitro". International Journal of Oncology 53.4 (2018): 1703-1712.
Chicago
Chen, X., Xu, Z., Zhu, Z., Chen, A., Fu, G., Wang, Y., Pan, H., Jin, B."Modulation of G6PD affects bladder cancer via ROS accumulation and the AKT pathway in vitro". International Journal of Oncology 53, no. 4 (2018): 1703-1712. https://doi.org/10.3892/ijo.2018.4501