Open Access

Oncological hyperthermia: The correct dosing in clinical applications

  • Authors:
    • Sun-Young Lee
    • Gyula Peter Szigeti
    • Attila Marcell Szasz
  • View Affiliations

  • Published online on: November 23, 2018     https://doi.org/10.3892/ijo.2018.4645
  • Pages: 627-643
  • Copyright : © Lee et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY 4.0].

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The problem with the application of conventional hyperthermia in oncology is firmly connected to the dose definition, which conventionally uses the concept of the homogeneous (isothermal) temperature of the target. Its imprecise control and complex evaluation is the primary barrier to the extensive clinical applications. The aim of this study was to show the basis of the problems of the misleading dose concept. A clear clarification of the proper dose concept must begin with the description of the limitations of the present doses in conventional hyperthermia applications. The surmounting of the limits the dose of oncologic hyperthermia has to be based on the applicability of the Eyring transition state theory on thermal effects. In order to avoid the countereffects of thermal homeostasis, the use of precise heating on the nanoscale with highly efficient energy delivery is recommended. The nano‑scale heating allows for an energy‑based dose to control the process. The main aspects of the method are the following: i) It is not isothermal (no homogeneous heating); ii) malignant cells are heated selectively; and iii) it employs high heating efficacy, with less energy loss. The applied rigorous thermodynamical considerations show the proper terminology and dose concept of hyperthermia, which is based on the energy‑absorption (such as in the case of ionizing radiation) instead of the temperature‑based ideas. On the whole, according to the present study, the appropriate dose in oncological hyperthermia must use an energy‑based concept, as it is well‑known in all the ionizing radiation therapies. We propose the use of Gy (J/kg) in cases of non‑ionizing radiation (hyperthermia) as well.
View Figures
View References

Related Articles

Journal Cover

February-2019
Volume 54 Issue 2

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Lee S, Szigeti GP and Szasz AM: Oncological hyperthermia: The correct dosing in clinical applications. Int J Oncol 54: 627-643, 2019
APA
Lee, S., Szigeti, G.P., & Szasz, A.M. (2019). Oncological hyperthermia: The correct dosing in clinical applications. International Journal of Oncology, 54, 627-643. https://doi.org/10.3892/ijo.2018.4645
MLA
Lee, S., Szigeti, G. P., Szasz, A. M."Oncological hyperthermia: The correct dosing in clinical applications". International Journal of Oncology 54.2 (2019): 627-643.
Chicago
Lee, S., Szigeti, G. P., Szasz, A. M."Oncological hyperthermia: The correct dosing in clinical applications". International Journal of Oncology 54, no. 2 (2019): 627-643. https://doi.org/10.3892/ijo.2018.4645