Molecular mechanisms regarding potassium bromate‑induced cardiac hypertrophy without apoptosis in H9c2 cells

  • Authors:
    • Shu‑Chun Kuo
    • Yingxiao Li
    • Yung‑Ze Cheng
    • Wei‑Jing Lee
    • Juei‑Tang Cheng
    • Kai‑Chun Cheng
  • View Affiliations

  • Published online on: September 10, 2018     https://doi.org/10.3892/mmr.2018.9470
  • Pages: 4700-4708
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Cardiac hypertrophy is commonly involved in cardiac injury. Oxidative stress can induce cardiac hypertrophy with apoptosis. Potassium bromate (KBrO3) has been widely used as a food additive due to its oxidizing properties. In the present study, the rat‑derived heart cell line H9c2 was used to investigate the effect of KBrO3 on cell size. KBrO3 increased cell size at concentrations <250 µM, in a dose‑dependent manner. Additionally, KBrO3 also promoted the gene expression of two biomarkers of cardiac hypertrophy, brain/B‑type natriuretic peptides (BNP) and β‑Myosin Heavy Chain (β‑MHC). However, apoptosis remained unobserved in these cells. Moreover, mediation of free radicals was investigated using a fluorescence assay, and it was observed that superoxide and reactive oxygen species (ROS) levels increased with KBrO3. Effects of KBrO3 were significantly reduced by tiron at concentrations sufficient to produce antioxidant‑like action. Additionally, signals involved in cardiac hypertrophy such as calcineurin and nuclear factor of activated T‑cells (NFAT) were also determined using western blot analysis. KBrO3 increased the protein levels of both these molecules which were decreased by tiron in a dose‑dependent manner. Additionally, cyclosporine A attenuated the cardiac hypertrophy induced by KBrO3 in H9c2 cells at concentrations effective to inhibit calcineurin, in addition to reducing mRNA levels of BNP or β‑MHC. Finally, apoptosis was also identified in H9c2 cells incubated with KBrO3 at concentrations >300 µM. Collectively, these results provided a novel perspective that KBrO3 induces cardiac hypertrophy without apoptosis at a low dose through the generation of ROS, activating the calcineurin/NFAT signaling pathway in H9c2 cells. Therefore, at a dose <250 µM, KBrO3 can be applied as an inducer of cardiac hypertrophy without apoptosis in H9c2 cells. KBrO3 can also be developed as a tool to induce cardiac hypertrophy in animals.
View Figures
View References

Related Articles

Journal Cover

November-2018
Volume 18 Issue 5

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Kuo SC, Li Y, Cheng YZ, Lee WJ, Cheng JT and Cheng KC: Molecular mechanisms regarding potassium bromate‑induced cardiac hypertrophy without apoptosis in H9c2 cells. Mol Med Rep 18: 4700-4708, 2018
APA
Kuo, S., Li, Y., Cheng, Y., Lee, W., Cheng, J., & Cheng, K. (2018). Molecular mechanisms regarding potassium bromate‑induced cardiac hypertrophy without apoptosis in H9c2 cells. Molecular Medicine Reports, 18, 4700-4708. https://doi.org/10.3892/mmr.2018.9470
MLA
Kuo, S., Li, Y., Cheng, Y., Lee, W., Cheng, J., Cheng, K."Molecular mechanisms regarding potassium bromate‑induced cardiac hypertrophy without apoptosis in H9c2 cells". Molecular Medicine Reports 18.5 (2018): 4700-4708.
Chicago
Kuo, S., Li, Y., Cheng, Y., Lee, W., Cheng, J., Cheng, K."Molecular mechanisms regarding potassium bromate‑induced cardiac hypertrophy without apoptosis in H9c2 cells". Molecular Medicine Reports 18, no. 5 (2018): 4700-4708. https://doi.org/10.3892/mmr.2018.9470