Molecular dysexpression in gastric cancer revealed by integrated analysis of transcriptome data

  • Authors:
    • Xiaomei Li
    • Weiwei Dong
    • Xueling Qu
    • Huixia Zhao
    • Shuo Wang
    • Yixin Hao
    • Qiuwen Li
    • Jianhua Zhu
    • Min Ye
    • Wenhua Xiao
  • View Affiliations

  • Published online on: March 3, 2017     https://doi.org/10.3892/ol.2017.5798
  • Pages: 3177-3185
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Gastric cancer (GC) is often diagnosed in the advanced stages and is associated with a poor prognosis. Obtaining an in depth understanding of the molecular mechanisms of GC has lagged behind compared with other cancers. This study aimed to identify candidate biomarkers for GC. An integrated analysis of microarray datasets was performed to identify differentially expressed genes (DEGs) between GC and normal tissues. Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were then performed to identify the functions of the DEGs. Furthermore, a protein-protein interaction (PPI) network of the DEGs was constructed. The expression levels of the DEGs were validated in human GC tissues using reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR). A set of 689 DEGs were identified in GC tissues, as compared with normal tissues, including 202 upregulated DEGs and 487 downregulated DEGs. The KEGG pathway analysis suggested that various pathways may play important roles in the pathology of GC, including pathways related to protein digestion and absorption, extracellular matrix‑receptor interaction, and the metabolism of xenobiotics by cytochrome P450. The PPI network analysis indicated that the significant hub proteins consisted of SPP1, TOP2A and ARPC1B. RT‑qPCR validation indicated that the expression levels of the top 10 most significantly dysexpressed genes were consistent with the illustration of the integrated analysis. The present study yielded a reference list of reliable DEGs, which represents a robust pool of candidates for further evaluation of GC pathogenesis and treatment.

Introduction

Gastric cancer (GC) is one of the most prevalent cancers and the second most common cause of cancer-associated mortality worldwide (1). Almost one million people are diagnosed with GC each year. Despite decades of a steady decline in the incidence of GC, the GC fatality rate remains paradoxically high in most countries, particularly in those of East Asia (2). GC is a heterogeneous disease with numerous etiologies and potential pathways of carcinogenesis (3,4), resulting in a variation in the incidence rates of GC among different geographies, ethnicities and genders (5). One of the main etiological risk factors for GC is Helicobacter pylori infection, although only a small proportion of individuals infected with H. pylori develop GC (6,7).

Traditional methods for the treatment of GC include surgery, chemotherapy, radiation therapy and combination therapy, which is also known as multimodality therapy. However, GC is often asymptomatic during its early stage, which results in the advanced stage being generally refractory to those therapies (8). Even following radical gastrectomy, many patients experience disease recurrence and succumb to the disease within a few months to years; the 5-year survival rate of GC is ≤2/3 (9,10). Therefore, an early and effective detection method that improves the chance of treating GC is imperative.

Microarrays are good tools for investigating the pathogenesis of various diseases (1114). Compared with traditional methods, next-generation sequencing-based microarrays have the advantages of being unbiased, as they are not limited to previously known or annotated transcripts, and allowing more accurate quantification of genes with very low or high expression levels (15). In addition, transcriptome data detects other types of transcriptional signals, including alternative splicing, transcriptional starts/stops, gene fusions and expressed alleles (16). Studies based on microarrays have provided significant insights into the molecular basis of GC and novel therapeutic targets. However, microarrays have predominantly been used to characterize the genomic alterations of GC patients, while the validation of potential target genes for GC has been rare (10,17,18), restricting the application of microarrays to clinical practice.

The present study employed an integrated analysis of microarray data from the Gene Expression Omnibus (GEO) to identify the differentially expressed genes (DEGs) between GC and normal control (NC) tissues, which were then used to construct a protein-protein interaction (PPI) network. Furthermore, the significantly enriched functions of these genes were screened and analyzed to discover the biological processes and signaling pathways associated with GC. Finally, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) of clinical samples was performed to validate the integrated analysis approach. This study may improve the methods used to elucidate the dysexpression of various genes in GC and be of some value for the future diagnosis of GC in the clinic.

Materials and methods

Microarray data and data preprocessing

Eligible GC gene expression datasets were identified by searching the GEO database (https://www.ncbi.nlm.nih.gov/geo/). Data were included if they met the following criteria: i) The expression profile of whole genome sequencing; ii) data from the tissues of GC patients in the clinic; and iii) raw or standardized data. Raw data were normalized using the Z-score transformation method (19) to make data from different platforms comparable. Matrix Laboratory software (version 2013a; MathWorks, Natick, MA, USA) was used to identify differentially expressed probe sets between tumor and adjacent tissues. A gene-specific t-test was performed, after which P-values and the effect size of individual microarray studies were calculated. The genes with a false discovery rate of ≤0.05 were selected as the significantly DEGs. DEGs between tumor and adjacent tissues were subsequently determined. Heat map analysis was conducted using the ‘heatmap.2’ function of the R/Bioconductor package ‘gplots’ (20).

Functional enrichment analysis of DEGs

To determine the biological functions of DEGs, Gene Ontology (GO) enrichment analysis of biological processes, molecular functions and cellular components was performed. The online software GeneCodis3 (http://genecodis.cnb.csic.es/analysis) was used to perform this analysis (21). In addition, pathway enrichment was also performed based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database (http://www.genome.jp/kegg/).

PPI network construction

A PPI network of the significantly dysexpressed genes was constructed according to data from the Biological General Repository for Interaction Datasets (http://thebiogrid.org/). Among the candidate genes, the distribution characteristics of the top 20 most significantly upregulated and downregulated DEGs were visualized using Cytoscape (22).

Collection of clinical specimens

A total of 10 patients, including 8 males and 2 females, were enrolled in the present study, among which 5 had been diagnosed with GC. The average age of the patients was 54 years (age range, 38–79 years). Frozen tissue sections were generated and examined independently by senior pathologists. Parts of each tumor tissues were frozen immediately following the operation and stored at −135°C for RNA extraction. This study was approved by the Ethics Committee of The First Affiliated Hospital of PLA General Hospital (Beijing, China).

RNA preparation and RT-qPCR

Total RNA of each sample was extracted using the RNAeasy Mini kit (Qiagen, Inc., Valencia, CA, USA), according to the manufacturer's protocol. According to previous studies (2327), 10 DEGs were retrieved from the top 20 upregulated and downregulated genes. Primers for the 10 target genes were designed using PrimerPlex 2.61 (Premier Biosoft International, Palo Alto, CA, USA) and are shown in Table I. cDNA templates were synthesized from 1–5 µg RNA using Superscript Reverse Transcriptase II (Thermo Fisher Scientific, Inc., Waltham, MA, USA). qPCR was performed on the ABI 7500 Real-Time PCR System (Applied Biosystems; Thermo Fisher Scientific, Inc.) with SYBR dye (Thermo Fisher Scientific, Inc.). The final reaction mixture of 12.5 µl consisted of 6.25 µl Power SYBR Green PCR Master Mix, 50 ng diluted cDNA and 1 µM of each primer. Reactions were conducted in triplicate under the following conditions: 50°C for 2 min, 95°C for 10 min, and 40 cycles of 95°C for 15 sec and 60°C for 1 min. Melting curves (60 to 95°C) were derived for every reaction to insure a single product. Relative gene expression was evaluated using Data Assist Software, version 3.0 (Thermo Fisher Scientific, Inc.), with the human actin gene as a reference. The expression levels of each gene were determined using the 2−ΔΔCq method (28).

Table I.

Primer sequences for the target genes.

Table I.

Primer sequences for the target genes.

GeneSequence (5′ to 3′)Product size (bp)
SULF1F: GTAAGAAGGAAGAATCCAGCAAGAA187
R: AGGTCACTGGGTCCTTTACACTT
SPP1F: ATAAGCGGAAAGCCAATGATGAGAG134
R: TTTGGGGTCTACAACCAGCATATCT
THBS2F: GAACATTGGCTGGAAGGACTACAC126
R: TCATAGATAGGTCCTGAGTCTGCCA
TOP2AF: ATCATTGAAAATAAGCCTAAGAAAG197
R: AGAAGATAGTTGAAGGTTGGTCC
HOXC6F: GGACATAACACACAGACCTCAATCG129
R: GACCCCACTGTGCGAATTCAT
GIFF: ATGGCATCATTGGAGACATCTACAG  94
R: TTCTTGCAGTTCCATTCCTTTTTAG
KCNE2F: AGAGACGGGAACACTCCAATGACC  64
R: ACTTTTCCTGCCAGTCCTCTACAATG
SSTF: AACCCAACCAGACGGAGAATGAT109
R: GCCGGGTTTGAGTTAGCAGATCTC
GKN1F: AGGAAGTCATGCCCTCCATTCAATC149
R: GTTTTTTCCGAACTTGCTCAGGTCA
LIPFF: GAACTTTAACACGAGTCGCTTGGAT189
R: ATGGCTGTCACATTGTAGTAGGGAG
ActinF: ACTTAGTTGCGTTACACCCTT156
R: GTCACCTTCACCGTTCCA

[i] F, forward; R, reverse.

Statistical analysis

Data are expressed as the mean ± standard deviation. Comparisons of the expression levels of different genes were conducted using Student's t-test with a significance level of 0.05. Statistical analyses were conducted using SPSS version 16.0 (SPSS, Inc., Chicago, IL, USA).

Results

DEGs in the integrated analysis of microarray datasets

Following the electronic database search, six microarray studies were obtained according to the inclusion criteria. The characteristics of the individual studies that were included in the integrated analysis are displayed in Table II. There were 53 GC patients and 259 NC patients. The integrated analysis identified a set of 689 DEGs in the GC tissues, as compared with the normal tissues, including 202 upregulated and 487 downregulated DEGs. In addition, the hierarchical clustering analysis indicated that the DEGs in GC were distinguished from those in normal tissues (Fig. 1).

Table II.

Information of the six transcriptome profiles.

Table II.

Information of the six transcriptome profiles.

GEO ID Samples(cancer/normal)PlatformCountryYear
GSE5157526/26GPL13607 Agilent-028004 SurePrint G3Korea2014
Human GE 8×60K Microarray (Feature Number version)
GSE29272134/134GPL96 [HG-U133A] Affymetrix Human Genome U133A ArrayUSA2013
GSE37023-GPL96112/39GPL96 [HG-U133A] Affymetrix Human Genome U133A ArraySingapore2012
GSE37023-GPL9729/36GPL97 [HG-U133B] Affymetrix Human Genome U133B ArraySingapore2012
GSE3365140/12GPL2895 GE Healthcare/Amersham Biosciences CodeLinkKorea2011
Human Whole Genome Bioarray
GSE3893212/12GPL5936 HEEBO Human oligo arrayArgentina2012

[i] GEO, Gene Expression Omnibus; HEEBO, human exonic evidence-based oligonucleotide.

Functional enrichment analysis

GO provides a common descriptive framework and functional annotation and classification system for analyzing the gene set data. The 689 DEGs were involved in 86 signaling pathways, including the digestion and absorption of proteins, interactions between extracellular matrix (ECM) receptors, the p53 signaling pathway, the metabolism of propionate, the absorption of minerals, etc. The results of the KEGG enrichment analysis revealed that the first three most enriched pathways included protein digestion and absorption, ECM-receptor interaction and the metabolism of xenobiotics by cytochrome P450 (Tables III and IV). The detailed information on the 20 most significantly upregulated and downregulated genes is shown in Table V.

Table III.

Partial results of GO analysis.

Table III.

Partial results of GO analysis.

GO termGO nameNo. of genesP-value
Biological processes   227.04E-20
  GO:0007586Digestion  301.87E-10
  GO:0051301Cell division  304.74E-10
  GO:0042493Response to drug  415.44E-10
  GO:0007155Cell adhesion  201.68E-09
  GO:0006805Xenobiotic metabolic process  292.79E-08
  GO:0008285Negative regulation of cell proliferation  581.05E-07
  GO:0007165Signal transduction  313.71E-07
  GO:0007049Cell cycle  241.22E-06
  GO:0005975Carbohydrate metabolic process  121.31E-06
  GO:0043434Response to peptide hormone stimulus  251.33E-06
  GO:0008152Metabolic process  62.12E-06
  GO:0006600Creatine metabolic process  242.35E-06
  GO:0000278Mitotic cell cycle  102.41E-06
  GO:0010033Response to organic substance  133.53E-06
Molecular functions
  GO:0005515Protein binding1924.51E-23
  GO:0042803Protein homodimerization activity  426.63E-12
  GO:0016491Oxidoreductase activity  381.15E-11
  GO:0005509Calcium ion binding  471.67E-11
  GO:0042802Identical protein binding  282.71E-09
  GO:0005201Extracellular matrix structural constituent  147.05E-09
  GO:0008201Heparin binding  187.53E-09
  GO:0008009Chemokine activity  102.40E-06
  GO:0003824Catalytic activity  263.55E-06
  GO:0016787Hydrolase activity  465.63E-06
  GO:0000166Nucleotide binding  796.03E-06
  GO:0050840Extracellular matrix binding  64.04E-05
  GO:0008233Peptidase activity  285.63E-05
  GO:0019901Protein kinase binding  188.70E-05
  GO:0005198Structural molecule activity  170.000169
Cellular components
  GO:0005576Extracellular region1631.54E-55
  GO:0005615Extracellular space  936.61E-42
  GO:0005737Cytoplasm2423.60E-36
  GO:0005886Plasma membrane1512.66E-17
  GO:0005829Cytosol1051.08E-15
  GO:0031012Extracellular matrix  251.18E-14
  GO:0048471Perinuclear region of cytoplasm  361.27E-11
  GO:0005887Integral to plasma membrane  564.70E-10
  GO:0016020Membrane1411.29E-09
  GO:0005634Nucleus1734.31E-09
  GO:0005581Collagen  151.35E-08
  GO:0005604Basement membrane  133.41E-08
  GO:0005578Proteinaceous extracellular matrix  214.36E-08
  GO:0005625Soluble fraction  294.45E-08
  GO:0009986Cell surface  242.10E-07

[i] GO, gene ontology.

Table IV.

Partial results of the KEGG analysis.

Table IV.

Partial results of the KEGG analysis.

KEGG IDKEGG termNo. of genesP-value
hsa04974Protein digestion and absorption191.77E-13
hsa04512ECM-receptor interaction169.65E-10
hsa00980Metabolism of xenobiotics by cytochrome P450135.40E-08
hsa05146Amoebiasis157.61E-08
hsa04971Gastric acid secretion138.50E-08
hsa04510Focal adhesion201.11E-07
hsa00071Fatty acid metabolism101.70E-07
hsa00982Drug metabolism-cytochrome P450123.32E-07
hsa04110Cell cycle155.78E-07
hsa00010 Glycolysis/gluconeogenesis117.37E-07
hsa04978Mineral absorption101.03E-06
hsa04115p53 signaling pathway111.42E-06
hsa00640Propanoate metabolism  82.52E-06
hsa00330Arginine and proline metabolism  91.60E-05
hsa00591Linoleic acid metabolism  71.71E-05

[i] KEGG, kyoto encyclopedia of genes and genomes.

Table V.

Top ten significantly upregulated and downregulated DEGs.

Table V.

Top ten significantly upregulated and downregulated DEGs.

DEGFunctionFold-changeP-value
Upregulated
  SULF1Exhibits arylsulfatase activity and highly specific endoglucosamine-6-sulfatase activity; diminishes heparan sulfate proteoglycan sulfation; inhibits signaling by heparin-dependent growth factors; diminishes proliferation; and facilitates apoptosis in response to exogenous stimulation1.92086.89E-54
  MESTN/A1.78792.94E-50
  SPP1Probably important to cell-matrix interaction; acts as a cytokine involved in enhancing the production of interferon-γ and IL-12 and reducing the production of IL-10; and is essential in the pathway that leads to type I immunity2.57031.79E-47
  THBS2Mediates cell-to-cell and cell-to-matrix interactions. Ligand for cluster of differentiation 36, mediating antiangiogenic properties2.03859.72E-44
  TOP2AControls topological states of DNA by transient breakage and subsequent rejoining of DNA strands.1.93984.07E-42
  HOXC6Provides cells with specific positional identities on the anterior-posterior axis1.72653.34E-41
  HOXC10Provides cells with specific positional identities on the anterior-posterior axis1.82344.42E-38
  ARPC1BInvolved in regulating actin polymerization and, together with an activating nucleation-promoting factor, mediates the formation of branched actin networks1.45552.10E-35
  KIF4ATranslocates PRC1 to the plus ends of interdigitating spindle microtubules during the metaphase to anaphase transition; may play a role in mitotic chromosomal positioning and bipolar spindle stabilization1.41952.38E-35
  OLFML2BN/A1.61557.38E-35
Downregulated
  GIFPromotes absorption of the essential vitamin, cobalamin, in the ileum−8.21578.04E-124
  ESRRGActs as transcription activator in the absence of bound ligand−3.15086.98E-105
  KCNE2Assembles as a β-subunit with a voltage-gated potassium channel complex of pore-forming α-subunits; modulates the gating kinetics and enhances the stability of the channel complex; associated with KCNH2/HERG, it is proposed to form the rapidly activating component of the delayed rectifying potassium current in the heart; may associate with KCNQ2 and/or KCNQ3 and modulate the native M-type current; may associate with KCNQ1/KVLTQ1 and elicit a voltage-independent current; may associate with HCN1 and HCN2 and increase potassium current−3.60141.29E-97
  SSTSomatostatin inhibits the release of somatotropin−3.11163.67E-95
  GKN1Has mitogenic activity and may be involved in maintaining the integrity of the gastric mucosal epithelium−8.75972.11E-91
  LIPFN/A−8.59771.14E-85
  CHIAMay participate in the defense against nematodes, fungi and other pathogens; plays a role in T-helper cell type 2 immune response; contributes to the response to IL-13 and inflammation in response to IL-13; stimulates chemokine production by pulmonary epithelial cells; protects lung epithelial cells against apoptosis and promotes phosphorylation of AKT1−4.18861.27E-80
  DUOX1Generates hydrogen peroxide, which is required for the activity of thyroid peroxidase and LPO; plays a role in thyroid hormones synthesis and LPO-mediated antimicrobial defense at the surface of mucosa; may have its own peroxidase activity through its N-terminal peroxidase-like domain−1.90091.20E-76
AKR7A3Can reduce the dialdehyde protein-binding form of AFB1 to the non-binding AFB1 dialcohol; may be involved in protecting the liver against the toxic and carcinogenic effects of AFB1, a potent hepatocarcinogen−2.12151.34E-68
FAM149AN/A−1.50391.04E-64

[i] DEG, differentially expressed gene; IL, interleukin; LPO, lactoperoxidase; AFB1, aflatoxin B1; N/A, not available.

PPI network construction

A PPI network of the top 10 upregulated and downregulated DEGs is shown in Fig. 2. The network consisted of 243 edges and 251 nodes. Generally, nodes with a high degree, which measures how many neighbors a node is directly connected to, are defined as hub proteins (29,30). Three nodes, including SPP1, TOP2A and ARPC1B, showed the highest degrees.

RT-qPCR validation

Five genes were randomly retrieved from the 10 upregulated and downregulated genes, respectively. It was shown that the expression patterns of the selected genes in GC and normal tissues in the RT-qPCR analysis were similar to those in the integrated analysis (Fig. 3; Table V), and that the difference between the GC patients and control samples were significantly different (P<0.01). The expression of SULF1, SPP1, THBS2, TOP2A and HOXC6 was upregulated in GC tissues compared with normal tissues, while the expression of GIF, KCNE2, SST, GKN1 and LIPF was downregulated in GC tissues compared with normal tissues.

Discussion

Microarrays are powerful tools for revealing the pathogenesis of human cancer and identify potential therapeutic targets (12). Microarray-based technology has been used in several studies to detect candidate genes involved in the occurrence of GC (3134). In the present study, an integrated analysis of six transcriptome datasets was conducted and 689 DEGs were identified based on 612 samples, including 202 upregulated genes and 487 downregulated genes. The results of GO and KEGG analyses showed that the most enriched pathways included protein digestion and absorption, ECM-receptor interaction, and the metabolism of xenobiotics by cytochrome P450. The results were consistent with previous research (35,36), which identified DEGs with biological functions that were mainly involved in cell adhesion and ECM interactions.

Generally, it is accepted that, although the number of dysfunctional genes in a cancer may be limited, a large number of genes in related pathways may be affected at the expression level, and this aberrant gene transcriptional expression network is likely essential in the initiation and maintenance of the malignant phenotype (3739). Most of the 20 most significantly DEGs have been reported to be involved in the oncogenesis and development of GC (2326), and the functional classification of these genes was consistent with the results of GO and KEGG analyses. Three genes, including SPP1, TOP2A and ARPC1B, showed the highest connection in the PPI analysis and may have key roles in GC. In addition, SUL1, THBS2, HOXC6, SST, KCNE2, GIF, GKN1 and LIPF were also linked with more than one edge, indicating the potential role of these genes in the pathogenesis of GC.

However, the expression levels of six genes (MEST, GIF, CHIA, DUOX1, KIF4 and AKR7A3) in clinical samples were either inconsistent or ignored in previous studies (35,40). In the current study, dysregulation of these DEGs suggests that they serve roles in the oncogenesis and the development of GC. Among the six genes, the associations between GC and MEST, GIF, CHIA, and DUOX1 have never been reported. MEST encodes a member of the α/β hydrolase fold family and has the characteristic of isoform-specific imprinting. The aberrant imprinting of this gene has been linked to certain types of cancer and may be caused by promoter switching (41). GIF encodes intrinsic factor (IF), also known as gastric IF, which is a glycoprotein secreted by the parietal cells of the stomach that is necessary for the absorption of vitamin B12 (cobalamin) in the small intestine (35). CHIA may participate in the defense against nematodes, fungi and other pathogens, and play a role in the T-helper cell type 2 immune response; it is also involved in the inflammatory response and in protecting cells against apoptosis. Furthermore, CHIA is inhibited by allosamidin, suggesting that the function of this protein is dependent on carbohydrate binding (4245). DUOX1 is the member of gp91phox homologs family and produces reactive oxygen species in various cells in response to stimuli, including growth factors, cytokines and calcium. A key role for DUOX1 in lung cancer, but not in GC, has been revealed (46). Although further studies on these genes have not been conducted, the results of the present study suggest that these genes may be considered as novel indicators for GC in the clinic.

Except for the four genes that have not previously been reported in GC, the expression levels of two genes in the current study were different from those reported in previous studies (40,47). Chromokinesin KIF4 is a member of the KIF4 subfamily and has been reported as an essential factor involved in multiple cellular process, including cell proliferation, DNA damage responses, immune cell activation, viral protein intracellular trafficking and neuronal survival in brain development (48). The overexpression of this subfamily was reported to inhibit GC cell proliferation in vitro, as well as their ability to form tumors in vivo (40). However, the expression level of KIF4 was significantly upregulated in GC samples in the current study. In addition, the expression of AKR7A3, which was reported to be upregulated in Singaporean GC patients (47), was downregulated in the RT-qPCR validation in the present study. This discrepancy in the results may be due to the heterogeneity of the GEO database, although the results still suggest complicated functions of KIF4 and AKR7A3 in the oncogenesis and development of GC.

In conclusion, the current study demonstrated that the analysis of expression profiles and RT-qPCR validation was able to give an explicit elucidation of the dysexpression of genes in GC. However, the results of the analysis of the expression profiles varied from study to study. Based on our results, the expression levels of six genes, including MEST, GIF, CHIA, DUOX1, KIF4 and AKR7A3, were found to be inconsistent with previous studies. These genes could potentially be valuable in the clinical treatment of GC. The present study may improve the understanding of the transcriptome status of GC and lay a foundation for further investigation of the mechanisms underlying this cancer of clinical and biological significance.

References

1 

Peek RM Jr and Blaser MJ: Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nat Rev Cancer. 2:28–37. 2002. View Article : Google Scholar : PubMed/NCBI

2 

Ferlay J, Shin HR, Bray F, Forman D, Mathers C and Parkin DM: Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 127:2893–2917. 2010. View Article : Google Scholar : PubMed/NCBI

3 

Wadhwa R, Song S, Lee JS, Yao Y, Wei Q and Ajani JA: Gastric cancer-molecular and clinical dimensions. Nat Rev Clin Oncol. 10:643–655. 2013. View Article : Google Scholar : PubMed/NCBI

4 

Akhavan-Niaki H and Samadani AA: Molecular insight in gastric cancer induction: An overview of cancer stemness genes. Cell Biochem Biophys. 68:463–473. 2014. View Article : Google Scholar : PubMed/NCBI

5 

Correa P, Camargo MC, Piazuelo MB, et al: The biology of gastric cancers. Springer Ebooks; 2008

6 

Figueiredo C, Garcia-Gonzalez MA and Machado JC: Molecular pathogenesis of gastric cancer. Helicobacter. 18:(Suppl 1). S28–S33. 2013. View Article : Google Scholar

7 

Conteduca V, Sansonno D, Lauletta G, Russi S, Ingravallo G and Dammacco F: H. pylori infection and gastric cancer: State of the art (review). Int J Oncol. 42:5–18. 2013.PubMed/NCBI

8 

Yamashita K, Sakuramoto S, Nemoto M, Shibata T, Mieno H, Katada N, Kikuchi S and Watanabe M: Trend in gastric cancer: 35 years of surgical experience in Japan. World J Gastroenterol. 17:3390–3397. 2011. View Article : Google Scholar : PubMed/NCBI

9 

Wang Z, Xu J, Shi Z, Shen X, Luo T, Bi J and Nie M: Clinicopathologic characteristics and prognostic of gastric cancer in young patients. Scand J Gastroenterol. 51:1043–1049. 2016. View Article : Google Scholar : PubMed/NCBI

10 

Lee S, Baek M, Yang H, Bang YJ, Kim WH, Ha JH, Kim DK and Jeoung DI: Identification of genes differentially expressed between gastric cancers and normal gastric mucosa with cDNA microarrays. Cancer Lett. 184:197–206. 2002. View Article : Google Scholar : PubMed/NCBI

11 

Meyerson M, Gabriel S and Getz G: Advances in understanding cancer genomes through second-generation sequencing. Nat Rev Genet. 11:685–696. 2010. View Article : Google Scholar : PubMed/NCBI

12 

Mardis ER: A decade's perspective on DNA sequencing technology. Nature. 470:198–203. 2011. View Article : Google Scholar : PubMed/NCBI

13 

Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, et al: A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA. 103:2257–2261. 2006. View Article : Google Scholar : PubMed/NCBI

14 

Ueda T, Volinia S, Okumura H, Shimizu M, Taccioli C, Rossi S, Alder H, Liu CG, Oue N, Yasui W, et al: Relation between microRNA expression and progression and prognosis of gastric cancer: A microRNA expression analysis. Lancet Oncol. 11:136–146. 2010. View Article : Google Scholar : PubMed/NCBI

15 

Wang Z, Gerstein M and Snyder M: RNA-Seq: A revolutionary tool for transcriptomics. Nat Rev Genet. 10:57–63. 2009. View Article : Google Scholar : PubMed/NCBI

16 

Kahvejian A, Quackenbush J and Thompson JF: What would you do if you could sequence everything? Nat Biotechnol. 26:1125–1133. 2008. View Article : Google Scholar : PubMed/NCBI

17 

Zhang SN, Sun HH, Jin YM, Piao LZ, Jin DH, Lin ZH and Shen XH: Identification of differentially expressed genes in gastric cancer by high density cDNA microarray. Cancer Genet. 205:147–155. 2012. View Article : Google Scholar : PubMed/NCBI

18 

Hippo Y, Taniguchi H, Tsutsumi S, Machida N, Chong JM, Fukayama M, Kodama T and Aburatani H: Global gene expression analysis of gastric cancer by oligonucleotide microarrays. Cancer Res. 62:233–240. 2002.PubMed/NCBI

19 

Cheadle C, Vawter MP, Freed WJ and Becker KG: Analysis of microarray data using Z score transformation. J Mol Diagn. 5:73–81. 2003. View Article : Google Scholar : PubMed/NCBI

20 

Trapnell C, Pachter L and Salzberg SL: TopHat: Discovering splice junctions with RNA-Seq. Bioinformatics. 25:1105–1111. 2009. View Article : Google Scholar : PubMed/NCBI

21 

Tabas-Madrid D, Nogales-Cadenas R and Pascual-Montano A: GeneCodis3: A non-redundant and modular enrichment analysis tool for functional genomics. Nucleic Acids Res. 40:W478–W483. 2012. View Article : Google Scholar : PubMed/NCBI

22 

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B and Ideker T: Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13:2498–2504. 2003. View Article : Google Scholar : PubMed/NCBI

23 

Bornstein P, Kyriakides TR, Yang Z, Armstrong LC and Birk DE: Thrombospondin 2 modulates collagen fibrillogenesis and angiogenesis. J Investig Dermatol Symp Proc. 5:61–66. 2000. View Article : Google Scholar : PubMed/NCBI

24 

O'Rourke KM, Laherty CD and Dixit VM: Thrombospondin 1 and thrombospondin 2 are expressed as both homo- and heterotrimers. J Biol Chem. 267:24921–24924. 1992.PubMed/NCBI

25 

Tsai SC, Valkov N, Yang WM, Gump J, Sullivan D and Seto E: Histone deacetylase interacts directly with DNA topoisomerase II. Nat Genet. 26:349–353. 2000. View Article : Google Scholar : PubMed/NCBI

26 

Acampora D, D'Esposito M, Faiella A, Pannese M, Migliaccio E, Morelli F, Stornaiuolo A, Nigro V, Simeone A and Boncinelli E: The human HOX gene family. Nucleic Acids Res. 17:10385–10402. 1990. View Article : Google Scholar

27 

Hewitt JE, Gordon MM, Taggart RT, Mohandas TK and Alpers DH: Human gastric intrinsic factor: Characterization of cDNA and genomic clones and localization to human chromosome 11. Genomics. 10:432–440. 1991. View Article : Google Scholar : PubMed/NCBI

28 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)). Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

29 

Fox A, Taylor D and Slonim DK: High throughput interaction data reveals degree conservation of hub proteins. Pac Symp Biocomput. 391–402. 2009.PubMed/NCBI

30 

Lavi O, Skinner J and Gottesman MM: Network features suggest new hepatocellular carcinoma treatment strategies. BMC Syst Biol. 8:882014. View Article : Google Scholar : PubMed/NCBI

31 

Tay ST, Leong SH, Yu K, Aggarwal A, Tan SY, Lee CH, Wong K, Visvanathan J, Lim D, Wong WK, et al: A combined comparative genomic hybridization and expression microarray analysis of gastric cancer reveals novel molecular subtypes. Cancer Res. 63:3309–3316. 2003.PubMed/NCBI

32 

Wu CM, Lee YS, Wang TH, Lee LY, Kong WH, Chen ES, Wei ML, Liang Y and Hwang TL: Identification of differential gene expression between intestinal and diffuse gastric cancer using cDNA microarray. Oncol Rep. 15:57–64. 2006.PubMed/NCBI

33 

Dang Y, Wang YC and Huang QJ: Microarray and next-generation sequencing to analyse gastric cancer. Asian Pac J Cancer Prev. 15:8033–8039. 2014. View Article : Google Scholar : PubMed/NCBI

34 

Song B, Du J, Deng N, Ren JC and Shu ZB: Comparative analysis of gene expression profiles of gastric cardia adenocarcinoma and gastric non-cardia adenocarcinoma. Oncol Lett. 12:3866–3874. 2016.PubMed/NCBI

35 

Cui J, Chen Y, Chou WC, Sun L, Chen L, Suo J, Ni Z, Zhang M, Kong X, Hoffman LL, et al: An integrated transcriptomic and computational analysis for biomarker identification in gastric cancer. Nucleic Acids Res. 39:1197–1207. 2011. View Article : Google Scholar : PubMed/NCBI

36 

Bertucci F, Salas S, Eysteries S, Nasser V, Finetti P, Ginestier C, Charafe-Jauffret E, Loriod B, Bachelart L, Montfort J, et al: Gene expression profiling of colon cancer by DNA microarrays and correlation with histoclinical parameters. Oncogene. 23:1377–1391. 2004. View Article : Google Scholar : PubMed/NCBI

37 

Koslowski M, Sahin U, Mitnacht-Kraus R, Seitz G, Huber C and Türeci O: A placenta-specific gene ectopically activated in many human cancers is essentially involved in malignant cell processes. Cancer Res. 67:9528–9534. 2007. View Article : Google Scholar : PubMed/NCBI

38 

Bonome T, Lee JY, Park DC, Radonovich M, Pise-Masison C, Brady J, Gardner GJ, Hao K, Wong WH, Barrett JC, et al: Expression profiling of serous low malignant potential, low-grade and high-grade tumors of the ovary. Cancer Res. 65:10602–10612. 2005. View Article : Google Scholar : PubMed/NCBI

39 

Avdulov S, Li S, Michalek V, Burrichter D, Peterson M, Perlman DM, Manivel JC, Sonenberg N, Yee D, Bitterman PB and Polunovsky VA: Activation of translation complex eIF4F is essential for the genesis and maintenance of the malignant phenotype in human mammary epithelial cells. Cancer Cell. 5:553–563. 2004. View Article : Google Scholar : PubMed/NCBI

40 

Gao J, Sai N, Wang C, Sheng X, Shao Q, Zhou C, Shi Y, Sun S, Qu X and Zhu C: Overexpression of chromokinesin KIF4 inhibits proliferation of human gastric carcinoma cells both in vitro and in vivo. Tumor Biol. 32:53–61. 2011. View Article : Google Scholar

41 

Nishita Y, Yoshida I, Sado T and Takagi N: Genomic imprinting and chromosomal localization of the human MEST gene. Genomics. 36:539–542. 1996. View Article : Google Scholar : PubMed/NCBI

42 

Lunardi D, Abelli L, Panti C, Marsili L, Fossi MC and Mancia A: Transcriptomic analysis of bottlenose dolphin (Tursiops truncatus) skin biopsies to assess the effects of emerging contaminants. Mar Environ Res. 114:74–79. 2016. View Article : Google Scholar : PubMed/NCBI

43 

Hartl D, He CH, Koller B, Da Silva CA, Homer R, Lee CG and Elias JA: Acidic mammalian chitinase is secreted via an ADAM17/epidermal growth factor receptor-dependent pathway and stimulates chemokine production by pulmonary epithelial cells. J Biol Chem. 283:33472–33482. 2008. View Article : Google Scholar : PubMed/NCBI

44 

Żurawska-Płaksej E, Ługowska A, Hetmańczyk K, Knapik-Kordecka M and Piwowar A: Neutrophils as a source of chitinases and chitinase-like proteins in type 2 diabetes. PLoS One. 10:e01417302015. View Article : Google Scholar : PubMed/NCBI

45 

Gooday GW, Brydon LJ and Chappell LH: Chitinase in female onchocerca gibsoni and its inhibition by allosamidin. Mol Biochem Parasitol. 29:223–225. 1988. View Article : Google Scholar : PubMed/NCBI

46 

Kamata T: Roles of Nox1 and other Nox isoforms in cancer development. Cancer Sci. 100:1382–1388. 2009. View Article : Google Scholar : PubMed/NCBI

47 

Nair NG, Blessantoli M and Vennila JJ: Gene expression in gastric cancer for Singapore and UK population: An Insilico comparative approach. Res J Recent Sci. 3:2014.

48 

Taniwaki M, Takano A, Ishikawa N, Yasui W, Inai K, Nishimura H, Tsuchiya E, Kohno N, Nakamura Y and Daigo Y: Activation of KIF4A as a prognostic biomarker and therapeutic target for lung cancer. Clin Cancer Res. 13:6624–6631. 2007. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

May-2017
Volume 13 Issue 5

Print ISSN: 1792-1074
Online ISSN:1792-1082

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Li X, Dong W, Qu X, Zhao H, Wang S, Hao Y, Li Q, Zhu J, Ye M, Xiao W, Xiao W, et al: Molecular dysexpression in gastric cancer revealed by integrated analysis of transcriptome data. Oncol Lett 13: 3177-3185, 2017
APA
Li, X., Dong, W., Qu, X., Zhao, H., Wang, S., Hao, Y. ... Xiao, W. (2017). Molecular dysexpression in gastric cancer revealed by integrated analysis of transcriptome data. Oncology Letters, 13, 3177-3185. https://doi.org/10.3892/ol.2017.5798
MLA
Li, X., Dong, W., Qu, X., Zhao, H., Wang, S., Hao, Y., Li, Q., Zhu, J., Ye, M., Xiao, W."Molecular dysexpression in gastric cancer revealed by integrated analysis of transcriptome data". Oncology Letters 13.5 (2017): 3177-3185.
Chicago
Li, X., Dong, W., Qu, X., Zhao, H., Wang, S., Hao, Y., Li, Q., Zhu, J., Ye, M., Xiao, W."Molecular dysexpression in gastric cancer revealed by integrated analysis of transcriptome data". Oncology Letters 13, no. 5 (2017): 3177-3185. https://doi.org/10.3892/ol.2017.5798