Hepatocellular carcinoma cells surviving doxorubicin treatment exhibit increased migratory potential and resistance to doxorubicin re-treatment in vitro

  • Authors:
    • Sebastian Buschauer
    • Andreas Koch
    • Philipp Wiggermann
    • Martina Müller
    • Claus Hellerbrand
  • View Affiliations

  • Published online on: January 26, 2018     https://doi.org/10.3892/ol.2018.7887
  • Pages: 4635-4640
Metrics: HTML 0 views | PDF 0 views     Cited By (CrossRef): 0 citations

Abstract

Transarterial chemoembolization (TACE) is an established therapeutic approach for the treatment of hepatocellular carcinoma (HCC). Although patients who undergo TACE may have prolonged survival, there are indications that the malignancy of residual HCC tissue can increase subsequent to the procedure. Although hypoxia, which occurs during TACE due to ischemia, is known to contribute to angiogenesis, little is known with regard to the undesirable effects of chemotherapeutic agents on residual HCC cells. Doxorubicin is one of the most commonly used drugs in TACE. The aim of the present study was to analyze alterations in Hep3B and HepG2 human HCC cell lines surviving doxorubicin treatment in vitro. Initially, the toxic concentration range was determined, and doxorubicin was subsequently applied in concentrations that killed >80% of the HCC cells. During the first days subsequent to treatment, surviving cells had higher expression levels of the epithelial‑mesenchymal transition marker SNAIL, and exhibited increased migratory activity compared with control cells. At 3 weeks after the first doxorubicin treatment, surviving HCC cells tolerated significantly higher doxorubicin concentrations compared with control cells. As a potential explanation for this doxorubicin resistance, significantly increased mRNA expression levels of ATP‑binding cassette ABCB1 (multidrug resistance protein 1) and ABCC1 (multidrug resistance‑associated protein 1) were observed by reverse transcription‑quantitative polymerase chain reaction. In summary, these findings indicate that, following TACE treatment, hypoxia as well as doxorubicin may induce a more malignant phenotype in surviving HCC cells and decrease susceptibility to further chemotherapeutic treatment.

References

1 

Lin S, Hoffmann K and Schemmer P: Treatment of hepatocellular carcinoma: A systematic review. Liver Cancer. 1:144–158. 2012. View Article : Google Scholar : PubMed/NCBI

2 

Mazzanti R, Arena U and Tassi R: Hepatocellular carcinoma: Where are we? World J Exp Med. 6:21–36. 2016. View Article : Google Scholar : PubMed/NCBI

3 

Bruix J, Boix L, Sala M and Llovet JM: Focus on hepatocellular carcinoma. Cancer Cell. 5:215–219. 2004. View Article : Google Scholar : PubMed/NCBI

4 

Hernandez-Gea V, Toffanin S, Friedman SL and Llovet JM: Role of the microenvironment in the pathogenesis and treatment of hepatocellular carcinoma. Gastroenterology. 144:512–527. 2013. View Article : Google Scholar : PubMed/NCBI

5 

Belghiti J: Treatment of hepatocellular carcinoma. Bull Acad Natl Med. 196:97–103. 2012.PubMed/NCBI

6 

Biolato M, Marrone G, Racco S, Di Stasi C, Miele L, Gasbarrini G, Landolfi R and Grieco A: Transarterial chemoembolization (TACE) for unresectable HCC: A new life begins? Eur Rev Med Pharmacol Sci. 14:356–362. 2010.PubMed/NCBI

7 

Xiao EH, Guo D and Bian DJ: Effect of preoperative transcatheter arterial chemoembolization on angiogenesis of hepatocellular carcinoma cells. World J Gastroenterol. 15:4582–4586. 2009. View Article : Google Scholar : PubMed/NCBI

8 

Park W, Chung YH, Kim JA, Jin YJ, Lee D, Shim JH, Lee D, Kim KM, Lim YS, Lee HC, et al: Recurrences of hepatocellular carcinoma following complete remission by transarterial chemoembolization or radiofrequency therapy: Focused on the recurrence patterns. Hepatol Res. 43:1304–1312. 2013. View Article : Google Scholar : PubMed/NCBI

9 

Niessen C, Wiggermann P, Velandia C, Stroszczynski C and Pereira PL: Transarterial chemoembolization-status quo in Germany. Rofo. 185:1089–1094. 2013. View Article : Google Scholar : PubMed/NCBI

10 

Thorn CF, Oshiro C, Marsh S, Hernandez-Boussard T, McLeod H, Klein TE and Altman RB: Doxorubicin pathways: Pharmacodynamics and adverse effects. Pharmacogenet Genomics. 21:440–436. 2011. View Article : Google Scholar : PubMed/NCBI

11 

Tacar O, Sriamornsak P and Dass CR: Doxorubicin: An update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol. 65:157–170. 2013. View Article : Google Scholar : PubMed/NCBI

12 

Li G, Chen X, Wang Q, Xu Z, Zhang W and Ye L: The roles of four multi-drug resistance proteins in hepatocellular carcinoma multidrug resistance. J Huazhong Univ Sci Technolog Med Sci. 27:173–175. 2007. View Article : Google Scholar : PubMed/NCBI

13 

Wang J, Chan JY, Fong CC, Tzang CH, Fung KP and Yang M: Transcriptional analysis of doxorubicin-induced cytotoxicity and resistance in human hepatocellular carcinoma cell lines. Liver Int. 29:1338–1347. 2009. View Article : Google Scholar : PubMed/NCBI

14 

Pang E, Hu Y, Chan KY, Lai PB, Squire JA, Macgregor PF, Beheshti B, Albert M, Leung TW and Wong N: Karyotypic imbalances and differential gene expressions in the acquired doxorubicin resistance of hepatocellular carcinoma cells. Lab Invest. 85:664–674. 2005. View Article : Google Scholar : PubMed/NCBI

15 

Ambudkar SV, Kimchi-Sarfaty C, Sauna ZE and Gottesman MM: P-glycoprotein: From genomics to mechanism. Oncogene. 22:7468–7485. 2003. View Article : Google Scholar : PubMed/NCBI

16 

Ye CG, Wu WK, Yeung JH, Li HT, Li ZJ, Wong CC, Ren SX, Zhang L, Fung KP and Cho CH: Indomethacin and SC236 enhance the cytotoxicity of doxorubicin in human hepatocellular carcinoma cells via inhibiting P-glycoprotein and MRP1 expression. Cancer Lett. 304:90–96. 2011. View Article : Google Scholar : PubMed/NCBI

17 

Park JG, Lee SK, Hong IG, Kim HS, Lim KH, Choe KJ, Kim WH, Kim YI, Tsuruo T and Gottesman MM: MDR1 gene expression: Its effect on drug resistance to doxorubicin in human hepatocellular carcinoma cell lines. J Natl Cancer Inst. 86:700–705. 1994. View Article : Google Scholar : PubMed/NCBI

18 

Vander Borght S, Komuta M, Libbrecht L, Katoonizadeh A, Aerts R, Dymarkowski S, Verslype C, Nevens F and Roskams T: Expression of multidrug resistance-associated protein 1 in hepatocellular carcinoma is associated with a more aggressive tumour phenotype and may reflect a progenitor cell origin. Liver Int. 28:1370–1380. 2008. View Article : Google Scholar : PubMed/NCBI

19 

Itsubo M, Ishikawa T, Toda G and Tanaka M: Immunohistochemical study of expression and cellular localization of the multidrug resistance gene product P-glycoprotein in primary liver carcinoma. Cancer. 73:298–303. 1994. View Article : Google Scholar : PubMed/NCBI

20 

Chan JY, Chu AC and Fung KP: Inhibition of P-glycoprotein expression and reversal of drug resistance of human hepatoma HepG2 cells by multidrug resistance gene (mdr1) antisense RNA. Life Sci. 67:2117–2124. 2000. View Article : Google Scholar : PubMed/NCBI

21 

Sun BT, Zheng LH, Bao YL, Yu CL, Wu Y, Meng XY and Li YX: Reversal effect of Dioscin on multidrug resistance in human hepatoma HepG2/adriamycin cells. Eur J Pharmacol. 654:129–134. 2011. View Article : Google Scholar : PubMed/NCBI

22 

Yang L, Liu X, Lu Z, Yuet-Wa Chan J, Zhou L, Fung KP, Wu P and Wu S: Ursolic acid induces doxorubicin-resistant HepG2 cell death via the release of apoptosis-inducing factor. Cancer Lett. 298:128–138. 2010. View Article : Google Scholar : PubMed/NCBI

23 

Bosserhoff AK, Moser M, Schölmerich J, Buettner R and Hellerbrand C: Specific expression and regulation of the new melanoma inhibitory activity-related gene MIA2 in hepatocytes. J Biol Chem. 278:15225–311. 2003. View Article : Google Scholar : PubMed/NCBI

24 

Hellerbrand C, Mühlbauer M, Wallner S, Schuierer M, Behrmann I, Bataille F, Weiss T, Schölmerich J and Bosserhoff AK: Promoter-hypermethylation is causing functional relevant downregulation of methylthioadenosine phosphorylase (MTAP) expression in hepatocellular carcinoma. Carcinogenesis. 27:64–72. 2006. View Article : Google Scholar : PubMed/NCBI

25 

Dorn C, Weiss TS, Heilmann J and Hellerbrand C: Xanthohumol, a prenylated chalcone derived from hops, inhibits proliferation, migration and interleukin-8 expression of hepatocellular carcinoma cells. Int J Oncol. 36:435–441. 2010.PubMed/NCBI

26 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

27 

Al-Qubaisi M, Rozita R, Yeap SK, Omar AR, Ali AM and Alitheen NB: Selective cytotoxicity of goniothalamin against hepatoblastoma HepG2 cells. Molecules. 16:2944–2959. 2011. View Article : Google Scholar : PubMed/NCBI

28 

Fan LL, Sun GP, Wei W, Wang ZG, Ge L, Fu WZ and Wang H: Melatonin and doxorubicin synergistically induce cell apoptosis in human hepatoma cell lines. World J Gastroenterol. 16:1473–1481. 2010. View Article : Google Scholar : PubMed/NCBI

29 

Al-Abd AM, Mahmoud AM, El-Sherbiny GA, El-Moselhy MA, Nofal SM, El-Latif HA, El-Eraky WI and El-Shemy HA: Resveratrol enhances the cytotoxic profile of docetaxel and doxorubicin in solid tumour cell lines in vitro. Cell Prolif. 44:591–601. 2011. View Article : Google Scholar : PubMed/NCBI

30 

Hu QD, Chen W, Yan TL, Ma T, Chen CL, Liang C, Zhang Q, Xia XF, Liu H, Zhi X, et al: NSC 74859 enhances doxorubicin cytotoxicity via inhibition of epithelial-mesenchymal transition in hepatocellular carcinoma cells. Cancer Lett. 325:207–213. 2012. View Article : Google Scholar : PubMed/NCBI

31 

Gambari R, Hau DK, Wong WY and Chui CH: Sensitization of Hep3B hepatoma cells to cisplatin and doxorubicin by corilagin. Phytother Res. 28:781–783. 2014. View Article : Google Scholar : PubMed/NCBI

32 

Shiraga K, Sakaguchi K, Senoh T, Ohta T, Ogawa S, Sawayama T, Mouri H, Fujiwara A and Tsuji T: Modulation of doxorubicin sensitivity by cyclosporine A in hepatocellular carcinoma cells and their doxorubicin-resistant sublines. J Gastroenterol Hepatol. 16:460–466. 2001. View Article : Google Scholar : PubMed/NCBI

33 

Namur J, Wassef M, Millot JM, Lewis AL, Manfait M and Laurent A: Drug-eluting beads for liver embolization: Concentration of doxorubicin in tissue and in beads in a pig model. J Vasc Interv Radiol. 21:259–267. 2010. View Article : Google Scholar : PubMed/NCBI

34 

Namur J, Citron SJ, Sellers MT, Dupuis MH, Wassef M, Manfait M and Laurent A: Embolization of hepatocellular carcinoma with drug-eluting beads: Doxorubicin tissue concentration and distribution in patient liver explants. J Hepatol. 55:1332–1338. 2011. View Article : Google Scholar : PubMed/NCBI

35 

Peinado H, Olmeda D and Cano A: Snail, Zeb and bHLH factors in tumour progression: An alliance against the epithelial phenotype? Nat Rev Cancer. 7:415–428. 2007. View Article : Google Scholar : PubMed/NCBI

36 

van Zijl F, Zulehner G, Petz M, Schneller D, Kornauth C, Hau M, Machat G, Grubinger M, Huber H and Mikulits W: Epithelial-mesenchymal transition in hepatocellular carcinoma. Future Oncol. 5:1169–1179. 2009. View Article : Google Scholar : PubMed/NCBI

37 

Nishihara Y, Aishima S, Kuroda Y, Iguchi T, Taguchi K, Asayama Y, Taketomi A, Kinukawa N, Honda H and Tsuneyoshi M: Biliary phenotype of hepatocellular carcinoma after preoperative transcatheter arterial chemoembolization. J Gastroenterol Hepatol. 23:1860–1868. 2008. View Article : Google Scholar : PubMed/NCBI

38 

Zen C, Zen Y, Mitry RR, Corbeil D, Karbanová J, O'Grady J, Karani J, Kane P, Heaton N, Portmann BC and Quaglia A: Mixed phenotype hepatocellular carcinoma after transarterial chemoembolization and liver transplantation. Liver Transpl. 17:943–954. 2011. View Article : Google Scholar : PubMed/NCBI

39 

Hoffmann K, Shibo L, Xiao Z, Longerich T, Büchler MW and Schemmer P: Correlation of gene expression of ATP-binding cassette protein and tyrosine kinase signaling pathway in patients with hepatocellular carcinoma. Anticancer Res. 31:3883–3890. 2011.PubMed/NCBI

40 

Zhang L, Huang G, Li X, Zhang Y, Jiang Y, Shen J, Liu J, Wang Q, Zhu J, Feng X, et al: Hypoxia induces epithelial-mesenchymal transition via activation of SNAI1 by hypoxia-inducible factor-1α in hepatocellular carcinoma. BMC Cancer. 13:1082013. View Article : Google Scholar : PubMed/NCBI

41 

Luo D, Wang Z and Wu J, Jiang C and Wu J: The role of hypoxia inducible factor-1 in hepatocellular carcinoma. Biomed Res Int. 2014:4092722014. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

April 2018
Volume 15 Issue 4

Print ISSN: 1792-1074
Online ISSN:1792-1082

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Buschauer, S., Koch, A., Wiggermann, P., Müller, M., & Hellerbrand, C. (2018). Hepatocellular carcinoma cells surviving doxorubicin treatment exhibit increased migratory potential and resistance to doxorubicin re-treatment in vitro. Oncology Letters, 15, 4635-4640. https://doi.org/10.3892/ol.2018.7887
MLA
Buschauer, S., Koch, A., Wiggermann, P., Müller, M., Hellerbrand, C."Hepatocellular carcinoma cells surviving doxorubicin treatment exhibit increased migratory potential and resistance to doxorubicin re-treatment in vitro". Oncology Letters 15.4 (2018): 4635-4640.
Chicago
Buschauer, S., Koch, A., Wiggermann, P., Müller, M., Hellerbrand, C."Hepatocellular carcinoma cells surviving doxorubicin treatment exhibit increased migratory potential and resistance to doxorubicin re-treatment in vitro". Oncology Letters 15, no. 4 (2018): 4635-4640. https://doi.org/10.3892/ol.2018.7887