Open Access

Expression profiling analysis of autophagy-related genes in perineural invasion of cutaneous squamous cell carcinoma

  • Authors:
    • Li‑Qiang Zheng
    • Shan‑Yi Li
    • Cheng‑Xin Li
  • View Affiliations

  • Published online on: February 6, 2018     https://doi.org/10.3892/ol.2018.7971
  • Pages: 4837-4848
  • Copyright: © Zheng et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: HTML 0 views | PDF 0 views     Cited By (CrossRef): 0 citations

Abstract

The aim of the present study was to identify the potential autophagy‑related genes and to explore the underlying molecular mechanisms involved in cutaneous squamous cell carcinoma of head and neck (cSCCHN) by bioinformatics analysis. The Gene Expression Omnibus (GEO) series GSE86544 was downloaded from the GEO database. The primary data was generated from cSCCHN with clinical perineural invasion (PNI) and cSCCHN without PNI, and was further analyzed in order to identify differentially expressed genes (DEGs). The results revealed 239 autophagy‑related DEGs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed and intersected to investigate the predicted functions of the key DEGs, including hypoxia‑inducible factor 1α (HIF1A), mitogen‑activated protein kinase 8 (MAPK8), mammalian target of rapamycin (mTOR) and B‑cell lymphoma 2 like 1 (BCL2L1). Up and downregulated genes shared one pathway, namely ‘pathways in cancer’. Next, the protein‑protein interaction (PPI) network of the autophagy‑related DEGs was constructed using Cytoscape 3.30 software. HIF1A, MAPK8, mTOR and BCL2L1 were key nodes in the PPI network. Additionally, RAB23 gene expression was positively correlated with HIF1A, MAPK8 and ADP ribosylation factor GTPase activating protein 1 (ARFGAP1), but negatively correlated with mTOR and BCL2L1. The present results suggested that the genes HIF1A, MAPK8, mTOR, BCL2L1 and RAB23 may be associated with and serve as potential therapeutic targets in cSCCHN with clinical PNI.

References

1 

Rogers HW, Weinstock MA, Harris AR, Hinckley MR, Feldman SR, Fleischer AB, Fleischer AB and Coldiron BM: Incidence estimate of non-melanoma skin cancer in the United States, 2006. Arch Dermatol. 146:283–287. 2010. View Article : Google Scholar : PubMed/NCBI

2 

Eisemann N, Waldmann A, Geller AC, Weinstock MA, Volkmer B, Greinert R, Breitbart EW and Katalinic A: Non-melanoma skin cancer incidence and impact of skin cancer screening on incidence. J Invest Dermatol. 134:43–50. 2014. View Article : Google Scholar : PubMed/NCBI

3 

Narayanan DL, Saladi RN and Fox JL: Ultraviolet radiation and skin cancer. Int J Dermatol. 49:978–986. 2010. View Article : Google Scholar : PubMed/NCBI

4 

Veness MJ: Defining patients with high-risk cutaneous squamous cell carcinoma. Australas J Dermatol. 47:28–33. 2006. View Article : Google Scholar : PubMed/NCBI

5 

Echarri MJ, Lopez-Martin A and Hitt R: Targeted therapy in locally advanced and Recurrent/metastatic head and neck squamous cell carcinoma (LA-R/M HNSCC). Cancers (Basel). 8:E272016. View Article : Google Scholar : PubMed/NCBI

6 

Yoshihara N, Takagi A, Ueno T and Ikeda S: Inverse correlation between microtubule-associated protein 1A/1B-light chain 3 and p62/sequestosome-1 expression in the progression of cutaneous squamous cell carcinoma. J Dermatol. 41:311–315. 2014. View Article : Google Scholar : PubMed/NCBI

7 

Okura R and Nakamura M: Overexpression of autophagy-related beclin-1 in cutaneous squamous cell carcinoma with lymph-node metastasis. Eur J Dermatol. 21:1002–1003. 2011.PubMed/NCBI

8 

Klionsky DJ: Autophagy: From phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol. 8:931–937. 2007. View Article : Google Scholar : PubMed/NCBI

9 

Rabinowitz JD and White E: Autophagy and metabolism. Science. 330:1344–1348. 2010. View Article : Google Scholar : PubMed/NCBI

10 

Levine B and Klionsky DJ: Development by self-digestion: Molecular mechanisms and biological functions of autophagy. Dev Cell. 6:463–477. 2004. View Article : Google Scholar : PubMed/NCBI

11 

Jin S and White E: Role of autophagy in cancer: Management of metabolic stress. Autophagy. 3:28–31. 2007. View Article : Google Scholar : PubMed/NCBI

12 

Mathew R, Karantza-Wadsworth V and White E: Role of autophagy in cancer. Nat Rev Cancer. 7:961–967. 2007. View Article : Google Scholar : PubMed/NCBI

13 

Lorin S, Hamai A, Mehrpour M and Codogno P: Autophagy regulation and its role in cancer. Semin Cancer Biol. 23:361–379. 2013. View Article : Google Scholar : PubMed/NCBI

14 

Liu JL, Chen FF, Lung J, Lo CH, Lee FH, Lu YC and Hung CH: Prognostic significance of p62/SQSTM1 subcellular localization and LC3B in oral squamous cell carcinoma. Br J Cancer. 111:944–954. 2014. View Article : Google Scholar : PubMed/NCBI

15 

Claerhout S, Verschooten L, Van Kelst S, De Vos R, Proby C, Agostinis P and Garmyn M: Concomitant inhibition of AKT and autophagy is required for efficient cisplatin-induced apoptosis of metastatic skin carcinoma. Int J Cancer. 127:2790–2803. 2010. View Article : Google Scholar : PubMed/NCBI

16 

Wright TJ, McKee C, Birch-Machin MA, Ellis R, Armstrong JL and Lovat PE: Increasing the therapeutic efficacy of docetaxel for cutaneous squamous cell carcinoma through the combined inhibition of phosphatidylinositol 3-kinase/AKT signalling and autophagy. Clin Exp Dermatol. 38:421–423. 2013. View Article : Google Scholar : PubMed/NCBI

17 

Fan TF, Bu LL, Wang WM, Ma SR, Liu JF, Deng WW, Mao L, Yu GT, Huang CF, Liu B, et al: Tumor growth suppression by inhibiting both autophagy and STAT3 signaling in HNSCC. Oncotarget. 6:43581–43593. 2015. View Article : Google Scholar : PubMed/NCBI

18 

Barrette K, Van Kelst S, Wouters J, Marasigan V, Fieuws S, Agostinis P, van den Oord J and Garmyn M: Epithelial-mesenchymal transition during invasion of cutaneous squamous cell carcinoma is paralleled by AKT activation. Br J Dermatol. 171:1014–1021. 2014. View Article : Google Scholar : PubMed/NCBI

19 

Choi SR, Chung BY, Kim SW, Kim CD, Yun WJ, Lee MW, Choi JH and Chang SE: Activation of autophagic pathways is related to growth inhibition and senescence in cutaneous squamous cell carcinoma. Exp Dermatol. 23:718–724. 2014. View Article : Google Scholar : PubMed/NCBI

20 

Balamucki CJ, Mancuso AA, Amdur RJ, Kirwan JM, Morris CG, Flowers FP, Stoer CB, Cognetta AB and Mendenhall WM: Skin carcinoma of the head and neck with perineural invasion. Am J Otolaryngol. 33:447–454. 2012. View Article : Google Scholar : PubMed/NCBI

21 

Warren TA, Panizza B, Porceddu SV, Gandhi M, Patel P, Wood M, Nagle CM and Redmond M: Outcomes after surgery and postoperative radiotherapy for perineural spread of head and neck cutaneous squamous cell carcinoma. Head Neck. 38:824–831. 2016. View Article : Google Scholar : PubMed/NCBI

22 

Warren TA, Broit N, Simmons JL, Pierce CJ, Chawla S, Lambie DL, Quagliotto G, Brown IS, Parsons PG, Panizza BJ and Boyle GM: Expression profiling of cutaneous squamous cell carcinoma with perineural invasion implicates the p53 pathway in the process. Sci Rep. 6:340812016. View Article : Google Scholar : PubMed/NCBI

23 

Padilla RS, Sebastian S, Jiang Z, Nindl I and Larson R: Gene expression patterns of normal human skin, actinic keratosis, and squamous cell carcinoma: A spectrum of disease progression. Arch Dermatol. 146:288–293. 2010. View Article : Google Scholar : PubMed/NCBI

24 

Ra SH, Li X and Binder S: Molecular discrimination of cutaneous squamous cell carcinoma from actinic keratosis and normal skin. Mod Pathol. 24:963–973. 2011. View Article : Google Scholar : PubMed/NCBI

25 

Mitsui H, Suárez-Farinas M, Gulati N, Shah KR, Cannizzaro MV, Coats I, Felsen D, Krueger JG and Carucci JA: Gene expression profiling of the leading edge of cutaneous squamous cell carcinoma: IL-24-driven MMP-7. J Invest Dermatol. 134:1418–1427. 2014. View Article : Google Scholar : PubMed/NCBI

26 

Farshchian M, Nissinen L, Siljamäki E, Riihilä P, Toriseva M, Kivisaari A, Ala-Aho R, Kallajoki M, Veräjänkorva E, Honkanen HK, et al: EphB2 promotes progression of cutaneous squamous cell carcinoma. J Invest Dermatol. 135:1882–1892. 2015. View Article : Google Scholar : PubMed/NCBI

27 

Jian Q, Miao Y, Tang L, Huang M, Yang Y, Ba W, Liu Y, Chi S and Li C: Rab23 promotes squamous cell carcinoma cell migration and invasion via integrin β1/Rac1 pathway. Oncotarget. 7:5342–5352. 2016. View Article : Google Scholar : PubMed/NCBI

28 

Turei D, Földvari-Nagy L, Fazekas D, Módos D, Kubisch J, Kadlecsik T, Demeter A, Lenti K, Csermely P, Vellai T and Korcsmáros T: Autophagy regulatory network-a systems-level bioinformatics resource for studying the mechanism and regulation of autophagy. Autophagy. 11:155–165. 2015. View Article : Google Scholar : PubMed/NCBI

29 

Huang da W, Sherman BT and Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 4:44–57. 2009. View Article : Google Scholar : PubMed/NCBI

30 

de Hoon MJ, Imoto S, Nolan J and Miyano S: Open source clustering software. Bioinformatics. 20:1453–1454. 2004. View Article : Google Scholar : PubMed/NCBI

31 

Saldanha AJ: Java Treeview-extensible visualization of microarray data. Bioinformatics. 20:3246–3248. 2004. View Article : Google Scholar : PubMed/NCBI

32 

Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Santos A, Doncheva NT, Roth A, Bork P, et al: The STRING database in 2017: Quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 45:D362–D368. 2017. View Article : Google Scholar : PubMed/NCBI

33 

Parikh SA, Patel VA and Ratner D: Advances in the management of cutaneous squamous cell carcinoma. F1000Prime Rep. 6:702014. View Article : Google Scholar : PubMed/NCBI

34 

Miller SJ: Defining, treating, and studying very high-risk cutaneous squamous cell carcinomas. Arch Dermatol. 146:1292–1295. 2010. View Article : Google Scholar : PubMed/NCBI

35 

Ross AS, Whalen FM, Elenitsas R, Xu X, Troxel AB and Schmults CD: Diameter of involved nerves predicts outcomes in cutaneous squamous cell carcinoma with perineural invasion: an investigator-blinded retrospective cohort study. Dermatol Surg. 35:1859–1866. 2009. View Article : Google Scholar : PubMed/NCBI

36 

Nindl I, Dang C, Forschner T, Kuban RJ, Meyer T, Sterry W and Stockfleth E: Identification of differentially expressed genes in cutaneous squamous cell carcinoma by microarray expression profiling. Mol Cancer. 5:302006. View Article : Google Scholar : PubMed/NCBI

37 

Rothenberg SM and Ellisen LW: The molecular pathogenesis of head and neck squamous cell carcinoma. J Clin Invest. 122:1951–1957. 2012. View Article : Google Scholar : PubMed/NCBI

38 

Gu Y, Li P, Peng F, Zhang M, Zhang Y, Liang H, Zhao W, Qi L, Wang H, Wang C and Guo Z: Autophagy-related prognostic signature for breast cancer. Mol Carcinog. 55:292–299. 2016. View Article : Google Scholar : PubMed/NCBI

39 

Kim KW, Mutter RW, Cao C, Albert JM, Freeman M, Hallahan DE and Lu B: Autophagy for cancer therapy through inhibition of pro-apoptotic proteins and mammalian target of rapamycin signaling. J Biol Chem. 281:36883–36890. 2006. View Article : Google Scholar : PubMed/NCBI

40 

O Farrell F, Rusten TE and Stenmark H: Phosphoinositide 3-kinases as accelerators and brakes of autophagy. FEBS J. 280:6322–6337. 2013. View Article : Google Scholar : PubMed/NCBI

41 

Cerniglia GJ, Karar J, Tyagi S, Christofidou-Solomidou M, Rengan R, Koumenis C and Maity A: Inhibition of autophagy as a strategy to augment radiosensitization by the dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235. Mol Pharmacol. 82:1230–1240. 2012. View Article : Google Scholar : PubMed/NCBI

42 

Kim KW, Myers CJ, Jung DK and Lu B: NVP-BEZ-235 enhances radiosensitization via blockade of the PI3K/mTOR pathway in cisplatin-resistant non-small cell lung carcinoma. Genes Cancer. 5:293–302. 2014.PubMed/NCBI

43 

Pursiheimo JP, Rantanen K, Heikkinen PT, Johansen T and Jaakkola PM: Hypoxia-activated autophagy accelerates degradation of SQSTM1/p62. Oncogene. 28:334–344. 2009. View Article : Google Scholar : PubMed/NCBI

44 

Li X and Fan Z: The epidermal growth factor receptor antibody cetuximab induces autophagy in cancer cells by downregulating HIF-1alpha and Bcl-2 and activating the beclin 1/hVps34 complex. Cancer Res. 70:5942–5952. 2010. View Article : Google Scholar : PubMed/NCBI

45 

Li YN, Hu JA and Wang HM: Inhibition of HIF-1α affects autophagy mediated glycosylation in oral squamous cell carcinoma cells. Dis Markers. 2015:2394792015. View Article : Google Scholar : PubMed/NCBI

46 

Harris AL: Hypoxia - a key regulatory factor in tumour growth. Nat Rev Cancer. 2:38–47. 2002. View Article : Google Scholar : PubMed/NCBI

47 

Pouysségur J, Dayan F and Mazure NM: Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature. 441:437–443. 2006. View Article : Google Scholar : PubMed/NCBI

48 

Bohensky J, Shapiro IM, Leshinsky S, Terkhorn SP, Adams CS and Srinivas V: HIF-1 regulation of chondrocyte apoptosis: Induction of the autophagic pathway. Autophagy. 3:207–214. 2007. View Article : Google Scholar : PubMed/NCBI

49 

He W, Wang Q, Xu J, Xu X, Padilla MT, Ren G, Gou X and Lin Y: Attenuation of TNFSF10/TRAIL-induced apoptosis by an autophagic survival pathway involving TRAF2- and RIPK1/RIP1-mediated MAPK8/JNK activation. Autophagy. 8:1811–1821. 2012. View Article : Google Scholar : PubMed/NCBI

50 

Zhang W, Sun J and Luo J: High expression of Rab-like 3 (Rabl3) is associated with poor survival of patients with non-small cell lung cancer via repression of MAPK8/9/10-mediated autophagy. Med Sci Monit. 22:1582–1588. 2016. View Article : Google Scholar : PubMed/NCBI

51 

Nozawa T, Aikawa C, Goda A, Maruyama F, Hamada S and Nakagawa I: The small GTPases Rab9A and Rab23 function at distinct steps in autophagy during Group A Streptococcus infection. Cell Microbiol. 14:1149–1165. 2012. View Article : Google Scholar : PubMed/NCBI

52 

Zheng LQ, Chi SM and Li CX: Rab23′s genetic structure, function and related diseases: A review. Biosci Rep. 37:BSR201604102017. View Article : Google Scholar : PubMed/NCBI

53 

Wang M, Dong Q and Wang Y: Rab23 is overexpressed in human astrocytoma and promotes cell migration and invasion through regulation of Rac1. Tumour Biol. 37:11049–11055. 2016. View Article : Google Scholar : PubMed/NCBI

54 

Maiuri MC, Le Toumelin G, Criollo A, Rain JC, Gautier F, Juin P, Tasdemir E, Pierron G, Troulinaki K, Tavernarakis N, et al: Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1. EMBO J. 26:2527–2539. 2007. View Article : Google Scholar : PubMed/NCBI

55 

Erlich S, Mizrachy L, Segev O, Lindenboim L, Zmira O, Adi-Harel S, Hirsch JA, Stein R and Pinkas-Kramarski R: Differential interactions between Beclin 1 and Bcl-2 family members. Autophagy. 3:561–368. 2007. View Article : Google Scholar : PubMed/NCBI

56 

Yuan J, Zhang Y, Sheng Y, Fu X, Cheng H and Zhou R: MYBL2 guides autophagy suppressor VDAC2 in the developing ovary to inhibit autophagy through a complex of VDAC2-BECN1-BCL2L1 in mammals. Autophagy. 11:1081–1098. 2015. View Article : Google Scholar : PubMed/NCBI

57 

Maji S, Samal SK, Pattanaik L, Panda S, Quinn BA, Das SK, Sarkar D, Pellecchia M, Fisher PB and Dash R: Mcl-1 is an important therapeutic target for oral squamous cell carcinomas. Oncotarget. 6:16623–16637. 2015. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

April 2018
Volume 15 Issue 4

Print ISSN: 1792-1074
Online ISSN:1792-1082

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Zheng, L., Li, S., & Li, C. (2018). Expression profiling analysis of autophagy-related genes in perineural invasion of cutaneous squamous cell carcinoma. Oncology Letters, 15, 4837-4848. https://doi.org/10.3892/ol.2018.7971
MLA
Zheng, L., Li, S., Li, C."Expression profiling analysis of autophagy-related genes in perineural invasion of cutaneous squamous cell carcinoma". Oncology Letters 15.4 (2018): 4837-4848.
Chicago
Zheng, L., Li, S., Li, C."Expression profiling analysis of autophagy-related genes in perineural invasion of cutaneous squamous cell carcinoma". Oncology Letters 15, no. 4 (2018): 4837-4848. https://doi.org/10.3892/ol.2018.7971