Synergistic antitumor activity of low-dose c-Met tyrosine kinase inhibitor and sorafenib on human non-small cell lung cancer cells

  • Authors:
    • Ling Fu
    • Liang Guo
    • Yi Zheng
    • Zhenyu Zhu
    • Mingyue Zhang
    • Xiaohua Zhao
    • Hongxue Cui
  • View Affiliations

  • Published online on: February 2, 2018     https://doi.org/10.3892/ol.2018.7933
  • Pages: 5081-5086
Metrics: HTML 0 views | PDF 0 views     Cited By (CrossRef): 0 citations

Abstract

Sorafenib is a multikinase inhibitor that is frequently used to treat various types of malignant tumors. However, it has been demonstrated that Sorafenib only has a moderate antitumor efficacy and is associated with numerous side effects in non‑small cell lung cancer (NSCLC), which greatly limits its clinical application. The present study aimed to examine the effects of a combination of Sorafenib and low‑dose PF‑2341066, a selective c‑Met tyrosine kinase inhibitor, on the proliferation, apoptosis and migration of the NSCLC cell line NCI‑H1993. The data indicated that treatment with a combination of Sorafenib and low‑dose PF‑2341066 was able to significantly inhibit the proliferation and migration as well as promote the apoptosis, of NCI‑H1993 cells, compared with treatment with Sorafenib or low‑dose PF‑2341066 alone. Further experiments indicated that the levels of phosphorylated epidermal growth factor receptor and c‑Met were significantly decreased following the combined treatment of Sorafenib and PF‑2341066, compared with the treatment with Sorafenib or PF‑2341066 alone. The findings of the present study indicated that using a low‑dose c‑Met inhibitor enhances the antitumor activity of Sorafenib in NSCLC and may provide a novel strategy for the treatment of NSCLC.

References

1 

Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI

2 

Ott DE and Marcu KB: Molecular requirements for immunoglobulin heavy chain constant region gene switch-recombination revealed with switch-substrate retroviruses. Int Immunol. 1:582–591. 1989. View Article : Google Scholar : PubMed/NCBI

3 

Jemal A, Siegel R, Xu J and Ward E: Cancer statistics, 2010. CA Cancer J Clin. 60:277–300. 2010. View Article : Google Scholar : PubMed/NCBI

4 

Ettinger DS, Wood DE, Akerley W, Bazhenova LA, Borghaei H, Camidge DR, Cheney RT, Chirieac LR, D'Amico TA, Demmy TL, et al: Non-small cell lung cancer, version 1.2015. J Natl Compr Canc Netw. 12:1738–1761. 2014. View Article : Google Scholar : PubMed/NCBI

5 

Liu CY, Wang CL, Li SH, Hsu PC, Chen CH, Lin TY, Kuo CH, Fang YF, Ko HW, Yu CT, et al: The efficacy of 40 mg versus dose de-escalation to less than 40 mg of afatinib (Giotrif) as the first-line therapy for patients with primary lung adenocarcinoma harboring favorable epidermal growth factor mutations. Oncotarget. 8:97602–97612. 2017.PubMed/NCBI

6 

Lategahn J, Keul M and Rauh D: Lessons to be learned: The molecular basis of kinase-targeted therapies and drug resistance in non-small cell lung cancer. Angew Chem Int Ed Engl. Nov 27–2017.(Epub ahead of print).

7 

Thabitha A, Dravid AA, Tripathi R and Lulu SS: Database of transcription factors in lung cancer (DBTFLC): A novel resource for exploring transcription factors associated with lung cancer. J Cell Biochem. Dec 13–2017.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI

8 

Kharaziha P, Chioureas D, Baltatzis G, Fonseca P, Rodriguez P, Gogvadze V, Lennartsson L, Björklund AC, Zhivotovsky B, Grandér D, et al: Sorafenib-induced defective autophagy promotes cell death by necroptosis. Oncotarget. 6:37066–37082. 2015. View Article : Google Scholar : PubMed/NCBI

9 

Bruix J, Cheng AL, Meinhardt G, Nakajima K, De Sanctis Y and Llovet J: Prognostic factors and predictors of sorafenib benefit in patients with hepatocellular carcinoma: Analysis of two phase III studies. J Hepatol. 67:999–1008. 2017. View Article : Google Scholar : PubMed/NCBI

10 

Tafreshi A, Thientosapol E, Liew MS, Guo Y, Quaggiotto M, Boyer M and Davis ID: Efficacy of sorafenib in advanced renal cell carcinoma independent of prior treatment, histology or prognostic group. Asia Pac J Clin Oncol. 10:60–65. 2014. View Article : Google Scholar : PubMed/NCBI

11 

Kudo M: Immune checkpoint inhibition in hepatocellular carcinoma: Basics and ongoing clinical trials. Oncology. 92 Suppl 1:S50–S62. 2017. View Article : Google Scholar

12 

Rautenberg C, Nachtkamp K, Dienst A, Schmidt PV, Heyn C, Kondakci M, Germing U, Haas R, Kobbe G and Schroeder T: Sorafenib and azacitidine as salvage therapy for relapse of FLT3-ITD mutated AML after allo-SCT. Eur J Haematol. 98:348–354. 2017. View Article : Google Scholar : PubMed/NCBI

13 

Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H, Chen C, Zhang X, Vincent P, McHugh M, et al: BAY 43–9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 64:7099–7109. 2004. View Article : Google Scholar : PubMed/NCBI

14 

Gridelli C, Maione P, Del Gaizo F, Colantuoni G, Guerriero C, Ferrara C, Nicolella D, Comunale D, De Vita A and Rossi A: Sorafenib and sunitinib in the treatment of advanced non-small cell lung cancer. Oncologist. 12:191–200. 2007. View Article : Google Scholar : PubMed/NCBI

15 

Zhou Q, Guo X and Choksi R: Activation of focal adhesion kinase and Src mediates acquired sorafenib resistance in A549 human lung adenocarcinoma xenografts. J Pharmacol Exp Ther. 363:428–443. 2017. View Article : Google Scholar : PubMed/NCBI

16 

Degen A, Weichenthal M, Ugurel S, Trefzer U, Kilian K, Garbe C, Egberts F, Poppe LM, Hauschild A and Gutzmer R: Cutaneous side effects of combined therapy with sorafenib and pegylated interferon alpha-2b in metastatic melanoma (phase II DeCOG trial). J Dtsch Dermatol Ges. 11:846–853. 2013. View Article : Google Scholar : PubMed/NCBI

17 

Liang H and Wang M: Mechanism of c-Met in non-small cell lung cancer and its treatment and testing. Zhongguo Fei Ai Za Zhi. 18:745–751. 2015.(In Chinese). PubMed/NCBI

18 

Ma PC, Jagadeeswaran R, Jagadeesh S, Tretiakova MS, Nallasura V, Fox EA, Hansen M, Schaefer E, Naoki K, Lader A, et al: Functional expression and mutations of c-Met and its therapeutic inhibition with SU11274 and small interfering RNA in non-small cell lung cancer. Cancer Res. 65:1479–1488. 2005. View Article : Google Scholar : PubMed/NCBI

19 

Deying W, Feng G, Shumei L, Hui Z, Ming L and Hongqing W: CAF-derived HGF promotes cell proliferation and drug resistance by up-regulating the c-Met/PI3K/Akt and GRP78 signalling in ovarian cancer cells. Biosci Rep. 37(pii): BSR201604702017. View Article : Google Scholar : PubMed/NCBI

20 

Gohda E, Tsubouchi H, Nakayama H, Hirono S, Sakiyama O, Takahashi K, Miyazaki H, Hashimoto S and Daikuhara Y: Purification and partial characterization of hepatocyte growth factor from plasma of a patient with fulminant hepatic failure. J Clin Invest. 81:414–419. 1988. View Article : Google Scholar : PubMed/NCBI

21 

Konstorum A and Lowengrub JS: Activation of the HGF/c-Met axis in the tumor microenvironment: A multispecies model. J Theor Biol. 439:86–99. 2017. View Article : Google Scholar : PubMed/NCBI

22 

Kucerova L, Demkova L, Skolekova S, Bohovic R and Matuskova M: Tyrosine kinase inhibitor SU11274 increased tumorigenicity and enriched for melanoma-initiating cells by bioenergetic modulation. BMC Cancer. 16:3082016. View Article : Google Scholar : PubMed/NCBI

23 

Zou HY, Li Q, Lee JH, Arango ME, McDonnell SR, Yamazaki S, Koudriakova TB, Alton G, Cui JJ, Kung PP, et al: An orally available small-molecule inhibitor of c-Met, PF-2341066, exhibits cytoreductive antitumor efficacy through antiproliferative and antiangiogenic mechanisms. Cancer Res. 67:4408–4417. 2007. View Article : Google Scholar : PubMed/NCBI

24 

Cascone T, Xu L, Lin HY, Liu W, Tran HT, Liu Y, Howells K, Haddad V, Hanrahan E, Nilsson MB, et al: The HGF/c-Met pathway is a driver and biomarker of VEGFR-inhibitor resistance and vascular remodeling in non-small cell lung cancer. Clin Cancer Res. 23:5489–5501. 2017. View Article : Google Scholar : PubMed/NCBI

25 

Tarhini AA, Rafique I, Floros T, Tran P, Gooding WE, Villaruz LC, Burns TF, Friedland DM, Petro DP, Farooqui M, et al: PPhase 1/2 study of rilotumumab (AMG 102), a hepatocyte growth factor inhibitor, and erlotinib in patients with advanced non-small cell lung cancer. Cancer. 123:2936–2944. 2017. View Article : Google Scholar : PubMed/NCBI

26 

Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, Lindeman N, Gale CM, Zhao X, Christensen J, et al: MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science. 316:1039–1043. 2007. View Article : Google Scholar : PubMed/NCBI

27 

Bignold LP, Ferrante A and Haynes DR: Studies of chemotactic, chemotactic movement-inhibiting and random movement-inhibiting effects of interleukin-1 alpha and beta, tumour necrosis factor alpha and beta and interferon gamma on human neutrophils in assays using ‘sparse-pore’ polycarbonate (Nuclepore) membranes in the Boyden chamber. Int Arch Allergy Appl Immunol. 91:1–7. 1990. View Article : Google Scholar : PubMed/NCBI

28 

Yamaoka T, Ohmori T, Ohba M, Arata S, Murata Y, Kusumoto S, Ando K, Ishida H, Ohnishi T and Sasaki Y: Distinct afatinib resistance mechanisms identified in lung adenocarcinoma harboring an EGFR mutation. Mol Cancer Res. 15:915–928. 2017. View Article : Google Scholar : PubMed/NCBI

29 

Zhao J, Fang L, Zhang X, Liang Y and Gou S: Synthesis and biological evaluation of new [1,2,4]triazolo[4,3-a]pyridine derivatives as potential c-Met inhibitors. Bioorg Med Chem. 24:3483–3493. 2016. View Article : Google Scholar : PubMed/NCBI

30 

Li D, Yang H, Li R, Wang Y, Wang W, Li D, Ma S and Zhang X: Antitumor activity of gambogic acid on NCI-H1993 xenografts via MET signaling pathway downregulation. Oncol Lett. 10:2802–2806. 2015. View Article : Google Scholar : PubMed/NCBI

31 

Zhao L, Zhu Z, Yao C, Huang Y, Zhi E, Chen H, Tian R, Li P, Yuan Q, Xue Y, et al: VEGFC/VEGFR3 signaling regulates mouse spermatogonial cell proliferation via the activation of AKT/MAPK and cyclin D1 pathway and mediates the apoptosis by affecting caspase 3/9 and Bcl-2. Cell Cycle. 1–50. 2017. View Article : Google Scholar : PubMed/NCBI

32 

Katayama R: Therapeutic strategies and mechanisms of drug resistance in anaplastic lymphoma kinase (ALK)-rearranged lung cancer. Pharmacol Ther. 177:1–8. 2017. View Article : Google Scholar : PubMed/NCBI

33 

Zhu YJ, Zheng B, Wang HY and Chen L: New knowledge of the mechanisms of sorafenib resistance in liver cancer. Acta Pharmacol Sin. 38:614–622. 2017. View Article : Google Scholar : PubMed/NCBI

34 

Murray M, Gillani TB, Ghassabian S, Edwards RJ and Rawling T: Differential effects of hepatic cirrhosis on the intrinsic clearances of sorafenib and imatinib by CYPs in human liver. Eur J Pharm Sci. 114:55–63. 2017. View Article : Google Scholar : PubMed/NCBI

35 

Bahrami A, Hassanian SM, ShahidSales S, Farjami Z, Hasanzadeh M, Anvari K, Aledavood A, Maftouh M, Ferns GA, Khazaei M and Avan A: Targeting RAS signaling pathway as a potential therapeutic target in the treatment of colorectal cancer. J Cell Physiol. 233:2058–2066. 2018. View Article : Google Scholar : PubMed/NCBI

36 

Liu H, Zhang Q, Li K, Gong Z, Liu Z, Xu Y, Swaney MH, Xiao K and Chen Y: Prognostic significance of USP33 in advanced colorectal cancer patients: New insights into β-arrestin-dependent ERK signaling. Oncotarget. 7:81223–4020. 2016. View Article : Google Scholar : PubMed/NCBI

37 

Li XL, Chen XQ, Zhang MN, Chen N, Nie L, Xu M, Gong J, Shen PF, Su ZZ, Weng X, et al: SOX9 was involved in TKIs resistance in renal cell carcinoma via Raf/MEK/ERK signaling pathway. Int J Clin Exp Pathol. 8:3871–3881. 2015.PubMed/NCBI

38 

Ranieri G, Gadaleta-Caldarola G, Goffredo V, Patruno R, Mangia A, Rizzo A, Sciorsci RL and Gadaleta CD: Sorafenib (BAY 43–9006) in hepatocellular carcinoma patients: From discovery to clinical development. Curr Med Chem. 19:938–944. 2012. View Article : Google Scholar : PubMed/NCBI

39 

Sharma SV, Bell DW, Settleman J and Haber DA: Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer. 7:169–181. 2007. View Article : Google Scholar : PubMed/NCBI

40 

Bonanno L, Jirillo A and Favaretto A: Mechanisms of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors and new therapeutic perspectives in non small cell lung cancer. Curr Drug Targets. 12:922–933. 2011. View Article : Google Scholar : PubMed/NCBI

41 

Polverino A, Coxon A, Starnes C, Diaz Z, DeMelfi T, Wang L, Bready J, Estrada J, Cattley R, Kaufman S, et al: AMG 706, an oral, multikinase inhibitor that selectively targets vascular endothelial growth factor, platelet-derived growth factor, and kit receptors, potently inhibits angiogenesis and induces regression in tumor xenografts. Cancer Res. 66:8715–8721. 2006. View Article : Google Scholar : PubMed/NCBI

42 

Stabile LP, Rothstein ME, Keohavong P, Lenzner D, Land SR, Gaither-Davis AL, Kim KJ, Kaminski N and Siegfried JM: Targeting of both the c-Met and EGFR pathways results in additive inhibition of lung tumorigenesis in transgenic mice. Cancers (Basel). 2:2153–2170. 2010. View Article : Google Scholar : PubMed/NCBI

43 

Wu YL, Soo RA, Locatelli G, Stammberger U, Scagliotti G and Park K: Does c-Met remain a rational target for therapy in patients with EGFR TKI-resistant non-small cell lung cancer? Cancer Treat Rev. 61:70–81. 2017. View Article : Google Scholar : PubMed/NCBI

44 

Martinez-Marti A, Felip E, Matito J, Mereu E, Navarro A, Cedrés S, Pardo N, Martinez de Castro A, Remon J, Miquel JM, et al: Dual MET and ERBB inhibition overcomes intratumor plasticity in osimertinib-resistant-advanced non-small-cell lung cancer (NSCLC). Ann Oncol. 28:2451–2457. 2017. View Article : Google Scholar : PubMed/NCBI

45 

Chen JC, Chuang HY, Hsu FT, Chen YC, Chien YC and Hwang JJ: SSorafenib pretreatment enhances radiotherapy through targeting MEK/ERK/NF-κB pathway in human hepatocellular carcinoma-bearing mouse model. Oncotarget. 7:85450–85463. 2016. View Article : Google Scholar : PubMed/NCBI

46 

Pisanu ME, Noto A, De Vitis C, Morrone S, Scognamiglio G, Botti G, Venuta F, Diso D, Jakopin Z, Padula F, et al: Blockade of Stearoyl-CoA-desaturase 1 activity reverts resistance to cisplatin in lung cancer stem cells. Cancer Lett. 406:93–104. 2017. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

April 2018
Volume 15 Issue 4

Print ISSN: 1792-1074
Online ISSN:1792-1082

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Fu, L., Guo, L., Zheng, Y., Zhu, Z., Zhang, M., Zhao, X., & Cui, H. (2018). Synergistic antitumor activity of low-dose c-Met tyrosine kinase inhibitor and sorafenib on human non-small cell lung cancer cells. Oncology Letters, 15, 5081-5086. https://doi.org/10.3892/ol.2018.7933
MLA
Fu, L., Guo, L., Zheng, Y., Zhu, Z., Zhang, M., Zhao, X., Cui, H."Synergistic antitumor activity of low-dose c-Met tyrosine kinase inhibitor and sorafenib on human non-small cell lung cancer cells". Oncology Letters 15.4 (2018): 5081-5086.
Chicago
Fu, L., Guo, L., Zheng, Y., Zhu, Z., Zhang, M., Zhao, X., Cui, H."Synergistic antitumor activity of low-dose c-Met tyrosine kinase inhibitor and sorafenib on human non-small cell lung cancer cells". Oncology Letters 15, no. 4 (2018): 5081-5086. https://doi.org/10.3892/ol.2018.7933