Open Access

Upregulation of GNL3 expression promotes colon cancer cell proliferation, migration, invasion and epithelial-mesenchymal transition via the Wnt/β-catenin signaling pathway

  • Authors:
    • Xi Tang
    • Lang Zha
    • Hui Li
    • Gang Liao
    • Zhen Huang
    • Xudong Peng
    • Ziwei Wang
  • View Affiliations

  • Published online on: August 25, 2017     https://doi.org/10.3892/or.2017.5923
  • Pages: 2023-2032
  • Copyright: © Tang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

G protein nucleolar 3 (GNL3), a nucleolar GTP-binding protein, is highly expressed in progenitor cells, stem cells, and various types of cancer cells. Therefore, it is considered to have an important role in cancer pathogenesis. GNL3 has been reported to play crucial roles in cell proliferation, cell cycle regulation, inhibition of differentiation, ribosome biogenesis, and the maintenance of stemness, genome stability and telomere integrity. Furthermore, GNL3 has recently been shown to be involved in cancer invasion and metastasis. However, the biological significance of GNL3 in the invasion and metastasis of colon cancer remains unclear. This study was performed to address this gap in knowledge. GNL3 expression was upregulated in colon cancer tissue specimens and correlated with tumor differentiation, invasion and metastasis. GNL3 overexpression promoted cell proliferation, invasion, migration and the epithelial-mesenchymal transition (EMT) in colon cancer cells. Moreover, inhibition of the EMT and the Wnt/β‑catenin signaling pathway induced by GNL3 knockdown was partially reversed by lithium chloride (LiCl). Based on these data, GNL3 promotes the EMT in colon cancer by activating the Wnt/β‑catenin signaling pathway. In summary, GNL3 is upregulated in colon cancer and plays an important role in tumor growth, invasion and metastasis. Strategies targeting GNL3 are potential treatments for colon cancer.

References

1 

Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI

2 

Nieto MA: Epithelial-mesenchymal transitions in development and disease: Old views and new perspectives. Int J Dev Biol. 53:1541–1547. 2009. View Article : Google Scholar : PubMed/NCBI

3 

Yang Y, Liu Q, Zhang H, Zhao H, Mao R, Li Z, Ya S, Jia C and Bao Y: Silencing of GP73 inhibits invasion and metastasis via suppression of epithelial-mesenchymal transition in hepatocellular carcinoma. Oncol Rep. 37:1182–1188. 2017. View Article : Google Scholar : PubMed/NCBI

4 

Thiery JP: Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2:442–454. 2002. View Article : Google Scholar : PubMed/NCBI

5 

Thiery JP and Sleeman JP: Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol. 7:131–142. 2006. View Article : Google Scholar : PubMed/NCBI

6 

Yang J and Weinberg RA: Epithelial-mesenchymal transition: At the crossroads of development and tumor metastasis. Dev Cell. 14:818–829. 2008. View Article : Google Scholar : PubMed/NCBI

7 

Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, et al: The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 133:704–715. 2008. View Article : Google Scholar : PubMed/NCBI

8 

Lamouille S, Xu J and Derynck R: Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 15:178–196. 2014. View Article : Google Scholar : PubMed/NCBI

9 

Chaudhury A, Hussey GS, Ray PS, Jin G, Fox PL and Howe PH: TGF-beta-mediated phosphorylation of hnRNP E1 induces EMT via transcript-selective translational induction of Dab2 and ILEI. Nat Cell Biol. 12:286–293. 2010.PubMed/NCBI

10 

Timmerman LA, Grego-Bessa J, Raya A, Bertrán E, Pérez-Pomares JM, Díez J, Aranda S, Palomo S, McCormick F, Izpisúa-Belmonte JC, et al: Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation. Genes Dev. 18:99–115. 2004. View Article : Google Scholar : PubMed/NCBI

11 

Huber MA, Azoitei N, Baumann B, Grünert S, Sommer A, Pehamberger H, Kraut N, Beug H and Wirth T: NF-kappaB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression. J Clin Invest. 114:569–581. 2004. View Article : Google Scholar : PubMed/NCBI

12 

Leung CO, Mak WN, Kai AK, Chan KS, Lee TK, Ng IO and Lo RC: Sox9 confers stemness properties in hepatocellular carcinoma through Frizzled-7 mediated Wnt/β-catenin signaling. Oncotarget. 7:29371–29386. 2016. View Article : Google Scholar : PubMed/NCBI

13 

Yuan X, Sun X, Shi X, Wang H, Wu G, Jiang C, Yu D, Zhang W, Xue B and Ding Y: USP39 promotes colorectal cancer growth and metastasis through the Wnt/β-catenin pathway. Oncol Rep. 37:2398–2404. 2017. View Article : Google Scholar : PubMed/NCBI

14 

Mao Y, Xu J, Li Z, Zhang N, Yin H and Liu Z: The role of nuclear β-catenin accumulation in the Twist2-induced ovarian cancer EMT. PLoS One. 8:e782002013. View Article : Google Scholar : PubMed/NCBI

15 

Azzolin L, Panciera T, Soligo S, Enzo E, Bicciato S, Dupont S, Bresolin S, Frasson C, Basso G, Guzzardo V, et al: YAP/TAZ incorporation in the β-catenin destruction complex orchestrates the Wnt response. Cell. 158:157–170. 2014. View Article : Google Scholar : PubMed/NCBI

16 

Stambolic V, Ruel L and Woodgett JR: Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells. Curr Biol. 6:1664–1668. 1996. View Article : Google Scholar : PubMed/NCBI

17 

Tsai RY and McKay RD: A nucleolar mechanism controlling cell proliferation in stem cells and cancer cells. Genes Dev. 16:2991–3003. 2002. View Article : Google Scholar : PubMed/NCBI

18 

Tsai RY: Turning a new page on nucleostemin and self-renewal. J Cell Sci. 127:3885–3891. 2014. View Article : Google Scholar : PubMed/NCBI

19 

Liu SJ, Cai ZW, Liu YJ, Dong MY, Sun LQ, Hu GF, Wei YY and Lao WD: Role of nucleostemin in growth regulation of gastric cancer, liver cancer and other malignancies. World J Gastroenterol. 10:1246–1249. 2004.PubMed/NCBI

20 

Zia-Jahromi N, Hejazi SH, Panjepour M, Parivar K and Gharagozloo M: Comparison of nucleostemin gene expression in CD133+ and CD133 cell population in colon cancer cell line HT29. J Cancer Res Ther. 10:68–72. 2014. View Article : Google Scholar : PubMed/NCBI

21 

Meng L, Lin T, Peng G, Hsu JK, Lee S, Lin SY and Tsai RY: Nucleostemin deletion reveals an essential mechanism that maintains the genomic stability of stem and progenitor cells. Proc Natl Acad Sci USA. 110:11415–11420. 2013. View Article : Google Scholar : PubMed/NCBI

22 

Okamoto N, Yasukawa M, Nguyen C, Kasim V, Maida Y, Possemato R, Shibata T, Ligon KL, Fukami K, Hahn WC, et al: Maintenance of tumor initiating cells of defined genetic composition by nucleostemin. Proc Natl Acad Sci USA. 108:20388–20393. 2011. View Article : Google Scholar : PubMed/NCBI

23 

Lin T, Ibrahim W, Peng CY, Finegold MJ and Tsai RY: A novel role of nucleostemin in maintaining the genome integrity of dividing hepatocytes during mouse liver development and regeneration. Hepatology. 58:2176–2187. 2013. View Article : Google Scholar : PubMed/NCBI

24 

Meng L, Lin T and Tsai RY: Nucleoplasmic mobilization of nucleostemin stabilizes MDM2 and promotes G2-M progression and cell survival. J Cell Sci. 121:4037–4046. 2008. View Article : Google Scholar : PubMed/NCBI

25 

Tsai RY and McKay RD: A multistep, GTP-driven mechanism controlling the dynamic cycling of nucleostemin. J Cell Biol. 168:179–184. 2005. View Article : Google Scholar : PubMed/NCBI

26 

Yamashita M, Nitta E, Nagamatsu G, Ikushima YM, Hosokawa K, Arai F and Suda T: Nucleostemin is indispensable for the maintenance and genetic stability of hematopoietic stem cells. Biochem Biophys Res Commun. 441:196–201. 2013. View Article : Google Scholar : PubMed/NCBI

27 

Zhu Q, Yasumoto H and Tsai RY: Nucleostemin delays cellular senescence and negatively regulates TRF1 protein stability. Mol Cell Biol. 26:9279–9290. 2006. View Article : Google Scholar : PubMed/NCBI

28 

Zhang G, Zhang Q, Zhang Q, Yin L, Li S, Cheng K, Zhang Y, Xu H and Wu W: Expression of nucleostemin, epidermal growth factor and epidermal growth factor receptor in human esophageal squamous cell carcinoma tissues. J Cancer Res Clin Oncol. 136:587–594. 2010. View Article : Google Scholar : PubMed/NCBI

29 

Hu B, Hua L, Ni W, Wu M, Yan D, Chen Y, Lu C, Chen B and Wan C: Nucleostemin/GNL3 promotes nucleolar polyubiquitylation of p27(kip1) to drive hepatocellular carcinoma progression. Cancer Lett. 388:220–229. 2017. View Article : Google Scholar : PubMed/NCBI

30 

Li W, Wang Z, Zha L, Kong D, Liao G and Li H: HMGA2 regulates epithelial-mesenchymal transition and the acquisition of tumor stem cell properties through TWIST1 in gastric cancer. Oncol Rep. 37:185–192. 2017. View Article : Google Scholar : PubMed/NCBI

31 

Xu MZ, Yao TJ, Lee NPY, Ng IO, Chan YT, Zender L, Lowe SW, Poon RT and Luk JM: Yes-associated protein is an independent prognostic marker in hepatocellular carcinoma. Cancer. 115:4576–4585. 2009. View Article : Google Scholar : PubMed/NCBI

32 

Zha L, Zhang J, Tang W, Zhang N, He M, Guo Y and Wang Z: HMGA2 elicits EMT by activating the Wnt/β-catenin pathway in gastric cancer. Dig Dis Sci. 58:724–733. 2013. View Article : Google Scholar : PubMed/NCBI

33 

Thiery JP, Acloque H, Huang RY and Nieto MA: Epithelial-mesenchymal transitions in development and disease. Cell. 139:871–890. 2009. View Article : Google Scholar : PubMed/NCBI

34 

Lee M, Williams KA, Hu Y, Andreas J, Patel SJ, Zhang S and Crawford NP: GNL3 and SKA3 are novel prostate cancer metastasis susceptibility genes. Clin Exp Metastasis. 32:769–782. 2015. View Article : Google Scholar : PubMed/NCBI

35 

Xie Y and Wang B: Downregulation of TNFAIP2 suppresses proliferation and metastasis in esophageal squamous cell carcinoma through activation of the Wnt/β-catenin signaling pathway. Oncol Rep. 37:2920–2928. 2017. View Article : Google Scholar : PubMed/NCBI

36 

Bao Z, Wang Y, Yang L, Wang L, Zhu L, Ban N, Fan S, Chen W, Sun J, Shen C, et al: Nucleostemin promotes the proliferation of human glioma via Wnt/beta-Catenin pathway. Neuropathology. 36:237–249. 2016. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

October 2017
Volume 38 Issue 4

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Tang, X., Zha, L., Li, H., Liao, G., Huang, Z., Peng, X., & Wang, Z. (2017). Upregulation of GNL3 expression promotes colon cancer cell proliferation, migration, invasion and epithelial-mesenchymal transition via the Wnt/β-catenin signaling pathway. Oncology Reports, 38, 2023-2032. https://doi.org/10.3892/or.2017.5923
MLA
Tang, X., Zha, L., Li, H., Liao, G., Huang, Z., Peng, X., Wang, Z."Upregulation of GNL3 expression promotes colon cancer cell proliferation, migration, invasion and epithelial-mesenchymal transition via the Wnt/β-catenin signaling pathway". Oncology Reports 38.4 (2017): 2023-2032.
Chicago
Tang, X., Zha, L., Li, H., Liao, G., Huang, Z., Peng, X., Wang, Z."Upregulation of GNL3 expression promotes colon cancer cell proliferation, migration, invasion and epithelial-mesenchymal transition via the Wnt/β-catenin signaling pathway". Oncology Reports 38, no. 4 (2017): 2023-2032. https://doi.org/10.3892/or.2017.5923