Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Biomedical Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 2049-9434 Online ISSN: 2049-9442
Journal Cover
August-2021 Volume 15 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August-2021 Volume 15 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Adipose‑PAS interactions in the context of its localised bio‑engineering potential (Review)

  • Authors:
    • Michal Nohawica
    • Abdelmounaim Errachid
    • Marzena Wyganowska‑Swiatkowska
  • View Affiliations / Copyright

    Affiliations: Chair and Department of Dental Surgery and Periodontology, Poznan University of Medicinal Sciences, Poznan, Greater Poland 60‑812, Poland
    Copyright: © Nohawica et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 70
    |
    Published online on: July 5, 2021
       https://doi.org/10.3892/br.2021.1446
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Adipocytes are a known source of stem cells. They are easy to harvest, and are a suitable candidate for autogenous grafts. Adipose derived stem cells (ADSCs) have multiple target tissues which they can differentiate into, including bone and cartilage. In adipose tissue, ADSCs are able to differentiate, as well as providing energy and a supply of cytokines/hormones to manage the hypoxic and lipid/hormone saturated adipose environment. The plasminogen activation system (PAS) controls the majority of proteolytic activities in both adipose and wound healing environments, allowing for rapid cellular migration and tissue remodelling. While the primary activation pathway for PAS occurs through the urokinase plasminogen activator (uPA), which is highly expressed by endothelial cells, its function is not limited to enabling revascularisation. Proteolytic activity is dependent on protease activation, localisation, recycling mechanisms and substrate availability. uPA and uPA activated plasminogen allows pluripotent cells to arrive to new local environments and fulfil the niche demands. However, overstimulation, the acquisition of a migratory phenotype and constant protein turnover can be unconducive to the formation of structured hard and soft tissues. To maintain a suitable healing pattern, the proteolytic activity stimulated by uPA is modulated by plasminogen activator inhibitor 1. Depending on the physiological settings, different parts of the remodelling mechanism are activated with varying results. Utilising the differences within each microenvironment to recreate a desired niche is a valid therapeutic bio‑engineering approach. By controlling the rate of protein turnover combined with a receptive stem cell lineage, such as ADSC, a novel avenue on the therapeutic opportunities may be identified, which can overcome limitations, such as scarcity of stem cells, low angiogenic potential or poor host tissue adaptation.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

View References

1 

Muneoka K and Dawson LA: Evolution of epimorphosis in mammals. J Exp Zool B Mol Dev Evol. 336:165–179. 2021.PubMed/NCBI View Article : Google Scholar

2 

Cai S, Fu X and Sheng Z: Dedifferentiation: A new approach in stem cell research. Bioscience. 57:655–662. 2007.PubMed/NCBI View Article : Google Scholar

3 

Wang C, Liu W, Shen Y, Chen J, Zhu H, Yang X, Jiang X, Wang Y and Zhou J: Cardiomyocyte dedifferentiation and remodeling in 3D scaffolds to generate the cellular diversity of engineering cardiac tissues. Biomater Sci. 7:4636–4650. 2019.PubMed/NCBI View Article : Google Scholar

4 

Becker RO: Induced dedifferentiation: A possible alternative to embryonic stem cell transplants. NeuroRehabilitation. 17:23–31. 2002.PubMed/NCBI

5 

Yao Y and Wang C: Dedifferentiation: Inspiration for devising engineering strategies for regenerative medicine. NPJ Regen Med. 5(14)2020.PubMed/NCBI View Article : Google Scholar

6 

Sugawara A and Sato S: Application of dedifferentiated fat cells for periodontal tissue regeneration. Hum Cell. 27:12–21. 2014.PubMed/NCBI View Article : Google Scholar

7 

Biehl JK and Russell B: Introduction to stem cell therapy. J Cardiovasc Nurs. 24:98–105. 2009.PubMed/NCBI View Article : Google Scholar

8 

Jiang M, He B, Zhang Q, Ge H, Zang MH, Han ZH, Liu JP, Li JH, Zhang Q, Li HB, et al: Randomized controlled trials on the therapeutic effects of adult progenitor cells for myocardial infarction: Meta-analysis. Expert Opin Biol Ther. 10:667–680. 2010.PubMed/NCBI View Article : Google Scholar

9 

Sobhani A, Khanlarkhani N, Baazm M, Mohammadzadeh F, Najafi A, Mehdinejadiani S and Sargolzaei Aval F: Multipotent stem cell and current application. Acta Med Iran. 55:6–23. 2017.PubMed/NCBI

10 

Feyen DAM, Gaetani R, Doevendans PA and Sluijter JPG: Stem cell-based therapy: Improving myocardial cell delivery. Adv Drug Deliv Rev. 106:104–115. 2016.PubMed/NCBI View Article : Google Scholar

11 

Sanchez-Gurmaches J and Guertin DA: Adipocyte lineages: Tracing back the origins of fat. Biochim Biophys Acta. 1842:340–351. 2014.PubMed/NCBI View Article : Google Scholar

12 

Sebo ZL, Jeffery E, Holtrup B and Rodeheffer MS: A mesodermal fate map for adipose tissue. Development. 145(dev166801)2018.PubMed/NCBI View Article : Google Scholar

13 

Chamberlain G, Fox J, Ashton B and Middleton J: Concise review: Mesenchymal stem cells: Their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells. 25:2739–2749. 2007.PubMed/NCBI View Article : Google Scholar

14 

Hepler C, Shan B, Zhang Q, Henry GH, Shao M, Vishvanath L, Ghaben AL, Mobley AB, Strand D, Hon GC and Gupta RK: Identification of functionally distinct fibro-inflammatory and adipogenic stromal subpopulations in visceral adipose tissue of adult mice. Elife. 7(e39636)2018.PubMed/NCBI View Article : Google Scholar

15 

Lynes MD and Tseng YH: Deciphering adipose tissue heterogeneity. Ann N Y Acad Sci. 1411:5–20. 2018.PubMed/NCBI View Article : Google Scholar

16 

Ronconi V, Turchi F, Bujalska IJ, Giacchetti G and Boscaro M: Adipose cell-adrenal interactions: Current knowledge and future perspectives. Trends Endocrinol Metab. 19:100–103. 2008.PubMed/NCBI View Article : Google Scholar

17 

Mullur R, Liu YY and Brent GA: Thyroid hormone regulation of metabolism. Physiol Rev. 94:355–382. 2014.PubMed/NCBI View Article : Google Scholar

18 

Rippa AL, Kalabusheva EP and Vorotelyak EA: Regeneration of dermis: Scarring and cells involved. Cells. 8(607)2019.PubMed/NCBI View Article : Google Scholar

19 

Grant RW and Dixit VD: Adipose tissue as an immunological organ. Obesity (Silver Spring). 23:512–518. 2015.PubMed/NCBI View Article : Google Scholar

20 

Kassem M: Mesenchymal stem cells: Biological characteristics and potential clinical applications. Cloning Stem Cells. 6:369–374. 2004.PubMed/NCBI View Article : Google Scholar

21 

Vojtaššák J, Danišovič Ľ, Kubeš M, Bakoš D, Jarabek L, Uličná M and Blaško M: Autologous biograft and mesenchymal stem cells in treatment of the diabetic foot. Neuroendocrinol Lett. 27 (Suppl 2):S134–S137. 2006.PubMed/NCBI

22 

Smith RKW: Mesenchymal stem cell therapy for equine tendinopathy. Disabil Rehabil. 30:1752–1758. 2008.PubMed/NCBI View Article : Google Scholar

23 

Zhou W, Han C, Song Y, Yan X, Li D, Chai Z, Feng Z, Dong Y, Li L, Xie X, et al: The performance of bone marrow mesenchymal stem cell-implant complexes prepared by cell sheet engineering techniques. Biomaterials. 31:3212–3221. 2010.PubMed/NCBI View Article : Google Scholar

24 

Pountos I, Jones E, Tzioupis C, McGonagle D and Giannoudis PV: Growing bone and cartilage. The role of mesenchymal stem cells. J Bone Joint Surg Br. 88:421–426. 2006.PubMed/NCBI View Article : Google Scholar

25 

Holmes B, Fang X, Zarate A, Keidar M and Zhang LG: Enhanced human bone marrow mesenchymal stem cell chondrogenic differentiation in electrospun constructs with carbon nanomaterials. Carbon. 97:1–13. 2016.

26 

Gianakos AL, Sun L, Patel JN, Adams DM and Liporace FA: Clinical application of concentrated bone marrow aspirate in orthopaedics: A systematic review. World J Orthop. 8:491–506. 2017.PubMed/NCBI View Article : Google Scholar

27 

Sakamoto T, Miyazaki T, Watanabe S, Takahashi A, Honjoh K, Nakajima H, Oki H, Kokubo Y and Matsumine A: Intraarticular injection of processed lipoaspirate cells has anti-inflammatory and analgesic effects but does not improve degenerative changes in murine monoiodoacetate-induced osteoarthritis. BMC Musculoskelet Disord. 20(335)2019.PubMed/NCBI View Article : Google Scholar

28 

Roubelakis MG, Pappa KI, Bitsika V, Zagoura D, Vlahou A, Papadaki HA, Antsaklis A and Anagnou NP: Molecular and proteomic characterization of human mesenchymal stem cells derived from amniotic fluid: Comparison to bone marrow mesenchymal stem cells. Stem Cells Dev. 16:931–952. 2007.PubMed/NCBI View Article : Google Scholar

29 

Bieback K, Kern S, Kocaömer A, Ferlik K and Bugert P: Comparing mesenchymal stromal cells from different human tissues: Bone marrow, adipose tissue and umbilical cord blood. Biomed Mater Eng. 18 (1 Suppl):S71–S76. 2008.PubMed/NCBI

30 

Francis MP, Sachs PC, Elmore LW and Holt SE: Isolating adipose-derived mesenchymal stem cells from lipoaspirate blood and saline fraction. Organogenesis. 6:11–14. 2010.PubMed/NCBI View Article : Google Scholar

31 

Wouters G, Grossi S, Mesoraca A, Bizzoco D, Mobili L, Cignini P and Giorlandino C: Isolation of amniotic fluid-derived mesenchymal stem cells. J Prenat Med. 1:39–40. 2007.PubMed/NCBI

32 

Li C, Kilpatrick CD, Smith S, Glettig DL, Glod DJ, Mallette J, Strunk MR, Chang J, Angle SR and Kaplan DL: Assessment of multipotent mesenchymal stromal cells in bone marrow aspirate from human calcaneus. J Foot Ankle Surg. 56:42–46. 2017.PubMed/NCBI View Article : Google Scholar

33 

Matsumoto T, Kano K, Kondo D, Fukuda N, Iribe Y, Tanaka N, Matsubara Y, Sakuma T, Satomi A, Otaki M, et al: Mature adipocyte-derived dedifferentiated fat cells exhibit multilineage potential. J Cell Physiol. 215:210–222. 2008.PubMed/NCBI View Article : Google Scholar

34 

Turner NJ, Jones HS, Davies JE and Canfield AE: Cyclic stretch-induced TGFbeta1/Smad signaling inhibits adipogenesis in umbilical cord progenitor cells. Biochem Biophys Res Commun. 377:1147–1151. 2008.PubMed/NCBI View Article : Google Scholar

35 

Gustafson B and Smith U: Activation of canonical wingless-type MMTV integration site family (Wnt) signaling in mature adipocytes increases beta-catenin levels and leads to cell dedifferentiation and insulin resistance. J Biol Chem. 285:14031–14041. 2010.PubMed/NCBI View Article : Google Scholar

36 

Strioga M, Viswanathan S, Darinskas A, Slaby O and Michalek J: Same or not the same? Comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells. Stem Cells Dev. 21:2724–2752. 2012.PubMed/NCBI View Article : Google Scholar

37 

Liao Y, Zeng Z, Lu F, Dong Z, Chang Q and Gao J: In vivo dedifferentiation of adult adipose cells. PLoS One. 10(e0125254)2015.PubMed/NCBI View Article : Google Scholar

38 

Tzameli I, Fang H, Ollero M, Shi H, Hamm JK, Kievit P, Hollenberg AN and Flier JS: Regulated production of a peroxisome proliferator-activated receptor-gamma ligand during an early phase of adipocyte differentiation in 3T3-L1 adipocytes. J Biol Chem. 279:36093–36102. 2004.PubMed/NCBI View Article : Google Scholar

39 

Zhuang H, Zhang X, Zhu C, Tang X, Yu F, Shang GW and Cai X: Molecular mechanisms of PPAR-γ governing MSC osteogenic and adipogenic differentiation. Curr Stem Cell Res Ther. 11:255–264. 2016.PubMed/NCBI View Article : Google Scholar

40 

Wieser F, Waite L, Depoix C and Taylor RN: PPAR action in human placental development and pregnancy and its complications. PPAR Res. 2008(527048)2008.PubMed/NCBI View Article : Google Scholar

41 

Yessoufou A and Wahli W: Multifaceted roles of peroxisome proliferator-activated receptors (PPARs) at the cellular and whole organism levels. Swiss Med Wkly. 140(w13071)2010.PubMed/NCBI View Article : Google Scholar

42 

Takada I, Kouzmenko AP and Kato S: Wnt and PPARgamma signaling in osteoblastogenesis and adipogenesis. Nat Rev Rheumatol. 5:442–447. 2009.PubMed/NCBI View Article : Google Scholar

43 

Otto TC and Lane MD: Adipose development: From stem cell to adipocyte. Crit Rev Biochem Mol Biol. 40:229–242. 2005.PubMed/NCBI View Article : Google Scholar

44 

Chen L, Song J, Cui J, Hou J, Zheng X, Li C and Liu L: microRNAs regulate adipocyte differentiation. Cell Biol Int. 37:533–546. 2013.PubMed/NCBI View Article : Google Scholar

45 

McBeath R, Pirone DM, Nelson CM, Bhadriraju K and Chen CS: Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell. 6:483–495. 2004.PubMed/NCBI View Article : Google Scholar

46 

Clabaut A, Delplace S, Chauveau C, Hardouin P and Broux O: Human osteoblasts derived from mesenchymal stem cells express adipogenic markers upon coculture with bone marrow adipocytes. Differentiation. 80:40–45. 2010.PubMed/NCBI View Article : Google Scholar

47 

Wang QA, Song A, Chen W, Schwalie PC, Zhang F, Vishvanath L, Jiang L, Ye R, Shao M, Tao C, et al: Reversible De-differentiation of mature white adipocytes into preadipocyte-like precursors during lactation. Cell Metab. 28:282–288.e3. 2018.PubMed/NCBI View Article : Google Scholar

48 

Kruglikov IL, Zhang Z and Scherer PE: The role of immature and mature adipocytes in hair cycling. Trends Endocrinol Metab. 30:93–105. 2019.PubMed/NCBI View Article : Google Scholar

49 

Maurizi G, Della Guardia L, Maurizi A and Poloni A: Adipocytes properties and crosstalk with immune system in obesity-related inflammation. J Cell Physiol. 233:88–97. 2018.PubMed/NCBI View Article : Google Scholar

50 

Marangoni RG, Korman BD, Wei J, Wood TA, Graham LV, Whitfield ML, Scherer PE, Tourtellotte WG and Varga J: Myofibroblasts in murine cutaneous fibrosis originate from adiponectin-positive intradermal progenitors. Arthritis Rheumatol. 67:1062–1073. 2015.PubMed/NCBI View Article : Google Scholar

51 

Motrescu ER and Rio MC: Cancer cells, adipocytes and matrix metalloproteinase 11: A vicious tumor progression cycle. Biol Chem. 389:1037–1041. 2008.PubMed/NCBI View Article : Google Scholar

52 

Plikus MV, Guerrero-Juarez CF, Ito M, Li YR, Dedhia PH, Zheng Y, Shao M, Gay DL, Ramos R, His TC, et al: Regeneration of fat cells from myofibroblasts during wound healing. Science. 355:748–752. 2017.PubMed/NCBI View Article : Google Scholar

53 

Merrick D and Seale P: Skinny fat cells stimulate wound healing. Cell Stem Cell. 26:801–803. 2020.PubMed/NCBI View Article : Google Scholar

54 

Kurebayashi S, Sumitani S, Kasayama S, Jetten AM and Hirose T: TNF-alpha inhibits 3T3-L1 adipocyte differentiation without downregulating the expression of C/EBPbeta and delta. Endocr J. 48:249–253. 2001.PubMed/NCBI View Article : Google Scholar

55 

Sartipy P and Loskutoff DJ: Monocyte chemoattractant protein 1 in obesity and insulin resistance. Proc Natl Acad Sci USA. 100:7265–7270. 2003.PubMed/NCBI View Article : Google Scholar

56 

Ruan H and Lodish HF: Insulin resistance in adipose tissue: Direct and indirect effects of tumor necrosis factor-alpha. Cytokine Growth Factor Rev. 14:447–455. 2003.PubMed/NCBI View Article : Google Scholar

57 

Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa K, Kitazawa R, Kitazawa S, Miyachi H, Maeda S, Egashira K and Kasuga M: MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest. 116:1494–1505. 2006.PubMed/NCBI View Article : Google Scholar

58 

Panee J: Monocyte chemoattractant protein 1 (MCP-1) in obesity and diabetes. Cytokine. 60:1–12. 2012.PubMed/NCBI View Article : Google Scholar

59 

Furlan F, Orlando S, Laudanna C, Resnati M, Basso V, Blasi F and Mondino A: The soluble D2D3(88-274) fragment of the urokinase receptor inhibits monocyte chemotaxis and integrin-dependent cell adhesion. J Cell Sci. 117:2909–2916. 2004.PubMed/NCBI View Article : Google Scholar

60 

Montuori N and Ragno P: Multiple activities of a multifaceted receptor: Roles of cleaved and soluble uPAR. Front Biosci (Landmark Ed). 14:2494–2503. 2009.PubMed/NCBI View Article : Google Scholar

61 

Catalán V, Frühbeck G and Gómez-Ambrosi J: Chapter 8-Inflammatory and oxidative stress markers in skeletal muscle of obese subjects. In: Obesity. del Moral AM and Aguilera García CM (eds). Academic Press, pp163-189, 2018.

62 

Yang D, Wei F, Tewary P, Howard OM and Oppenheim JJ: Alarmin-induced cell migration. Eur J Immunol. 43:1412–1418. 2013.PubMed/NCBI View Article : Google Scholar

63 

Ren P, Sun D, Xin D, Ma W, Chen P, Gao H, Zhang S and Gong M: Serum amyloid A promotes osteosarcoma invasion via upregulating αvβ3 integrin. Mol Med Rep. 10:3106–3112. 2014.PubMed/NCBI View Article : Google Scholar

64 

Bernstein AM, Twining SS, Warejcka DJ, Tall E and Masur SK: Urokinase receptor cleavage: A crucial step in fibroblast-to-myofibroblast differentiation. Mol Biol Cell. 18:2716–2727. 2007.PubMed/NCBI View Article : Google Scholar

65 

Resnati M, Pallavicini I, Wang JM, Oppenheim J, Serhan CN, Romano M and Blasi F: The fibrinolytic receptor for urokinase activates the G protein-coupled chemotactic receptor FPRL1/LXA4R. Proc Natl Acad Sci USA. 99:1359–1364. 2002.PubMed/NCBI View Article : Google Scholar

66 

Liu D, Kou X, Chen C, Liu S, Liu Y, Yu W, Yu T, Yang R, Wang R, Zhou Y and Shi S: Circulating apoptotic bodies maintain mesenchymal stem cell homeostasis and ameliorate osteopenia via transferring multiple cellular factors. Cell Res. 28:918–933. 2018.PubMed/NCBI View Article : Google Scholar

67 

He W, Tan R, Dai C, Li Y, Wang D, Hao S, Kahn M and Liu Y: Plasminogen activator inhibitor-1 is a transcriptional target of the canonical pathway of Wnt/beta-catenin signaling. J Biol Chem. 285:24665–24675. 2010.PubMed/NCBI View Article : Google Scholar

68 

Akimoto T, Ushida T, Miyaki S, Akaogi H, Tsuchiya K, Yan Z, Williams RS and Tateishi T: Mechanical stretch inhibits myoblast-to-adipocyte differentiation through Wnt signaling. Biochem Biophys Res Commun. 329:381–385. 2005.PubMed/NCBI View Article : Google Scholar

69 

Lee H, Kang R, Bae S and Yoon Y: AICAR, an activator of AMPK, inhibits adipogenesis via the WNT/β-catenin pathway in 3T3-L1 adipocytes. Int J Mol Med. 28:65–71. 2011.PubMed/NCBI View Article : Google Scholar

70 

Renner G, Noulet F, Mercier MC, Choulier L, Etienne-Selloum N, Gies JP, Lehmann M, Lelong-Rebel I, Martin S and Dontenwill M: Expression/activation of α5β1 integrin is linked to the β-catenin signaling pathway to drive migration in glioma cells. Oncotarget. 7:62194–62207. 2016.PubMed/NCBI View Article : Google Scholar

71 

Liang X, Kanjanabuch T, Mao SL, Hao CM, Tang YW, Declerck PJ, Hasty AH, Wasserman DH, Fogo AB and Ma LJ: Plasminogen activator inhibitor-1 modulates adipocyte differentiation. Am J Physiol Endocrinol Metab. 290:E103–E113. 2006.PubMed/NCBI View Article : Google Scholar

72 

Swiatkowska M, Szemraj J and Cierniewski CS: Induction of PAI-1 expression by tumor necrosis factor alpha in endothelial cells is mediated by its responsive element located in the 4G/5G site. FEBS J. 272:5821–5831. 2005.PubMed/NCBI View Article : Google Scholar

73 

Kruithof EK: Regulation of plasminogen activator inhibitor type 1 gene expression by inflammatory mediators and statins. Thromb Haemost. 100:969–975. 2008.PubMed/NCBI

74 

Su SC, Lin CW, Yang WE, Fan WL and Yang SF: The urokinase-type plasminogen activator (uPA) system as a biomarker and therapeutic target in human malignancies. Expert Opin Ther Targets. 20:551–566. 2016.PubMed/NCBI View Article : Google Scholar

75 

Prabhakar NR and Semenza GL: Oxygen sensing and homeostasis. Physiology (Bethesda). 30:340–348. 2015.PubMed/NCBI View Article : Google Scholar

76 

Darby IA and Hewitson TD: Hypoxia in tissue repair and fibrosis. Cell Tissue Res. 365:553–562. 2016.PubMed/NCBI View Article : Google Scholar

77 

Fierro FA, O'Neal AJ, Beegle JR, Chávez MN, Peavy TR, Isseroff RR and Egaña JT: Hypoxic pre-conditioning increases the infiltration of endothelial cells into scaffolds for dermal regeneration pre-seeded with mesenchymal stem cells. Front Cell Dev Biol. 3(68)2015.PubMed/NCBI View Article : Google Scholar

78 

Ye J: Adipose tissue vascularization: Its role in chronic inflammation. Curr Diab Rep. 11:203–210. 2011.PubMed/NCBI View Article : Google Scholar

79 

Lund IK, Nielsen BS, Almholt K, Rønø B, Hald A, Illemann M, Green KA, Christensen IJ, Rømer J and Lund LR: Concomitant lack of MMP9 and uPA disturbs physiological tissue remodeling. Dev Biol. 358:56–67. 2011.PubMed/NCBI View Article : Google Scholar

80 

Carriero MV and Stoppelli MP: The urokinase-type plasminogen activator and the generation of inhibitors of urokinase activity and signaling. Curr Pharm Des. 17:1944–1961. 2011.PubMed/NCBI View Article : Google Scholar

81 

Kessenbrock K, Plaks V and Werb Z: Matrix metalloproteinases: Regulators of the tumor microenvironment. Cell. 141:52–67. 2010.PubMed/NCBI View Article : Google Scholar

82 

McCawley LJ and Matrisian LM: Matrix metalloproteinases: Multifunctional contributors to tumor progression. Mol Med Today. 6:149–156. 2000.PubMed/NCBI View Article : Google Scholar

83 

Zhao Y, Lyons CE Jr, Xiao A, Templeton DJ, Sang QA, Brew K and Hussaini IM: Urokinase directly activates matrix metalloproteinases-9: A potential role in glioblastoma invasion. Biochem Biophys Res Commun. 369:1215–1220. 2008.PubMed/NCBI View Article : Google Scholar

84 

Lafont JE: Lack of oxygen in articular cartilage: Consequences for chondrocyte biology. Int J Exp Pathol. 91:99–106. 2010.PubMed/NCBI View Article : Google Scholar

85 

Shen J, Sugawara A, Yamashita J, Ogura H and Sato S: Dedifferentiated fat cells: An alternative source of adult multipotent cells from the adipose tissues. Int J Oral Sci. 3:117–124. 2011.PubMed/NCBI View Article : Google Scholar

86 

Hausman GJ and Richardson RL: Adipose tissue angiogenesis. J Anim Sci. 82:925–934. 2004.PubMed/NCBI View Article : Google Scholar

87 

Lijnen HR: Angiogenesis and obesity. Cardiovasc Res. 78:286–293. 2008.PubMed/NCBI View Article : Google Scholar

88 

Trayhurn P: Hypoxia and adipose tissue function and dysfunction in obesity. Physiol Rev. 93:1–21. 2013.PubMed/NCBI View Article : Google Scholar

89 

Chabot V, Dromard C, Rico A, Langonné A, Gaillard J, Guilloton F, Casteilla L and Sensebé L: Urokinase-type plasminogen activator receptor interaction with β1 integrin is required for platelet-derived growth factor-AB-induced human mesenchymal stem/stromal cell migration. Stem Cell Res Ther. 6(188)2015.PubMed/NCBI View Article : Google Scholar

90 

Crandall DL, Busler DE, McHendry-Rinde B, Groeling TM and Kral JG: Autocrine regulation of human preadipocyte migration by plasminogen activator inhibitor-1. J Clin Endocrinol Metab. 85:2609–2614. 2000.PubMed/NCBI View Article : Google Scholar

91 

Egners A, Erdem M and Cramer T: The response of macrophages and neutrophils to hypoxia in the context of cancer and other inflammatory diseases. Mediators Inflamm. 2016(2053646)2016.PubMed/NCBI View Article : Google Scholar

92 

Salasznyk RM, Zappala M, Zheng M, Yu L, Wilkins-Port C and McKeown-Longo PJ: The uPA receptor and the somatomedin B region of vitronectin direct the localization of uPA to focal adhesions in microvessel endothelial cells. Matrix Biol. 26:359–370. 2007.PubMed/NCBI View Article : Google Scholar

93 

Xue Y, Petrovic N, Cao R, Larsson O, Lim S, Chen S, Feldmann HM, Liang Z, Zhu Z, Nedergaard J, et al: Hypoxia-independent angiogenesis in adipose tissues during cold acclimation. Cell Metab. 9:99–109. 2009.PubMed/NCBI View Article : Google Scholar

94 

Jośko J and Mazurek M: Transcription factors having impact on vascular endothelial growth factor (VEGF) gene expression in angiogenesis. Med Sci Monit. 10:RA89–RA98. 2004.PubMed/NCBI

95 

Weis SM and Cheresh DA: Pathophysiological consequences of VEGF-induced vascular permeability. Nature. 437:497–504. 2005.PubMed/NCBI View Article : Google Scholar

96 

Vandoorne K, Addadi Y and Neeman M: Visualizing vascular permeability and lymphatic drainage using labeled serum albumin. Angiogenesis. 13:75–85. 2010.PubMed/NCBI View Article : Google Scholar

97 

Kobayashi J, Yamada S and Kawasaki H: Distribution of vitronectin in plasma and liver tissue: Relationship to chronic liver disease. Hepatology. 20:1412–1417. 1994.PubMed/NCBI View Article : Google Scholar

98 

Goerges AL and Nugent MA: pH regulates vascular endothelial growth factor binding to fibronectin: A mechanism for control of extracellular matrix storage and release. J Biol Chem. 279:2307–2315. 2004.PubMed/NCBI View Article : Google Scholar

99 

Hapke S, Kessler H, Arroyo de Prada N, Benge A, Schmitt M, Lengyel E and Reuning U: Integrin alpha(v)beta(3)/vitronectin interaction affects expression of the urokinase system in human ovarian cancer cells. J Biol Chem. 276:26340–26348. 2001.PubMed/NCBI View Article : Google Scholar

100 

Chu Y, Bucci JC and Peterson CB: Identification of a PAI-1-binding site within an intrinsically disordered region of vitronectin. Protein Sci. 29:494–508. 2020.PubMed/NCBI View Article : Google Scholar

101 

Arroyo De Prada N, Schroeck F, Sinner EK, Muehlenweg B, Twellmeyer J, Sperl S, Wilhelm OG, Schmitt M and Magdolen V: Interaction of plasminogen activator inhibitor type-1 (PAI-1) with vitronectin. Eur J Biochem. 269:184–192. 2002.PubMed/NCBI View Article : Google Scholar

102 

Wang L, Ly CM, Ko CY, Meyers EE, Lawrence DA and Bernstein AM: uPA binding to PAI-1 induces corneal myofibroblast differentiation on vitronectin. Invest Ophthalmol Vis Sci. 53:4765–4775. 2012.PubMed/NCBI View Article : Google Scholar

103 

Czekay RP, Aertgeerts K, Curriden SA and Loskutoff DJ: Plasminogen activator inhibitor-1 detaches cells from extracellular matrices by inactivating integrins. J Cell Biol. 160:781–791. 2003.PubMed/NCBI View Article : Google Scholar

104 

Mousa SA: Vitronectin receptors in vascular disorders. Curr Opin Investig Drugs. 3:1191–1195. 2002.PubMed/NCBI

105 

Seiffert D, Iruela-Arispe ML, Sage EH and Loskutoff DJ: Distribution of vitronectin mRNA during murine development. Dev Dyn. 203:71–79. 1995.PubMed/NCBI View Article : Google Scholar

106 

Aaboe M, Offersen BV, Christensen A and Andreasen PA: Vitronectin in human breast carcinomas. Biochim Biophys Acta. 1638:72–82. 2003.PubMed/NCBI View Article : Google Scholar

107 

van Aken BE, Seiffert D, Thinnes T and Loskutoff DJ: Localization of vitronectin in the normal and atherosclerotic human vessel wall. Histochem Cell Biol. 107:313–320. 1997.PubMed/NCBI View Article : Google Scholar

108 

Shi F and Sottile J: Caveolin-1-dependent beta1 integrin endocytosis is a critical regulator of fibronectin turnover. J Cell Sci. 121:2360–2371. 2008.PubMed/NCBI View Article : Google Scholar

109 

Lenselink EA: Role of fibronectin in normal wound healing. Int Wound J. 12:313–316. 2015.PubMed/NCBI View Article : Google Scholar

110 

Ricard-Blum S: The collagen family. Cold Spring Harb Perspect Biol. 3(a004978)2011.PubMed/NCBI View Article : Google Scholar

111 

Scherer PE and Hill JA: Obesity, diabetes, and cardiovascular diseases: A compendium. Circ Res. 118:1703–1705. 2016.PubMed/NCBI View Article : Google Scholar

112 

Zhang X, Zhang Y, Wang P, Zhang SY, Dong Y, Zeng G, Yan Y, Sun L, Wu Q, Liu H, et al: Adipocyte hypoxia-inducible factor 2α suppresses atherosclerosis by promoting adipose ceramide catabolism. Cell Metab. 30:937–951.e5. 2019.PubMed/NCBI View Article : Google Scholar

113 

Kaneko M, Minematsu T, Yoshida M, Nishijima Y, Noguchi H, Ohta Y, Nakagami G, Mori T and Sanada H: Compression-induced HIF-1 enhances thrombosis and PAI-1 expression in mouse skin. Wound Repair Regen. 23:657–663. 2015.PubMed/NCBI View Article : Google Scholar

114 

Samad F, Schneiderman J and Loskutoff D: Expression of fibrinolytic genes in tissues from human atherosclerotic aneurysms and from obese mice. Ann N Y Acad Sci. 811:350–360. 1997.PubMed/NCBI View Article : Google Scholar

115 

Qureshi R, Kindo M, Arora H, Boulberdaa M, Steenman M and Nebigil CG: Prokineticin receptor-1-dependent paracrine and autocrine pathways control cardiac tcf21+ fibroblast progenitor cell transformation into adipocytes and vascular cells. Sci Rep. 7(12804)2017.PubMed/NCBI View Article : Google Scholar

116 

Li JQ, Zhao SP, Li QZ, Cai YC, Wu LR, Fang Y and Li P: Atorvastatin reduces plasminogen activator inhibitor-1 expression in adipose tissue of atherosclerotic rabbits. Clin Chim Acta. 370:57–62. 2006.PubMed/NCBI View Article : Google Scholar

117 

Geis T, Döring C, Popp R, Grossmann N, Fleming I, Hansmann ML, Dehne N and Brüne B: HIF-2alpha-dependent PAI-1 induction contributes to angiogenesis in hepatocellular carcinoma. Exp Cell Res. 331:46–57. 2015.PubMed/NCBI View Article : Google Scholar

118 

Ekmekci H, Sonmez H, Ekmekci OB, Ozturk Z, Domanic N and Kokoglu E: Plasma vitronectin levels in patients with coronary atherosclerosis are increased and correlate with extent of disease. J Thromb Thrombolysis. 14:221–225. 2002.PubMed/NCBI View Article : Google Scholar

119 

Reuning U, Magdolen V, Hapke S and Schmitt M: Molecular and functional interdependence of the urokinase-type plasminogen activator system with integrins. Biol Chem. 384:1119–1131. 2003.PubMed/NCBI View Article : Google Scholar

120 

Chiellini C, Cochet O, Negroni L, Samson M, Poggi M, Ailhaud G, Alessi MC, Dani C and Amri EZ: Characterization of human mesenchymal stem cell secretome at early steps of adipocyte and osteoblast differentiation. BMC Mol Biol. 9(26)2008.PubMed/NCBI View Article : Google Scholar

121 

Ekström M, Liska J, Eriksson P, Sverremark-Ekström E and Tornvall P: Stimulated in vivo synthesis of plasminogen activator inhibitor-1 in human adipose tissue. Thromb Haemost. 108:485–492. 2012.PubMed/NCBI View Article : Google Scholar

122 

Lijnen HR, Maquoi E, Demeulemeester D, Van Hoef B and Collen D: Modulation of fibrinolytic and gelatinolytic activity during adipose tissue development in a mouse model of nutritionally induced obesity. Thromb Haemost. 88:345–353. 2002.PubMed/NCBI

123 

Efimenko A, Starostina E, Kalinina N and Stolzing A: Angiogenic properties of aged adipose derived mesenchymal stem cells after hypoxic conditioning. J Transl Med. 9(10)2011.PubMed/NCBI View Article : Google Scholar

124 

Zhou A, Huntington JA, Pannu NS, Carrell RW and Read RJ: How vitronectin binds PAI-1 to modulate fibrinolysis and cell migration. Nat Struct Biol. 10:541–544. 2003.PubMed/NCBI View Article : Google Scholar

125 

Fukui N, Ikeda Y, Tanaka N, Wake M, Yamaguchi T, Mitomi H, Ishida S, Furukawa H, Hamada Y, Miyamoto Y, et al: αvβ5 Integrin promotes dedifferentiation of monolayer-cultured articular chondrocytes. Arthritis Rheum. 63:1938–1949. 2011.PubMed/NCBI View Article : Google Scholar

126 

Goessler UR, Bieback K, Bugert P, Heller T, Sadick H, Hörmann K and Riedel F: In vitro analysis of integrin expression during chondrogenic differentiation of mesenchymal stem cells and chondrocytes upon dedifferentiation in cell culture. Int J Mol Med. 17:301–307. 2006.PubMed/NCBI

127 

Clemmons DR, Maile LA, Ling Y, Yarber J and Busby WH: Role of the integrin alphaVbeta3 in mediating increased smooth muscle cell responsiveness to IGF-I in response to hyperglycemic stress. Growth Horm IGF Res. 17:265–270. 2007.PubMed/NCBI View Article : Google Scholar

128 

Czekay RP, Kuemmel TA, Orlando RA and Farquhar MG: Direct binding of occupied urokinase receptor (uPAR) to LDL receptor-related protein is required for endocytosis of uPAR and regulation of cell surface urokinase activity. Mol Biol Cell. 12:1467–1479. 2001.PubMed/NCBI View Article : Google Scholar

129 

Binder BR, Mihaly J and Prager GW: uPAR-uPA-PAI-1 interactions and signaling: A vascular biologist's view. Thromb Haemost. 97:336–342. 2007.PubMed/NCBI

130 

Cortese K, Sahores M, Madsen CD, Tacchetti C and Blasi F: Clathrin and LRP-1-independent constitutive endocytosis and recycling of uPAR. PLoS One. 3(e3730)2008.PubMed/NCBI View Article : Google Scholar

131 

Rabiej VK, Pflanzner T, Wagner T, Goetze K, Storck SE, Eble JA, Weggen S, Mueller-Klieser W and Pietrzik CU: Low density lipoprotein receptor-related protein 1 mediated endocytosis of β1-integrin influences cell adhesion and cell migration. Exp Cell Res. 340:102–115. 2016.PubMed/NCBI View Article : Google Scholar

132 

Crampton SP, Wu B, Park EJ, Kim JH, Solomon C, Waterman ML and Hughes CC: Integration of the beta-catenin-dependent Wnt pathway with integrin signaling through the adaptor molecule Grb2. PLoS One. 4(e7841)2009.PubMed/NCBI View Article : Google Scholar

133 

Dejaeger M, Böhm AM, Dirckx N, Devriese J, Nefyodova E, Cardoen R, St-Arnaud R, Tournoy J, Luyten FP and Maes C: Integrin-linked kinase regulates bone formation by controlling cytoskeletal organization and modulating BMP and Wnt signaling in osteoprogenitors. J Bone Miner Res. 32:2087–2102. 2017.PubMed/NCBI View Article : Google Scholar

134 

Zucker MM, Wujak L, Gungl A, Didiasova M, Kosanovic D, Petrovic A, Klepetko W, Schermuly RT, Kwapiszewska G, Schaefer L and Wygrecka M: LRP1 promotes synthetic phenotype of pulmonary artery smooth muscle cells in pulmonary hypertension. Biochim Biophys Acta Mol Basis Dis. 1865:1604–1616. 2019.PubMed/NCBI View Article : Google Scholar

135 

Koraishy FM, Silva C, Mason S, Wu D and Cantley LG: Hepatocyte growth factor (Hgf) stimulates low density lipoprotein receptor-related protein (Lrp) 5/6 phosphorylation and promotes canonical Wnt signaling. J Biol Chem. 289:14341–14350. 2014.PubMed/NCBI View Article : Google Scholar

136 

Masson O, Chavey C, Dray C, Meulle A, Daviaud D, Quilliot D, Muller C, Valet P and Liaudet-Coopman E: LRP1 receptor controls adipogenesis and is up-regulated in human and mouse obese adipose tissue. PLoS One. 4(e7422)2009.PubMed/NCBI View Article : Google Scholar

137 

Jiang F, Parsons CJ and Stefanovic B: Gene expression profile of quiescent and activated rat hepatic stellate cells implicates Wnt signaling pathway in activation. J Hepatol. 45:401–409. 2006.PubMed/NCBI View Article : Google Scholar

138 

Ding X, Tong Y, Jin S, Chen Z, Li T, Billiar TR, Pitt BR, Li Q and Zhang LM: Mechanical ventilation enhances extrapulmonary sepsis-induced lung injury: Role of WISP1-αvβ5 integrin pathway in TLR4-mediated inflammation and injury. Crit Care. 22(302)2018.PubMed/NCBI View Article : Google Scholar

139 

Stephens S, Palmer J, Konstantinova I, Pearce A, Jarai G and Day E: A functional analysis of Wnt inducible signalling pathway protein-1 (WISP-1/CCN4). J Cell Commun Signal. 9:63–72. 2015.PubMed/NCBI View Article : Google Scholar

140 

Ono M, Inkson CA, Kilts TM and Young MF: WISP-1/CCN4 regulates osteogenesis by enhancing BMP-2 activity. J Bone Miner Res. 26:193–208. 2011.PubMed/NCBI View Article : Google Scholar

141 

Xu J and Liao K: Protein kinase B/AKT 1 plays a pivotal role in insulin-like growth factor-1 receptor signaling induced 3T3-L1 adipocyte differentiation. J Biol Chem. 279:35914–35922. 2004.PubMed/NCBI View Article : Google Scholar

142 

Gondi CS, Kandhukuri N, Dinh DH, Gujrati M and Rao JS: Down-regulation of uPAR and uPA activates caspase-mediated apoptosis and inhibits the PI3K/AKT pathway. Int J Oncol. 31:19–27. 2007.PubMed/NCBI

143 

Whitley BR, Beaulieu LM, Carter JC and Church FC: Phosphatidylinositol 3-kinase/Akt regulates the balance between plasminogen activator inhibitor-1 and urokinase to promote migration of SKOV-3 ovarian cancer cells. Gynecol Oncol. 104:470–479. 2007.PubMed/NCBI View Article : Google Scholar

144 

Karbiener M, Neuhold C, Opriessnig P, Prokesch A, Bogner-Strauss JG and Scheideler M: MicroRNA-30c promotes human adipocyte differentiation and co-represses PAI-1 and ALK2. RNA Biol. 8:850–860. 2011.PubMed/NCBI View Article : Google Scholar

145 

Wang Q, Li YC, Wang J, Kong J, Qi Y, Quigg RJ and Li X: miR-17-92 cluster accelerates adipocyte differentiation by negatively regulating tumor-suppressor Rb2/p130. Proc Natl Acad Sci USA. 105:2889–2894. 2008.PubMed/NCBI View Article : Google Scholar

146 

Karbiener M, Fischer C, Nowitsch S, Opriessnig P, Papak C, Ailhaud G, Dani C, Amri EZ and Scheideler M: microRNA miR-27b impairs human adipocyte differentiation and targets PPARgamma. Biochem Biophys Res Commun. 390:247–251. 2009.PubMed/NCBI View Article : Google Scholar

147 

Lee EK, Lee MJ, Abdelmohsen K, Kim W, Kim MM, Srikantan S, Martindale JL, Hutchison ER, Kim HH, Marasa BS, et al: miR-130 suppresses adipogenesis by inhibiting peroxisome proliferator-activated receptor gamma expression. Mol Cell Biol. 31:626–638. 2011.PubMed/NCBI View Article : Google Scholar

148 

Kim YJ, Hwang SJ, Bae YC and Jung JS: MiR-21 regulates adipogenic differentiation through the modulation of TGF-beta signaling in mesenchymal stem cells derived from human adipose tissue. Stem Cells. 27:3093–3102. 2009.PubMed/NCBI View Article : Google Scholar

149 

Esau C, Kang X, Peralta E, Hanson E, Marcusson EG, Ravichandran LV, Sun Y, Koo S, Perera RJ, Jain R, et al: MicroRNA-143 regulates adipocyte differentiation. J Biol Chem. 279:52361–52365. 2004.PubMed/NCBI View Article : Google Scholar

150 

Hadadeh O, Barruet E, Peiretti F, Verdier M, Bernot D, Hadjal Y, Yazidi CE, Robaglia-Schlupp A, De Paula AM, Nègre D, et al: The plasminogen activation system modulates differently adipogenesis and myogenesis of embryonic stem cells. PLoS One. 7(e49065)2012.PubMed/NCBI View Article : Google Scholar

151 

Tang CH, Hill ML, Brumwell AN, Chapman HA and Wei Y: Signaling through urokinase and urokinase receptor in lung cancer cells requires interactions with beta1 integrins. J Cell Sci. 121:3747–3756. 2008.PubMed/NCBI View Article : Google Scholar

152 

Baldwin LA, Hoff JT, Lefringhouse J, Zhang M, Jia C, Liu Z, Erfani S, Jin H, Xu M, She QB, et al: CD151-α3β1 integrin complexes suppress ovarian tumor growth by repressing slug-mediated EMT and canonical Wnt signaling. Oncotarget. 5:12203–12217. 2014.PubMed/NCBI View Article : Google Scholar

153 

Zhao G, Kim EW, Jiang J, Bhoot C, Charles KR, Baek J, Mohan S, Adams JS, Tetradis S and Lyons KM: CCN1/Cyr61 is required in osteoblasts for responsiveness to the anabolic activity of PTH. J Bone Miner Res. 35:2289–2300. 2020.PubMed/NCBI View Article : Google Scholar

154 

Asuthkar S, Gondi CS, Nalla AK, Velpula KK, Gorantla B and Rao JS: Urokinase-type plasminogen activator receptor (uPAR)-mediated regulation of WNT/β-catenin signaling is enhanced in irradiated medulloblastoma cells. J Biol Chem. 287:20576–20589. 2012.PubMed/NCBI View Article : Google Scholar

155 

Gondi CS, Kandhukuri N, Kondraganti S, Gujrati M, Olivero WC, Dinh DH and Rao JS: Down-regulation of uPAR and cathepsin B retards cofilin dephosphorylation. Int J Oncol. 28:633–639. 2006.PubMed/NCBI

156 

Weisel JW: Fibrinogen and fibrin. In: Advances in Protein Chemistry. Vol 70. Academic Press, Cambridge, MA, pp247-299, 2005.

157 

Neuss S, Schneider RK, Tietze L, Knüchel R and Jahnen-Dechent W: Secretion of fibrinolytic enzymes facilitates human mesenchymal stem cell invasion into fibrin clots. Cells Tissues Organs. 191:36–46. 2010.PubMed/NCBI View Article : Google Scholar

158 

Valenick LV, Hsia HC and Schwarzbauer JE: Fibronectin fragmentation promotes alpha4beta1 integrin-mediated contraction of a fibrin-fibronectin provisional matrix. Exp Cell Res. 309:48–55. 2005.PubMed/NCBI View Article : Google Scholar

159 

Gavin KM, Majka SM, Kohrt WM, Miller HL, Sullivan TM and Klemm DJ: Hematopoietic-to-mesenchymal transition of adipose tissue macrophages is regulated by integrin β1 and fabricated fibrin matrices. Adipocyte. 6:234–249. 2017.PubMed/NCBI View Article : Google Scholar

160 

Rodríguez Fernández JL and Ben-Ze'ev A: Regulation of fibronectin, integrin and cytoskeleton expression in differentiating adipocytes: Inhibition by extracellular matrix and polylysine. Differentiation. 42:65–74. 1989.PubMed/NCBI View Article : Google Scholar

161 

Liu LF, Shen WJ, Zhang ZH, Wang LJ and Kraemer FB: Adipocytes decrease Runx2 expression in osteoblastic cells: Roles of PPARγ and adiponectin. J Cell Physiol. 225:837–845. 2010.PubMed/NCBI View Article : Google Scholar

162 

Kortlever RM and Bernards R: Senescence, wound healing and cancer: The PAI-1 connection. Cell Cycle. 5:2697–2703. 2006.PubMed/NCBI View Article : Google Scholar

163 

Zhang Y, Pan Y, Xie C and Zhang Y: miR-34a exerts as a key regulator in the dedifferentiation of osteosarcoma via PAI-1-Sox2 axis. Cell Death Dis. 9(777)2018.PubMed/NCBI View Article : Google Scholar

164 

Wang Z, Xing H, Hu H, Dai T, Wang Y, Li Z, An R, Xu H, Liu Y and Liu B: Intraglandular transplantation of adipose-derived stem cells combined with platelet-rich fibrin extract for the treatment of irradiation-induced salivary gland damage. Exp Ther Med. 15:795–805. 2018.PubMed/NCBI View Article : Google Scholar

165 

Gurewich V: Therapeutic fibrinolysis: How efficacy and safety can be improved. J Am Coll Cardiol. 68:2099–2106. 2016.PubMed/NCBI View Article : Google Scholar

166 

Cao GQ, Li L, Wang YB, Shi ZZ, Fan DY and Chen HY: Treatment of free-flowing tuberculous pleurisy with intrapleural urokinase. Int J Tuberc Lung Dis. 19:1395–1400. 2015.PubMed/NCBI View Article : Google Scholar

167 

Berkenpas MB, Lawrence DA and Ginsburg D: Molecular evolution of plasminogen activator inhibitor-1 functional stability. EMBO J. 14:2969–2977. 1995.PubMed/NCBI

168 

Naderi N, Griffin MF, Mosahebi A, Butler PE and Seifalian AM: Adipose derived stem cells and platelet rich plasma improve the tissue integration and angiogenesis of biodegradable scaffolds for soft tissue regeneration. Mol Biol Rep. 47:2005–2013. 2020.PubMed/NCBI View Article : Google Scholar

169 

Rahman SU, Park CH, Baek JH, Ryoo HM and Woo KM: Fibrin-enhanced canonical Wnt signaling directs plasminogen expression in cementoblasts. Int J Mol Sci. 18(2380)2017.PubMed/NCBI View Article : Google Scholar

170 

Tara S and Krishnan LK: Differentiation of circulating neural progenitor cells in vitro on fibrin-based composite-matrix involves Wnt-β-catenin-like signaling. J Cell Commun Signal. 13:27–38. 2019.PubMed/NCBI View Article : Google Scholar

171 

Zhou C, Li S, Wenqiguli N, Yu L, Zhao L, Wu P and Nijiati T: The expressions of the Notch and Wnt signaling pathways and their significance in the repair process of alveolar bone defects in rabbits with bone marrow stem cells compounded with platelet-rich fibrin. Hua Xi Kou Qiang Yi Xue Za Zhi. 34:130–135. 2016.PubMed/NCBI View Article : Google Scholar : (In Chinese).

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Nohawica M, Errachid A and Wyganowska‑Swiatkowska M: Adipose‑PAS interactions in the context of its localised bio‑engineering potential (Review). Biomed Rep 15: 70, 2021.
APA
Nohawica, M., Errachid, A., & Wyganowska‑Swiatkowska, M. (2021). Adipose‑PAS interactions in the context of its localised bio‑engineering potential (Review). Biomedical Reports, 15, 70. https://doi.org/10.3892/br.2021.1446
MLA
Nohawica, M., Errachid, A., Wyganowska‑Swiatkowska, M."Adipose‑PAS interactions in the context of its localised bio‑engineering potential (Review)". Biomedical Reports 15.2 (2021): 70.
Chicago
Nohawica, M., Errachid, A., Wyganowska‑Swiatkowska, M."Adipose‑PAS interactions in the context of its localised bio‑engineering potential (Review)". Biomedical Reports 15, no. 2 (2021): 70. https://doi.org/10.3892/br.2021.1446
Copy and paste a formatted citation
x
Spandidos Publications style
Nohawica M, Errachid A and Wyganowska‑Swiatkowska M: Adipose‑PAS interactions in the context of its localised bio‑engineering potential (Review). Biomed Rep 15: 70, 2021.
APA
Nohawica, M., Errachid, A., & Wyganowska‑Swiatkowska, M. (2021). Adipose‑PAS interactions in the context of its localised bio‑engineering potential (Review). Biomedical Reports, 15, 70. https://doi.org/10.3892/br.2021.1446
MLA
Nohawica, M., Errachid, A., Wyganowska‑Swiatkowska, M."Adipose‑PAS interactions in the context of its localised bio‑engineering potential (Review)". Biomedical Reports 15.2 (2021): 70.
Chicago
Nohawica, M., Errachid, A., Wyganowska‑Swiatkowska, M."Adipose‑PAS interactions in the context of its localised bio‑engineering potential (Review)". Biomedical Reports 15, no. 2 (2021): 70. https://doi.org/10.3892/br.2021.1446
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team